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Entropy and volume
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Abstract. An inequality is given relating the topological entropy of a smooth map
to growth rates of the volumes of iterates of smooth submanifolds. Applications to
the entropy of algebraic maps are given.

1. Introduction
The topological entropy of a map / is a number which roughly measures the orbit
structure complexity of/ Maps with positive entropy exhibit complicated dynamics,
and the larger the entropy is, the more complicated the dynamics is. It is of interest
to calculate the entropy for particular maps under study, but any of the standard
definitions of entropy makes this a difficult task. Our goal in this paper is to present
an inequality which gives an upper bound for the topological entropy of a smooth
map in terms of the growth rates of volumes of smooth submanifolds. We shall use
this inequality to give simple proofs of estimates of Gromov of the entropy of real
and complex polynomial maps. In many cases our inequality is likely to be an
equality. Recently, Yomdin [19] has proved that equality holds for all C°°-maps.

We proceed to state our results. First, we recall the definition of the topological
entropy. If / is a continuous self-map of the compact metric space (ft, d), e is a
positive real and n is a positive integer, then a subset E ef t is called an (n, e)-
separated set if whenever x^y in E there is an integer j in [0, n) such that
d{f'x,f'y)> e. Let r(n, e,f) denote the maximal cardinality of an («, e)-separated
set. The topological entropy h(f) is defined to be

lim limsup — log r(n, e,f).
e-*0 n-»oo n

It is well known that
h{f)= sup hlx(f)= sup /iM(/),

where M{f) is the set of /-invariant probability measures, Me(f) denotes the
ergodic elements in M{f), and AM(/) denotes the metric entropy of/ relative to
the measure /A.

Let M be a Cl+a Riemannian manifold, and let f:M^M be a C1+"-map. Let
ft be a compact /-invariant set. For 1 < k < dim M, let Dk be the unit disc in Rk.
A smooth fc-disc in M is a Cl+a-map y:Dk->M. The Riemannian metric on M
induces a norm | • |k on each exterior power AkTxM of the tangent space TXM of x
We define the fc-volume of y to be

\AkTxy\kd\(x),
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where Txy is the derivative of y, AkTxy: AkTxD
k-* AkTyxM is the induced linear

map on the fcth exterior power, and dk is the usual volume form on Dk (i.e., if
(ti,...,tk) are coordinates on Dk, then dX = dtx A • • • A dtk). Similarly, if A c Dk,
we set

\y\A\=\ \Ak

J A
ikTxy\kdk(x).

I A

Let si be a collection of Cl+<*-discs in M whose dimensions vary from 1 through
dim M. Let Gk be the Grassmann bundle of fc-planes over ft and let Ufc G

k(il) be
the disjoint union. We assume M <= UN for some large N, so that for x, y e M it is
meaningful to write |j^ — JC|, etc.

For y e si, y: Dk -» M let

We say si is ampte for ft if there exists K > 0 such that
(1) infw=1 IrordOlsK-1 for y e ^ ,
(2) U p a ( y ) £ K f o r y e j * ,
(3) U r e ^ Image (Toy) is dense in (Jfc C?k(fl).
In the above, 0 refers to the origin in Dk where y is defined on Dk, and Toy is

the derivative of y at 0. Note that condition (3) does not require that the y(0) be
inO.

We observe that (3) forces si to contain many fc-discs for each 1 < k < dim M.
It is easy to see that ample families always exist. Choose e so that expx (v) is

defined for each xef l and |u|^e, and expx \{ve TXM: |t>|<e} is an embedding.
Consider the family & = {expx \H: xeCl and H is a closed e-ball about 0 in some
non-zero linear subspace of TXM}. Clearly % is ample over il. Note also that
countable ample families always exist. Now let V be a compact neighbourhood of
a. For n e Z + let Ws(n, V) = DOsj<nr

J(V). For a C1+a-disc y: D-> V we define

G(y,f, V) li

where log+ (x) = max (log x, 0). This has a simple interpretation. Observe that
y~\Ws(n, V)) is the set of points x in Dk such that fj(y(x))e VforO<j<«, and
I/" ' ° yly '(Ws(«, V))| is the fc-dimensional volume of the (/""' ° -y)-image of this
set.

THEOREM 1. Let f be a C1+a-self-map of the C2 Riemannian manifold M. Let ft be
a compact f-invariant set, let U be a compact neighbourhood of ft in M and let si be
an ample family of smooth discs for ft. Then

h(f\il)^supG(y,f,U).
yesi

Now suppose M is a complex Hermitian manifold with complex dimension
dimc M, and f:M->M is holomorphic. Let ft be a compact /-invariant set and let
U be a compact neighbourhood of ft. For l<fc<dimcM let Gk(M) be the

https://doi.org/10.1017/S0143385700009469 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009469


Entropy and volume 285

fc-dimensional complex linear subspaces of the complex tangent spaces {{TXM)C}

and set Gc(M) = U l s t s d i m c M Gk
c(M).

A holomorphic fc-disc in M is a holomorphic map y: Dk-* M, where Dk is the
open unit ball in Ck. Define the volume \y\ of such a y as follows. Let (z,, z2. • • • , zk)
be complex coordinates on Dk with z, the complex conjugate of z,. Set

L dzx A • • • A dzk A dzx A • • • A dzk.A Txy(d/dzj)
.7 = 1

We say s£ is holomorphically ample over ft if conditions (1) and (2) above hold and
(3) U r e ^ (Toy(ToD

k)) is dense in \Jk Gk(M),
(4) each y e A is holomorphic.

THEOREM 2. With the above notations, if si is holomorphically ample over ft, then

M/| f t )<supG( % / , U).

Theorems 1 and 2 enable us to give simple proofs of the following theorem due
to Gromov.

THEOREM 3 (Gromov [2]). (i) Suppose f:RA'-»RN is given by

f(xt, . . . , XN) = (/ i(Xi, . . . , XN),f2(Xi, . . . , XN), . . . ,fN\xl, • • • , XN)),

where each f is a polynomial of degree < d. If ft is any compact f-invariant set, then
fc(/|n)=sJV log d.

(ii) Suppose f: PN(C) -» PN(C) is a holomorphic globally defined self-map of com-
plex projective N-space, and the topological degree off is d. Then h (/) = log d.

Remark. In the case of endomorphisms/: P'(C)-» P'(C) (i.e. the Riemann sphere),
Ljubich [5] has obtained a different proof of the estimate in theorem 3(ii).

THEOREM 4. Suppose f:UN -+UN and ft are as in the hypotheses of theorem 3(i). If,
in addition, f is injective on some neighbourhood of ft, then / i(/ | f t)<(7V-l) log d.

Assuming theorems 1 and 2, let us prove theorem 3.

Proof of 3(i). Let ^/t(RN) be the set of linear embeddings of R* into UN, and let

ForxeRN let rf* = {y:D*-»RN: y(t) = x + L(t) where Le »*(RN) and teDk}.
Clearly

M= U sik

xefl
sksN

is ample for ft. We call .stf the family of affine unit discs over ft. Let T> 0 be such
that the ball of radius 1 about ft is contained in IN = [-T, 7"] x • • • x [-T, T].

For y e stk, x € ft let us prove that G(y,f IN)<k log d. This and theorem 1 give
theorem 3(i).

We write /"(*, ,...,xN) = (/"(*, ,...,xN),... , / N ( * I ,-.-,XN)), where each f"
is a polynomial in ( c , , . . . , xn) of degree srf".

Let y 6 .stf*. Then

I/""1 • r |y - ( Ws(/N, n))|s I/""1 o y|r-'r"+1(/N)|.
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Let An^i = y'1J~"
t&An_x implies that

and let t = (tx,..., tk) be coordinates on Dk. Now

where g"~l(tx>..., tk) is a polynomial in ( f , , . . . , tk) of degree s

Also

I/-1' A T,U-loy)(d/dtj)
.7 = 1

dtx A • • • A df*.

; C max
1 • > 6 'k

with C > 0 independent of n.
The last integral is the volume with multiplicities of Trg"~^\An^x, where ir is the

projection of UN onto (x(1, . . . , xik) -space. This integral is less than or equal to
(2T)kBn_x, where Bn_, is the maximum cardinality of \_Trg"~lY\y), where y is a
regular value of irg"~\ Thus Bn_, may be estimated by Bezout's theorem [8]. Indeed,
•7Tg"~i is a polynomial map from IR* to Uk whose components have degree sd""1.

Let (xlt..., xk) denote coordinates in Uk so that

irgn-\xx,...,xk) = ( I a,1,..^^1,'... xjf,.. .)•

Let z, = Xi+4-lyi, i = 1 , . . . , k denote coordinates on C* so that

Uk = {(z, , . . . , ): z, = ^iyt and yt = 0 for i = 1 , . . . . k}.

naturally extends toThus we regard R* as a subset of C\ The map irg"~l: Uk -
the polynomial p"'} :Ck-+Ck with

p"-\zlt..., zk) = ( I al..ikz\>... z'i,I a?,...,,zi.... zfc,.. .)•
Let w€Rfc be such that vg"~i(w) = y. Let Aw denote the derivative of Trg""1 at w.
Then /4W is a linear isomorphism from R* to itself since y is a regular value of
vg"~\ Regarding w as a point in Ck, let Fw be the derivative of p"~l at w which
we think of as a complex linear isomorphism C* -» C*. Looking at the induced real

2k 2kvector space structure U2k of Ck, the map Fw induces a real linear map Fw:
and it is easily checked that Fw is an isomorphism. Hence for any yt in Ck near y
there will be a unique point wx in C*1 near w such that pnl(wx) = yx. By Bezout's
theorem, if y, eCk is a regular value of p""1, then the cardinality of

This implies that Bn_x < dk{"-x\ so I/""1 ° r | /4n-, |s C , / ' " " " with C, independent
of M. Thus G(y,/, /") < fc log d. D

Proof of 3(ii). We consider FN(C) as the quotient space of CN+'\{0} under the
equivalence relation (x 0 , . . . , xN)~(y0>... ,yn) if and only if there is a non-zero
aeC\{0} such that x,= ayt for all i. Let ir: CN+1\{O}^PN(C) be the natural
projection. We use the usual Kahler metrics on C'v+1\{0} and PN(C). Our holomor-
phic / lifts to / ( x 0 , . . . , xN) = ( / (x 0 , . . . , xN)) with / a homogeneous polynomial
of degree, say 8. The topological degree of/ is 8N, so for theorem 3(ii) we must
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prove /)(/) = N log 5. By Misiurewicz and Przytycki [7] we have fc(/) > TV log S, so
we need to prove h(f) < TV log S.

For l<fc<7V let Dk
c be the unit disc in C*, and for xeCN+1\{0} let Mk

x,c =
{y:Dk

:-*Cs+1:y(t) = x + L(t), teDc, where L:C(c-»CN+1 is a complex linear
embedding and x is not in Image(L)}. Let MxC = {TT° y.ye sdxS:}. Then

s*= U ^*,c

is holomorphically ample.
For y:Dc-*CN+1 with y(f) = * + £(*) and xi. Image (y) let tf be the linear

subspaceof CN+1 spanned by the elements of Image (y) and 0. Then dimc tf = fc+1.
Since tf => Image (y), it is clear that G(TT° y , / )< G(7rtf,/). The computation of
G(nH,f) reduces to simple and well known facts about volumes of projective
varieties in PN(C) with the Kahler metric on PJV(C). Indeed f"~\irH) is a (possibly
singular) variety of degree 8{"~l)k. Thus the proof of theorem (5.22) of [8] together
with the fact that varieties have locally finite volume [18] gives that \f"~\irH)\ =

Hence G(TT° y,/)<fclog S and supy6^ G(y,/)< TVlog 5, thus proving
theorem 3(ii). •

2. Proofs of theorems 1 and 2
Before proceeding to the proofs, let us make some comments. If our mapping / in
the statement of theorem 1 were a diffeomorphism and the set SI were uniformly
hyperbolic, then it would be fairly easy to prove the theorem. It would only be
slightly harder to do it if O were even uniformly partially hyperbolic. The proof in
the general (perhaps non-invertible) case requires applying 'partially hyperbolic
intuition' in neighbourhoods of orbits which begin in uniformly partially hyperbolic
(possibly non-invariant) sets given by a suitable version of the recently developed
Pesin-Oseledec theory. It is most natural in this context to make use of the so-called
'Lyapunov metric' which introduces uniform partial hyperbolicity in a measurable
Finsler structure along 'good' orbits. The construction of such Lyapunov metrics
for diffeomorphisms was first done by Pesin, and a clean treatment is given in [1].
In the previously known constructions of Lyapunov metrics, essential use is made
of the fact that the derivative on each unit ball is uniformly bounded above and
below. For non-invertible maps this derivative condition of course usually fails, and
a large part of our work (theorem 2.3 below) involves constructing Lyapunov metrics
without the lower bound condition on the derivative. In this construction we combine
techniques introduced by Mane in [6] and Fathi-Herman-Yoccoz in [1].

The multiplicative ergodic theorem of Oseledec [9] gives the asymptotic behaviour
of the iterates Tf" of the derivative Tf of a C1-diffeomorphism as |n|-»oo. For
forward iterates, an elementary proof of this theorem was given by Raghunathan
[12]. Later, Ruelle extended the theorem to C'-maps of a Hilbert space under
certain compactness assumptions [16], and Mane extended the theorem to C'-maps
on a Banach space with compact derivative at each point [6]. Pesin [10] obtained
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stable and unstable manifold theorems for C1+a-diffeormorphisms preserving a
smooth measure. Ruelle extended Pesin's results to arbitrary diffeomorphisms in
[14], and then to differentiate maps in Hilbert space in [16]. Various stable and
unstable manifold theorems for maps of compact manifolds are stated in [17], and
Mane considers stable and unstable manifolds for certain maps of Banach spaces
[6]. A nice treatment of the Pesin stable manifold theory for diffeomorphisms is
given in [1].

For us to make use of the Oseledec-Pesin theory, we will first pass to the inverse
limit of/ on ft.

If / :ft-»ft is a continuous self-map of the compact metric space (ft, d), let
Cl = {x = (xo,xi,...):xien and /(*,+,) = x, for i>0}. Setting f((xo,xu ...)) =
{fx0, x0, Xi,...) and giving ft the relative topology as a subset of the product ftz ,
we get that/:ft-»ft is a homeomorphism. If ir((x0, x, , . . . )) = *o, then/7r = nf. The
pair (ft,/) is called the inverse limit of (ft,/). We give ft the metric d(x,y) =
Zl.a02-d(xl.,jl.).

PROPOSITION 2.1 (Rohlin [13]). If f and f are as above and fieM(f), fieM(f)
satisfy ir^fi, = n, then /»„(/) = h^f).

COROLLARY 2.2. h(f) = h(f).

Proof. Since -rrf=fir, it follows that h(f)>h(f). For the reverse inequality use

Hf)= sup K{f), h(f)= sup

and the fact that for fi e M(f) there is a /16 M{f) with ir*p, = fi, and ha{f) = h^f).

•
The proof of the next result makes use of techniques of Mane [6] and Fathi-

Herman-Yoccoz [1]. We thank Mane for several conversations concerning his results
in [6] and their adaptation to our setting.

THEOREM 2.3. Let f: X -* X be a homeomorphism of the compact metric space X. Let
IT : E -»X be a continuous Banach bundle over X and let L: E -* E be a continuous
vector bundle map covering f. Let Ex = ir~*x. Suppose that LX:EX^* Efx is a compact
map for each xeX. Then there is an f-invariant Borel set T <= X with the following
properties:

(1) fi(X) — 1 for every f-invariant probability measure.
(2) There is a splitting Ex = £,(*)©E2(x)®E3(x) depending measurably on x e f

such that
(a) veEx=>%(x, t>) = lim,,^, (1/n) log |L"v\ exists in [-00,00);
(b) v€El(x)=^>^(x, v)<0, veE2{x)=5>%(x,v) = 0 and ve E3(x)=>%(x,v)>0;
(c) Lx(£,(x))c£1(/(x)), Lx(E2(x)®E3(x)) = E2(f(x))®E3(f(x)) and

Lx\E2(x)@E3(x) is an isomorphism;
(d) dim£2(x)0E3(x)<co.
(3) Suppose A,(x) is a negative f-invariant measurable function and \3(x), e(x)

are positive f-invariant measurable functions such that ve £,(*)=£#f(.x, v)<
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A,(x) + e ( x ) < 0 and veE3(x) implies %!(x, v)> A 3 ( x ) - e ( x ) > 0 . Then there are a
measurable norm \-\'x on ExforxeF and a measurable function A(x) such that

(a) v 6 EM^LM'f* =£ e"'M+cM\v\'x,

(b) \v\x^\v\'x<A(x)\v\xforxer, veEx;
(c) limn^±co (1/n) log A(fx) = 0 /or x e T.
(4) If T)(X) is the infimum of the angles between £,(x) and £,(x) for ir^j, then

lim_±co (1/n) log r,(f"x) = 0 /or x € T.

Proof. Using the ergodic decomposition theorem, we may assume /x. is a fixed
ergodic invariant measure and A]( •), A3( •) and e( •) are constant functions. Follow-
ing Mane [6], we first cover L with a Banach bundle map L which is injective on
fibres. Let Z+ = {0,1,2,...} be the non-negative integers. Removing a /t-null set,
we may assume that E —ClxF, where F is a Banach space and ir:E-»O is the
projection. Let H = {0:Z+->F| sup,aO |0(O|<°°} and let |0| = supf |0(i)|. Let a>
supxen|Lx|. Let L:ilxH-*Q,xH be defined by L(x, 6) = (fx, Lxd), where LX0 =

Then Lx is compact for each x, and L is a compact bundle map over/ Moreover,

lim - log |L;0| = lim - log |L;0(O)|,

by which we mean that each term exists if and only if the other exists and then they
are equal.

According to Mane [6], there is a set Tx <= X with /A(TO = 1 such that there is a
splitting / / = £,(x)©£2(x)©£3(x) for xeT, such that

(a) 6 € H=>^(x, 0) = lim - log |L"(0)| = lim - log |L"(0(O))|
«-*oo n n-»oo fl

exists in [-oo, a);

(b) 0e£,(x)=»lim-log|L;(0)|<O,
n-»oo n

0e£2(x)=» lim -log|L;(0)| = O,
n -* ±oo ^J

0e£3(x)=»lim -log |£"
n±co fl

(c) Lx(£,(x))c Ex(fx), Lx(E2(x)@E3(x)) = E2(fx)@E3(fx) and Lx|E2(x)©
£3(x) is an isomorphism;

(d) dim £2(x)©E3(x) is finite;
(e) if 7}(x) is the infimum of the angles betweeen the pairs of spaces (£,(x), £,-(*))

for iVj, then limn_±oo (l/«) log rf{fx) = 0.
Now let T T : H - » F be the projection TT(0) = 0(O), and let E^x) = ir(Ex(x)) for

i = 1,2,3. Since Lxi? = TTLX for all x e T,, it is easily shown that (1) and (2) in the
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theorem hold. For ve Et(x) we have that

lim -log |L"u|<A, + e,
n-cc n

so there is a measurable function C{x) defined on T, such that

|L>|<C(x)eA<n+e"H;c for n>0, ue £,(*).

Thus

l,(x) - sup \L"X\ e-"<A.+£» < oo for x € T,.
n>0

Let

Then

se A ' + e | »U, for » € £ , ( * ) .

Also

Following Maiie [6], we will show that log A , ^ 1 * ) - log Ax(x) is bounded above.
Consider

Al(r
1x) = sup |L;-X| e-"(A'+f).

For n > l we have

\Lf->x\-\Lx Lf-'X\<\LX \\Lf-ix\,

SO

Ax(r
lx) ^ sup (i, sup |L;- 'I I Vx l e-"(A'+e))

= sup (1, e ^ ^ ^ l V - J sup \LTX\ e-
("-1)(Ai+e))

rial

since A,(x)> 1 for all x.
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Thus

log A,(r*x) -log Ax{x) s log (sup (1, I V . J e-(A'+c))),

which is bounded above.
Now lemma (III.8) in [6] gives limn^±0O (l/«) log A,(/"x) = 0. On the other hand,

the family of maps Lx:E2(x)®E3(x)^E2(fx)@E3(fx) gives a vector bundle
isomorphism of Uxer, E2(x)® £3(x) to itself covering / : r , - > r , . Moreover, there
is a direct sum decomposition E2(x)®E}(x) = K,(x)©- • -®Kr(x) and there is a
finite set of numbers A, , . . . , Ar in (-oo, 0] such that limn^±oo (1/M) log \L~"v\ = -\j
for ve Kj(x). Also, if rj(x) is the minimum of the angles between the spaces Kt(x)
and Kj(x), then limn^±oo (1/n) log rj(f"x) = 0. This condition implies that

lim (l/n)log|detL;n |£2(x)0£3(x)|= £ -A, dim K,(x).

Hence the methods of Fathi-Herman-Yoccoz [1] give a norm \v\x2 on E2(x)®
E3(x) such that

(f) |L;1H/-,,2^eE+ma^(-^)|U|x,2;
(g) 1 ^ \v\xa/\v\x < A2(x), where lim^±0O (l/«) log A2(/"x) = 0.
To see this, let A = A, sothatlimn^±co(l/«) log |Z,"u| = A uniformly for all ve K,(x)

with \v\ = 1, and Lx: K,(x)-» Kt{fx) is an isomorphism for all x. Then, given e > 0,
there is an N>0 such that |n|>JV=»A - e < ( l / « ) log | O | < A + e=>e"<A"E)|t;|^
|L>| < en<A+£)|t;| for all i; e K,(x)\{0} and n s N=>there exist C,(x), C2(x) > 0 such
that for all n > 0

C,(x) eMX~s)\v\ < | L ; » | < C2(x) e"lx+t)\v\.

For «<0 and —n>N we have

This implies, for possibly different C,(x), C2(x),

C2(x) e"A+|n|e|t>| > |L;»| > C,(x) enA

This formula works for all n. Thus for n S: 0 and fc € Z

and

so

- supsup ^ r
1.20 \Lxv\
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Let K 2 = supn aolO|e-n ( A + E ) . Then \<\v\xa/\v\<A2{x). Now

Also

IceZ

So, putting v = Lxw, we get

rn+k+1\LX w\

Since |-2|fc|e-(-2|fc+l|e)| = 2e for all it, we see that A2(/x)< A2(x) e2e for all x
Similarly, A2(f~

lx)^A2(x) e2e for all x. Assuming we have defined \v\x2 as above
for veKi(x), denote this norm by |u|x,2,,- For v = (vt,..., vr)e E2(x)@E3(x) let
|u|x,2 = sup, |D|X>2>/. Applying this to L~1\E2(x)® E3(x) gives

which is equivalent to (f). Statement (g) follows by setting A2(x) to be the maximum
of the A2(x) obtained for the K,(x).

Now for v = (vi,v2) with t),e£,(x), v2e E2(x)®E3(x), set |u|' = max (It?,!, |u2|)
and A(x) = max (Ai(x), A2(x)). This proves theorem 2.3. •

Proof of theorem 1. We know that h(f) = h(f) and /i(/) = sup/ i e^ ( / , / iM(/) . Fix
an ergodic /j,eM(f). Given ec^O, we will find ye si such that hli(f)<
G(y,f, U) + e0. This will imply that h(f) = ft(/)<supve^ G(y,f U) as required.

If 77: A->fl is the projection and xe A, it will be convenient to denote TTX by x
Excluding a /*-null set in & and its w-image in SI, we may assume that TnM = fl x Rm.
We first apply theorem 2.3 to the vector bundle map Tf:SlxRm^SixUm over
/ : n->n, where T/(x, «) = (/x, TJ{v)). We obtain a set T e n , splitting £,©£2©
£3, and functions A]( •), A3( •), e( •), etc. Ergodicity of fi implies that A,(x), A3(x)
and e(x) may be assumed to be constant functions, which we denote by A), A3 and
e. Note that we may choose e arbitrarily small; we will see how small later. We
may as well suppose that hM(/)>0. Then proposition 2.1 gives hn^(f)>0. By the
Ruelle entropy inequality [15], we then have that xeirF has at least one positive
characteristic exponent. This implies that E3(\) ^ {0} for x 6 Y.

Let M! > 0 be a constant such that
(1) for y near x in local coordinates | Tyf— TJ\ s Mx\y -x\";
(2) \f(y)-f(x)\aM,\y-x\.
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We now work in local coordinates about points ze M. We shall denote by d the
metric in both ft and A. For d(x, y)<5 we consider E,(x) as a subspace of TyM
by translation, and we define \v\'y = \v\'x for v e TyM. Then u€ £j(x)

+ Tyf(v) - TJ(v)\'hx)

If we let

then |y-x|<e(x) and c££,(y)c T̂ M imply

0) |r,/(t>)|}(y)<eA-+2eM;-

Also we have limn^±co (1/n) log e(/"x) = 0 since limn^±co (1/n) log A(/"x) = 0. Let
us show that there is a subset f c f with /x(f) = l and a real-valued measurable
function e,(x) defined on f such that 0< e,(x) < e(x), and for xe f

(4) e,(/*x)ae,(x) e~We for h Z

For each x e T there are constants C,, C2 > 0 such that C, e~"e < e(/"x) < C2 e
n£ for

n>0. Let fe(x) = infnaoe(/"x)e'le. It is easy to show that 0<b(x)<e(x) and
fc(/x) > e'eb(x) for x e T. Since log b(fx) - log b(x) is bounded below, lemma (III.8)
in [6] gives Hmn^±0O(l/n) log b(f"x) = 0 on a subset f with /*(f) = l. For x e f
there is a constant C, >0 such that b(/"x)> C, e"e for «<0. Letting e,(x) =
infns0 b(f"x) e~e", it is easy to show that e,(/x) > e~eex(x) and £i(/~'x) > e'eet(x)
for xef. Then (4) follows. From now on let us rename f as F and assume (4) holds
for x e F.

Reducing e,(x) if necessary, we may assume that for [y-x|< e,(x)

(5) veE2(

and

(6) u e , > ;

The norms | |y enable us to define diameters of sets and volumes of submanifolds
in 7rB£l(x)(x) as well as norms of linear maps defined between subspaces H2 <= TZM
and Hw c TWM for z,we vBei{x)(x). We will denote such objects by 'primes'. Thus
diam' (A) denotes the diameter of a set A induced by the metric on some vBel(x)(x)
induced by | \'x, etc. Since the angle functions TJ(-) have subexponential growth
along orbits in F, we may assume there is a measurable function B:F-»[R+ such
that for any smooth fe-disc y in 7rBEi(x)(x)

(7)
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and

(8) Hm-logB(/"x) = 0.

Let expx denote the exponential map associated to the Riemannian metric.
Estimates (3), (5) and (6) give that Tf contracts along the £,(x)-direction, expands
along the £3(x)-direction and is nearly an isometry along the £2(x)-direction. Let
D,(x) = expx (BEl(x)(0) n £,(x)). We assume e^x) is small enough so that 7rB£|(x) c U
for all xe T, expx (B£,(x)(0)) is diffeomorphic to D(x) = D,(x) x D2(x) x D3(x), and
diam'D,(x)< 1. We identify the two sets expx (Bei(jc)(0)) and D(x), and use the
norms | |y and | \'y. Standard graph transform estimates (e.g. as in [3]) yield the
following fact.

For a, e (0,1), i = 1,2,3, let <r,E,(x) = {ve £f(x): |u|'<<x,} and let

a-^Dy(s) x (T2D2{x) x cr3D3(\) = expx (cr^^x) + a2£2(x) + c7-3£3(x)).

Let 77-,: D(x) -» D,(x) be the projection for i = 2,3. Suppose

y = {(g(u, v), u, v): u e o-2D2(x), v e o-3D3(x)},

where g: o-2D2(x)xa-3D3(x)-»o-,D,(x) is C1 and |Tg| '<l.
Then
(9) there is a C1 -function

g,: e-2V2D2(/(x)) x

with |Tg,|'s= 1 such that

(a) Ay)^yi = {(gAu,v),u,vy.u

and

(b) diam'(7T2/(r))<e
2e(2<72).

Let us recall the following fact from [4]. Let

df,n(x,y)= max d(fx,fy).
Osj<n

For e>0, « e Z + let N(e,n) denote the minimal cardinality of a collection of
d/ne-balls whose union has ^i-measure greater than \. Then

/jM(/) = limlimsup — log N(e, n).
r-*O n-»oc fl

Now let A be a compact set with fi(A) > \. For each e > 0, n 6 Z + let F(e, «) be a
maximal (n, e)-separated set in A. Then {Be<(/ii(x): xe F(e, n)} is a covering of A,
so N(e, n) < card F(e, n). Here and in the sequel we let card E denote the cardinality
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of the set E. Thus

(10) M / ) - l i m limsup - log card F(e, n).
n

Next choose a c o m p a c t set A<=F such tha t fi(A)>l, the b u n d l e s E i ( - ) ,
£ 2 ( - ) , £ 3 ( " ) a n d the funct ions A(-), T J ( - ) , e,(-), B(-) a re c o n t i n u o u s on A. Let
0 < M 2 < | m i n ( i n f {e , (x ) : x e A}, inf {B(x ) : x e A}) be such tha t

( l l a ) M 2 ' ec" > M2 e~En

and

(lib) B{f"x)>M2e-"c

for n > 0 and xe A.
It follows from the methods in [6] that if x e F, and

, j"x)< e,(x) e(A.+e)n for n>0},

then Wfoc(x) is a C1+"-disc in M tangent at x to £,(x).
For each xe A choose a C'-disc W(x) through x tangent at x to £2(x)©£3(x).

Assume M2 small enough that if x e A and y 6 BMz(x) n A, then Wfoc(y) n W(x) ̂  0 .
By (9) there is an e2 e (0, Af2) such that

^ ( / )< l imsup — log (max {card (£): E is an (n, e2)-separated set in A}) + e0-
n-»oo n

For large n let £„ be a maximal («, e2)-separated set in A.
Let x,, x 2 , . . . , xs be finitely many points in A such that A <= [Js

j=l 5M2(x,). Then
there clearly is some x, such that

M / ) < eo + Hmsup - log card (£„ n BM2(xj)).
n--oo n

Now choose y&M such that W= Image y is C1 near enough to W(xj) so that
y e BM2(xj) n A=» W,soc(y) n l V i s a unique point, say z(y).

We estimate card (£„ n BM2(Xj)) in terms of G(y,f, U). We may choose a2, cr3 > 0
independent of y in An BM2(xj) such that W contains a set Ŵ  which contains z(y)
and is the graph of a C'-function g: o-2D2(y) x cr3D3(y)-» D,(y) with |Tg| '<l ,
g(0,0) = z(y). Let e3 e (0, e). We may assume by ergodicity that there is an N(e3) > 0
such that xeA, n> N(E3)=5> there is a ke[(l- e3)n,n) such that fkxeA. For
ye£nnBM 2(x)let

Let

WB(y) = Image g| ^4 E ("-1 )( e 2 /4)£ l ( /"-1y)^D2(y) x a-3D3(y).

Then Wn(y) is a piece of W containing z(y) and
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Let Wn(y) = Bn(y)n WH(y). By (9b)

diam'(

For 0<fc<n- l and 0 < > s « - l - f c we have

so diam' {irjkWn(y)) < 2e-
(A3-2£»<"—"^.(/—y).

Hence

diam (/kWn(y))<diam' (fkWn(y))

^ e,(/""'y) max ( £ r 4 E ( ( / ) 2 , )

Since / ' 'ye A for some /ce [(1 -£3)«, n) and sup £i(x)s 1, we have

Letting T be the maximum diameter of any fibre of v. ft -* fi, note that if X 6 Z+

is greater than the largest integer in l + (log T — log e2/4)/(log2)), then for y, zeft,
d(y,z)<2 maxo<isKd(x,,^) + e2/4. Also we can pick k, = fe,(e, e2, cr2)> K such
that ke[0, n-l-fc,)=>diam (/fcVV;i(y))<62/8. This means that if y^z in £„ n
BMj(x,) and fc e (k,, n - 1 - fc,) is such that d(fkyjkz) > e2, then d(fky,fkz) > eJA.
Hence, if there is a fee (fc,, n - l - f c , ) such that d(fky,fkz)> e2, then VV^yJn
V ,̂(z) = 0 .

Pick a subset E'nc £„nBM2(\j) such that card £ 1 > C card £„ with C indepen-
dent of n andy^z in E'n=$d{fky,fkz)> e2 for some ke[0, n -1- /c , ) .

Next observe that, by (9a), f"xWn{y) contains the graph of a C'-function
g1:e-6e("-1)(e2/4)e i(/"-1y)^2D2(/"-1y)xei(/"-1y)^£>3(/"' ly)^O1(/ '-1y) with
g,(0,0)=/"-'(z(y)) and | r g l | ' < l . This gives

= C e"6 e ("~1 ) d i m D2(/"~'^>>e ( ?"-lv)dimD2+dimD3

with C, independent of n. By (7), (lib) and the fact that fyeA for some je
[(1 — £3)M, n), we have

> M g~f3'"~1'C' g~6 £("~"d i m M( Vfd i m M) -jj(n-l)dimlM

-j, y— -8e(n-l)dimM
— K^2 C

This gives

\f-\W n Ws(n, U))\> (card E'n)C2 e-s*<n-l)dimM.

For e small enough, this gives hlx{f)<G{y,f, U) + s0 to complete the proof of
theorem 1. •

Remark. The methods of the proof of theorem 1 and some more or less well known
volume estimates can be used to extend Przytycki's inequality for the topological
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entropy of a diffeomorphism [11] to the case of Cl+£*-mappings. The inequality in
question is the following. Let A( TJ") denote the induced map of the linear map
T*f on the full exterior algebra of the tangent space TXM. Let A denote Lebesgue
measure in M. Przytycki's inequality states that

M/)<limsup-log I |A(TJ-)|dA(x)

for a C1+"-diffeomorphism/: M^M. To extend this for a C1+a-map in general,
one proceeds as follows. From the proof of theorem 1 it is sufficient to show that

card (£nnflM2(x,.))<Ce- f \\(TJn)\d\(x),
J M

where e is small. Let T?n(y) be the Lebesgue measure of the set Bn(y) defined in the
proof of theorem 1. Then C, e~e" < Vn(y)\Ak(TJ")\< C2 e

en for n>0, where k =
dim E3(xj), e is small and x€ Bn(y). Thus

K ( / ) s limsup - log X 1 + e0
n-»+oo n jEE,nBM 2

< limsup-log I c r VijnCy) iof l

n-»oo

-logCr'e" |
M J

where C,, C2 are constants and e, e0 are arbitrarily small.

Proof of theorem 2. This is the same as the proof of theorem 1 except that we must
only use discs y in a holomorphically ample family si. For this it suffices to show
that E2{x)®E3(x) is a complex linear subspace of the complex tangent space
(TXM)C. As above, let IT: H-»ft be the projection. Let (Til)c be the restriction of
the complex tangent bundle (TM)C to ft, and let T: (Tft)c-»ft be the projection.
We may assume (excluding a /u,-null set) that the pull-back bundle TT*(T, (Tft)c, ft)
is ft x Cm with m = dimc M. Let T/: ft x Cm -» ft x Cm be defined by

as before. Then E2(\)®E3{x) is the set of vectors v in Cm such that there is a
sequence v0, vx, v2,... such that u0

=^, T7rf—Xf(vn) = t;n_, for n > l , and
limsupn-,oo ( l / i ) log |t;n|^0. Since each TJ is complex linear, it follows that
veE2(\)®E3(\) implies V^ve E2(x)®E3(x). Thus the latter space is
complex linear. •

3. Examples
We present some examples to show that the inequalities in theorems 3 and 4 are
sharp. Let / = [0,1] be the unit interval, and let a > 0. Let gd be a real polynomial
of degree d with the following properties:

(1) There are d disjoint closed intervals / , , . . . , 7d contained in / such that
&(/,) = /for i = ! , . . . ,< !
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(2) Foixeli,\(d/dx)gd(x)\>l + a.
(3) For xe / \U/=, h and n >1 we have gn

d(x)9Ll.
To construct gd, just take a polynomial with critical points at {k/d: 0<k<d}

and |fc,(Jt/d)| large for each 0<k<d, gd(0) = 0, &,(l/d)>0, (d/dx)gd(0)>0,
g(l) = 0 for d even and g(l) = 1 for d odd. It is well known and easily verified that
&d =C\k>ogd

k(I) is a compact gd-invariant set with h(gd |Od) = log d. If

TV times

then / is a polynomial map whose component functions have degree d. Also

so the first inequality in theorem 2 is sharp.
Now consider the map

Myi , • • • , J>JV+I) = (>"2, g d C ^ ) - by3,gd(y3) -

For b = 0

-- xgd^
(TV-1) times

where g(y,,y2) = (y2, gd(y2))- It is easily seen that g collapses the plane onto the
graph F of gd. Let n = Pln ez S"(\P, l]x[0,1]). Then His a compact zero-dimensional
subset of F, and for xeT, Tg uniformly expands non-zero tangent vectors to F at
x. Also h(g\ft) = log d. Furthermore, Tf0 uniformly expands non-zero vectors in

TF x TUl x • • • x TU\
(TV-1) times

at points (y2, gd(y2), y3,..., yN+i) in

& xfld x • • • x ild^
(TV-1) times

and, if ft' is defined to be

ftxfld x- • •y.ildj,
(TV-1) times

then h(fo\il') = N log d. For 5^0 and small, fb is injective and it is a small i
perturbation of the map f0 which is hyperbolic over O'. With a slight modification I
of known techniques, one can show that/, has a compact invariant set £l'b near O0 j
such that / , | ilft is topologically conjugate to the inverse limit of the map /0: O' -» fl'. |
Thus /i(/,|flh) = /i(/,|fl') = TV log d and the second inequality in theorem 2 is sharp. j
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