ON COMPLETE INTEGRAL CLOSURE AND ARCHIMEDEAN VALUATION DOMAINS

ROBERT GILMER

(Received 19 October 1995)

Communicated by B. A. Davey

Abstract

Suppose D is an integral domain with quotient field K and that L is an extension field of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by Gilmer and Heinzer in 1965.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 13A18, 13B02; secondary 13B22, 13G05.

All rings considered in this paper are assumed to be commutative and to contain a unity element. If R is a subring of S, we assume that the unity element of S belongs to R, and hence is the unity element of R.

If R is a subring of S and $s \in S$, then as is well known, s is integral over R if and only if R[s] is a finitely generated R-module. On the other hand, if R[s] is contained in a finitely generated R-submodule of S, then s is said to be almost integral over R. Clearly s is almost integral over R if it is integral over R; the converse holds if R is Noetherian, but not in general. We denote by C(R, S) the set of elements of S that are almost integral over R; C(R, S) is a subring of S containing R, and is called the complete integral closure of R in S. If C(R, S) = S, we say that S is almost integral over S, and at the opposite extreme where S is S, we say that S is completely integrally closed in S. If S is the total quotient ring of S, then S is the complete integral closure of S, and if S is the total quotient ring of S, then S is a completely integrally closed.

The concept of almost integrality was first considered by Krull in his famous 1932 paper Allgemeine Bewertungstheorie [5], in which he introduced the notion

^{© 1996} Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

of a general valuation and proved, among other things, that an integral domain is integrally closed if and only if it is an intersection of valuation domains [5, Satz 7]. (More precisely, Krull considers the concept in the case where R is an integral domain and S is the quotient field of R. In this case it is easy to show that $s \in S$ is almost integral over R if and only if there exists a nonzero element $r \in R$ such that $rs^k \in R$ for each positive integer k.) Krull also proved [5, Satz 8] that a valuation domain V is completely integrally closed if and only if the rank of V is at most 1. (More generally, the complete integral closure of V is either V_P (if V has a height-one prime ideal P) or the quotient field F of V (if V has no height-one prime).) This led Krull to conjecture [5, p. 170] that a domain is completely integrally closed if and only if it is an intersection of valuation domains of rank at most 1 — that is, of Archimedean valuation domains. Nakayama disproved Krull's conjecture in [7, 8], and a simpler counterexample due to J. Ohm appears as Example 19.12 of [2]. On the other hand, Krull's conjecture is known to be correct for certain classes of domains; for example, it is valid for Noetherian domains [6, Theorem 33.10] and for domains of finite character [3, Proposition 5], [1, Theorem 5]. This paper answers a question related to the discussion above that arose in work that W. Heinzer and I did in connection with [3]. The question is the following:

Suppose D is an integral domain with quotient field K, and assume that the complete integral closure of D is an intersection of Archimedean

(Q) valuation domains on K. If L is an extension field of K, is the complete integral closure of D in L an intersection of Archimedean valuation domains on L?

We show in Theorem 4 that (Q) has an affirmative answer. Our general reference for results concerning almost integrality is Section 13 of [2]. We first resolve the case of (Q) where L is algebraic over K; Lemma 1 and Theorem 2 deal with the algebraic case.

LEMMA 1. Let $\{D_a\}_{a\in A}$ be a family of integrally closed domains with common quotient field K, and assume that $D=\bigcap_{a\in A}D_a$ also has quotient field K. Assume that L is an algebraic extension field of K, and use bars to denote integral closure in L. Then $\overline{D}=\bigcap_{a\in A}\overline{D_a}$.

PROOF. The inclusion $\overline{D} \subseteq \bigcap_a \overline{D_a}$ is clear. Suppose $t \in \bigcap \overline{D_a}$ and let f(x) be the minimal polynomial for t over K. Since D_a is integrally closed for $a \in A$, it is known that $f(x) \in D_a[x]$ [2, Theorem 10.5], and hence $f(x) \in \bigcap_{a \in A} D_a[x] = (\bigcap_a D_a)[x] = D[x]$. Therefore $t \in \overline{D}$, as we wished to show.

THEOREM 2. Let D be an integral domain with quotient field K and let L be an algebraic extension field of K. If the complete integral closure E of D is an intersection of Archimedean valuation domains on K, then the complete integral closure C(D,L) of D in L is an intersection of Archimedean valuation domains on L.

PROOF. Let \overline{E} be the integral closure of E in L. Since E is completely integrally closed, \overline{E} is the complete integral closure of E in L and is a completely integrally closed domain [2, Theorem 13.8]. Clearly $C(D,L)\subseteq \overline{E}$, but since \overline{E} is integral over E it follows that \overline{E} is almost integral over D [2, Corollary 13.2], and hence $\overline{E}\subseteq C(D,L)$. Therefore $C(D,L)=\overline{E}$. By hypothesis $E=\bigcap_{a\in A}V_a$, where each V_a is an Archimedean valuation domain on K, and Lemma 1 shows that $\overline{E}=\bigcap_a \overline{V_a}$, where bars indicate integral closure in L. Now $\overline{V_a}$ is a Prüfer domain [2, Theorem 20.1] and dim $\overline{V_a}=\dim V_a\leq 1$. Consequently, $\overline{V_a}$ is an intersection of Archimedean valuation domains on L, so $\overline{E}=\bigcap_a \overline{V_a}$ is also an intersection of Archimedean valuation domains on L. This completes the proof of Theorem 2.

Suppose R is a subring of S and S is a subring of T. In contrast with the situation for integrality, almost integrality is not transitive — that is, T need not be almost integral over R even if T/S and S/R are almost integral. For example, if D is an integral domain with quotient field K, the complete integral closure $D^{(1)}$ of D need not be completely integrally closed [3, Example 1]; in fact, Hill [4] has given an example of a Bezout domain D such that $D^{(n)} < D^{(n+1)}$ for each positive integer n, where $D^{(n+1)}$ is defined inductively as the complete integral closure of $D^{(n)}$. Another contrast between the properties of integrality and almost integrality is that the inclusion $C(R, S) \subseteq C(R, T) \cap S$ may be proper [3, Example 2]. However, it follows from part (b) of [3, Proposition 2] that $C(R, S) = C(R, T) \cap S$ if S is a field. We use this equality in the proof of Proposition 3.

PROPOSITION 3. Suppose D is an integral domain with quotient field K and T is an extension ring of K. If Δ is the integral closure of K in T, then $C(D, T) = C(D, \Delta)$.

PROOF. By the result from [3] just cited, $C(D, \Delta) = C(D, T) \cap \Delta$. Hence, to prove Proposition 3, it suffices to show that $C(D, T) \subseteq \Delta$. This is straightforward: if $t \in C(D, T)$ then clearly $t \in C(K, T)$, and since K is Noetherian, t is integral over K—that is, $t \in \Delta$.

THEOREM 4. Let D be an integral domain with quotient field K and let L be an extension field of K. If the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L.

PROOF. Let Δ be the algebraic closure of K in L. Proposition 3 shows that $C(D, L) = C(D, \Delta)$, and Theorem 2 shows that $C(D, \Delta)$ is an intersection of

Archimedean valuation domains on Δ . Hence the proof is complete if $\Delta = L$. If $\Delta < L$, we consider two cases.

CASE 1. $C(D, L) = \Delta$. In this case we show that if $t \in L - \Delta$, then there exists a rank-one valuation domain on L that contains Δ , but not t. Thus, since t^{-1} is transcendental over Δ , then $V = \Delta[t^{-1}]_{t^{-1}V[t^{-1}]}$ is a rank-one valuation domain on $\Delta(t)$ that does not contain t. The valuation domain V admits an extension to a rank-one valuation domain V on V on V of V

CASE 2. $C(D, L) < \Delta$. In this case there exists a family $\{V_a\}_{a \in A}$ of rank-one valuation domains on Δ such that $C(D, L) = \bigcap_{a \in A} V_a$. For each $a \in A$, let W_a be a rank-one extension of V_a to L and, by Case 1, let $\{U_b\}_{b \in B}$ be a family of rank-one valuation domains on L such that $\Delta = \bigcap_{b \in B} U_b$. If $\mathscr{F} = \{W_a\}_a \bigcup \{U_b\}_b$, then \mathscr{F} is a family of rank-one valuation domains on L and $\bigcap \mathscr{F} = (\bigcap_a W_a) \cap \Delta = \bigcap_a (W_a \cap \Delta) = \bigcap_a V_a = C(D, L)$.

We remark that the converse of Theorem 4 is also valid: If $C(D, L) = \bigcap_{b \in B} W_b$, where each W_b is an Archimedean valuation domain on L, then $C(D, K) = C(D, L) \bigcap K = \bigcap_{b \in B} (W_b \bigcap K)$, where each $W_b \bigcap K$ is an Archimedean valuation domain on K [2, Theorem 19.16]. Thus, for any extension field L of K, the condition that C(D, L) is an intersection of Archimedean valuation domains on L depends only upon D, not on L.

References

- [1] H. S. Butts and W. W. Smith, 'On the integral closure of a domain', J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 117-122.
- [2] R. Gilmer, Multiplicative ideal theory (Queen's Univ., Kingston, 1992).
- [3] R. Gilmer and W. Heinzer, 'On the complete integral closure of an integral domain', J. Austral. Math. Soc. 6 (1966), 351-361.
- [4] P. Hill, 'On the complete integral closure of a domain', Proc. Amer. Math. Soc. 36 (1972), 26–30.
- [5] W. Krull, 'Allgemeine Bewertungstheorie', J. Reine Angew. Math. 167 (1932), 160-196.
- [6] M. Nagata, Local rings (Wiley, New York, 1962).
- [7] T. Nakayama, 'On Krull's conjecture concerning completely integrally closed integrity domains I, II', *Proc. Imperial Acad. Tokyo* 18 (1942), 185–187, 233–236.
- [8] ——, 'On Krull's conjecture concerning completely integrally closed integrity domains III', Proc. Japan Acad. 22 (1946), 249–250.

Florida State University Tallahassee, FL 32306-3027 USA

e-mail: gilmer@math.fsu.edu