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ONE DIMENSIONAL FIBERING
OVER ¢-COMPLETE SPACES

VIOREL VAJAITU

Abstract. We show that if E — X is a locally trivial holomorphic fibrations
whose fiber is an open Riemann surface and X is a g-complete space, then E
is g-complete.

§1. Introduction

Let X and F be complex manifolds and E a holomorphic fiber bundle
over X with typical fiber F. In 1953 Serre [7] posed the following question
related to the classical Levi problem for characterizing domains of holomor-

phy:

(%) Assume that X and F are Stein. Does it follow that E is Stein,
too?

Several particular cases of this were settled (cf. [8] for summaries) until
Skoda [9] produced in 1977 a counterexample with fiber C2, which, however,
did not stop the interest around the problem. Mok [5] solved completely
the case when F'is a complex curve. On the other hand, new questions have
appeared, e.g., to study cohomological properties of such an E as in (*). In
this direction, Jennane [4] showed that the cohomology of E with coefficients
in coherent analytic sheaves is trivial in dimensions > 2. Furthermore, we
established a general vanishing theorem for locally g-complete morphisms
over p-complete spaces [12]. (The normalization is chosen so that Stein
spaces correspond to 1-complete spaces.)

In this paper, by reconsidering the geometrical point of view, we extend
Mok’s result to the case X is g-complete by proving the following theorem
which answers a question raised to the author by Professor Takeo Ohsawa
at the Conference on complex analysis in Hayama, Japan in the spring of
1995.
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THEOREM 1. Let m: E — X be a locally trivial holomorphic fiber space
with typical fiber F'. Assume that F 1s an open Riemann surface. If X s
g-complete, then E s g-complete, too.

Note that for fibers of dimensions > 2 there are counterexamples [12].
In fact, for every integer ¢ > 1 there is a fiber bundle E with fiber C? over a
g-complete domain in C9*! such that HI(E, Og) does not vanish, a fortiors
E is not g-complete [1].

The method we use in proving Theorem 1 yields also the subsequent
interesting criterion of g-completeness which was suggested to me by Pro-
fessor Mihnea Coltoiu and may be viewed, in a weak sense, as a theorem of
Docquier-Grauert type [3] for g-complete manifolds.

THEOREM 2. Let X be a weakly q-complete complex space such that on
every relatively compact open subset there are continuous strongly plurisub-
harmonic functions. Then X is g-complete.

§2. Preliminaries

Throughout this paper all complex spaces are assumed to be reduced
and with countable topology. By an open Riemann surface we mean a
non-singular complex curve without compact components.

Let X be a complex space and T, X denotes the (Zariski) tangent space
of X at . Set TX = UpexT, X. If X = C™, T, X is canonically identified
with C™. ,

A (local) chart of X at a point z € X is a holomorphic embedding
U — (7, where U 3 z is an open subset of X and U is an open subset of
some euclidean space C". Holomorphic embedding means that ¢(U) is an
analytic subset of U and the induced map v:U — (U) is biholomorphic.

Suppose v:U — U is a local chart at z; then the differential map
ty: Tz X — C™ of ¢ at x is an injective homomorphism of complex vector
spaces.

Let D C C™ be an open subset. A function ¢ € C®(D,R) is said to
be g-convez if the quadratic form

Lip,2)(€) = 3

1,5=1

¢
0z; 82]'

(Z)fzgj, 5 € Cn7

has at least n — ¢ 4+ 1 positive eigenvalues for every z € D, or equivalently,
there exists a family {M.},ep of (n — ¢ + 1)-dimensional complex vector
subspaces of C™ such that L(¢p, z)| M, is a positive definite form for all z € D.
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Let X be a complex space. A function ¢ € C®(X,R) is said to be
g-convez if every point of X admits a local chart +: U — U C C™ such that
there is an extension { € C°°((7 ;R) of )y which is g-convex on U. (This
definition does not depend on the local embeddings.)

We say that X is ¢-complete if there exists a g-convex exhaustion func-
tion ¢ € C*°(X,R).

A subset M C TX is said to be a linear set over X (of codimension
less than q) if for every point ¢ € X, Mz:=MNT, X C T, X is a complex
vector subspace (of codimension less than ¢). If W C X is an open set, we
have an obvious definition of the restriction My. The following is due to
Peternell [6].

DEFINITION. Let X be a complex space, W C X an open set, M a
linear set over W, and ¢ € C°(W,R).

(a) Let £ € W. Then we say that ¢ is weakly 1-conver with respect to
M, if there are: alocal chart ::U — U of X withz € U C w, Uccr open
set, and an extension @ € C“(ﬁ, R) of ¢y such that L(P, ¢(z))(es€) > 0
for every & € M,.

We say that ¢ is weakly 1-conver with respect to M if ¢ is weakly
1-convex with respect to M, for every z € W.

(b) The function ¢ is said to be 1-convezr with respect to M if every
point of W admits an open neighborhood U C W such that there exists a
1-convex function 6 on U with ¢ — 6 weakly 1-convex with respect to M.

It is not difficult to see that the extension @ of ¢ is irrelevant for the
above definition. In particular, if the functions ¢ and 1 are (weakly) 1-
convex with respect to M, so is their sum ¢ + . '

On the other hand, a complex space X is g-complete if, and only if, there
exists a linear set M over X of codimension less than ¢ and an exhaustion
function ¢ € C*°(X,R) which is 1-convex with respect to M.

Motivated by this observation, we call a complex space X weakly g-
complete if there exists a linear set M over X of codimension less than ¢
and an exhaustion function ¢ € C*°(X,R) which is weakly 1-convex with
respect to M.

Here, to avoid some technical difficulties in the proofs of the theorems,
we introduce the following

DEFINITION. Let X be a complex space and M a linear set over X. We
say that ¢ € C°(X, R) is (weakly) M- convez if, and only if, every point of X
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admits an open neighborhood D such that there are functions fi,..., fr €
C*(D,R), (weakly) 1-convex with respect to M, and g1, ..., gx € Psh(D)n
C°%D,R) with .

(&) ¢ip = max{fi +g1,-.., fx + &}

For instance, if ¢ is weakly M-convex and v is M-convex, then their
sum ¢ +1 is M-convex. Besides, if h: R — R is given locally by max{ast+
bi,...,axt + by} with a; > 0 for all 7, then h(y) is again weakly M-convex.

Remark. In [11] we introduced continuous functions ¢: X — R which
we called pseudoconvex with respect to M, i.e., one has (&) without g;’s.
Clearly, this notion is stronger than M-convexity.

Therefore, the following approximation result improves [11], Theorem 1.

PROPOSITION 1. Let M be a linear set over a complex space X and
¢ € C%X,R) a M-convex function. Then for every n € C°(X,R), n > 0,
there ezists p € C°(X,R) which is 1-conver with respect to M and

p<o <+
In particular, if M has codimension less than q, then ¢ is g-convez.

Proof. Choose a locally finite covering {U; }icy of X by relatively com-
pact open Stein subsets on which there are functions f;j, gij, 7 = 1,...,n,
as in (). Then consider open sets V; CC U; and compact sets K; C V;
such that {K}ics is again a covering of X. Let 6; be smooth functions on
X which equal —1 on 0V; and 1 on K;. Choose é; > 0 small enough such
that ’i/j =60, + fij, J = 1,...,n;, are 1-convex with respect to M on V;,
and 26; < infy; 9 for all <. Then choose smooth plurisubharmonic functions
gi; on U; such that |g{; — gij| < & on V;. One may define ¢': X — R by:
for every z € X set

¢'(z) = sup{f;;(z) + gi;(2); 7,7 such that z € V;}.

It is straightforward to see that ¢’ is continuous, 1-convex with respect
to M on X, and ¢ < ¢’ < ¢ + 1. The proposition follows now by [11],
Theorem 1, if we approximate ¢ in the C%-topology by & as required.

The subsequent is proved in [5].

THEOREM 3. If S is a connected open Riemann surface, then there
exists an ezhaustion function p € Psh(S) N C°(S,R) such that for every
automorphism 6 of S, ¢ — v o0 is a bounded function.
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§3. The proofs of the theorems

To begin with, we state a proposition, which, by taking into account
the definition of a weakly g-complete space, gives immediately a proof of
Theorem 2.

PROPOSITION 2. Let M be a linear set over a complex space X. Sup-
pose that:

a) There exists an exhaustion function ¢ € C°(X,R) which is weakly
M-convez.

b) For every open set D CC X there ezists v € C®(X,R) which is
1-convex with respect to M on D.

Then there exists an ezhaustion function g € C®(X,R) which s 1-
conver with respect to M on X.

Proof. Without any loss of generality, we may assume that minx ¢ = 0.
For n = 1,2,..., we denote K, = {z € X; p(z) < n} and D, = {z €
X ; p(x) <n+2}. Let ¥, € C°(X,R) be M-convex on Dyy;. By taking
the exponential, we may suppose 1, > 0. Set

an = max(p + ¢¥n) > 0.
Knyo

Let h,: R — R be defined by h,(t) = max{t,(1+a,)(t —n—1)},t € R.
Clearly, h, is strictly increasing, convex, h,(t) = t for t < n + 1, and
hn(n+2) > an. Therefore hp(p) > @+1p on theset {n+2—e < p < n+2}

for some & > 0 sufficiently small; consequently we may define a continuous
function p,: X — R by:

_ [ max(¢+ Yn,hn(v)) on Dp,
s hn(p) on X\ D,.

Then ¢, is positive and exhaustive since ¢, > h,(p), weakly M-convex on
X, and as ¢, = ¢+, on K41, ¢p is a M-convex function on the interior
of Kn+1.

Now, if the sequence {€p}, of positive numbers decreases (fast enough)
to 0, we may define an exhaustion M-convex function ® € C°(X,R) by

CI):‘P'*'ZEnSDm

and we conclude by Proposition 1.
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Here we start the proof of Theorem 1. First assume that the fiber F'is
connected (for steps 1 and 2); second, the general case (step 3), will follow
by a canonical reduction procedure if we note some facts on g-complete
spaces.

Step 1. By Theorem 3 and standard arguments, there exists a locally
finite covering {U, }ier of X by relatively compact open Stein subsets which
trivialize E and such that the following property holds:

() There are continuous plurisubharmonic exhaustion functions ;: E; —
R, E; = 7~1(U;), such that for every compact set K C U;NUj, ¢; — ¢;
are bounded functions on 771(K) for every indices i and j. Clearly,
we may suppose ¢; > 0.

Now consider open sets W; CC V; CC U; such that UW; = X; then
choose non-negative smooth functions p, with compact support contained
in V; which equal 1 on W;. Since on 7= }(W; N dVj) one has: ¢; — ¢; is
a bounded function, p; o7 = 1, and p;- o7 = 0, there are large enough
constants C; > 0 such that on W—l(m N dVj) one has:

Cipi+ i > ¢ = Cipj + ¢;
for all indices ¢ and j. Put p;:=C;p}, i € I, and define u: E — (0, 00) by

u(¢) = max{p;(7(()) + ¢i(¢); 7 € I(()},

where for ¢ € E, I(¢):={i € I, 7({) € V;}. One checks readily that u is
continuous and for an arbitrary compact set L C X the restriction of u to
7 1(L) is exhaustive.

Step 2. Let M = {My}zex be a linear set over X of codimension
less than ¢ and ¢’ € C*°(X,R) an exhaustion function which is 1-convex
with respect to M. Select a smooth non-negative function A from R into
itself which is rapidly increasing and convex such that A(¢’) + p;, ¢ € I, are
1-convex with respect to M. Set p:=A(¢').

Now define a linear set A over E by N = W;é(Mw(()) for ¢ € E. Here
¢ means the differential map of 7 at ¢ from T¢E into Ty () X. Obviously,
N has codimension less than q.

Put 0 = ¢ o™ + u. Then o is weakly A -convex on E, and by what we
said in Step 1, o is exhaustive.

https://doi.org/10.1017/50027763000025198 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025198

ONE DIMENSIONAL FIBERING OVER Q-COMPLETE SPACES 105

We claim that for every open set & CC F there exists a smooth function
1 on E which is 1-convex with respect to N on §2.

Indeed, we cover ;r(_Qj with finitely many W;’s, say W;, 1 = 1,...,m;
then choose positive 1-convex functions 1; on 7~ 1(U;). Straightforward
computations show that there exists a constant Ay > 0 large enough such
that the function ¥4 € C*°(E, R) given by

m
Ya=A-(pom)+ Y (piom)- 3
+1
is 1-convex with respect to A on §2 for every A > Ag. Now we conclude
the proof of the theorem by applying Proposition 2.

Step 3. Here we consider the general case. In order to do this, decom-
pose F' = UF; so that in F}; appear only connected components isomorphic
to each other and non-isomorphic to connected components of F;, for s # j.
Each F} is invariant under transition automorphisms of F, so that E splits
into a disjoint union of fiber bundles E; with base X and fiber F;. Thus it
suffices to assume that the fiber F' consists of isomorphic connected com-
ponents. Then the transition automorphisms can permute the connected
components of F' and we have a two-step fibration £ — X — X where X
is a topological covering of X and the first fibration has a connected fiber.
Since X is g-complete by [2], the theorem follows now from the preceding
case.
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