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Abstract

The minimum number of idempotent generators is calculated for an incidence algebra of a finite poset over
a commutative ring. This quantity equals either �log2 n� or �log2 n� + 1, where n is the cardinality of the
poset. The two cases are separated in terms of the embedding of the Hasse diagram of the poset into the
complement of the hypercube graph.
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1. Introduction

The class of associative algebras generated by idempotents has many interesting
properties. For example, a simple algebra A over a field F with char F � 2 belongs
to this class if A contains at least one nontrivial idempotent. This follows from
a more general result about invariant subalgebras due to Amitsur [1, Theorem 2].
A self-contained proof was given by Brešar [2, Section 2]. Laffey [11] showed that
a noncommutative simple algebra generated by two idempotents is always isomorphic
to the algebra of 2 × 2 matrices over a simple extension of the ground field.

The structure of not necessarily simple algebras generated by two idempotents
was described by Weiss [19] and Rowen and Segev [15]. Kawai [6] proved that a
commutative algebra over an algebraically closed field is generated by idempotents
if and only if it is a homomorphic image of a group algebra with certain properties.
Brešar [3] showed that a finite-dimensional algebra is zero product determined
if and only if it can be generated by idempotents. Hu and Xiao [5] obtained a
homological description of finite-dimensional algebras generated by idempotents.
Algebras generated by two quadratic elements were described by Drensky et al. [4].
Similar problems have been investigated successfully in functional analysis for Banach
algebras including C∗-algebras (see [10, 14, 16, 19]).
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2 N. A. Kolegov [2]

If we know that an algebra is generated by a finite set of idempotents, it is a
natural task to determine its minimum cardinality. This quantity will be denoted by ν.
Laffey [11] proved that ν ≤ 3 for the F-algebra of n × n matrices Mn(D), where D is
a finite-dimensional division F-algebra and its centre Z(D) is a separable extension of
the field F. Krupnik [9] calculated ν precisely for Mn(F). Kelarev et al. [7] determined
ν for the algebra of upper-triangular matrices over a commutative ring. This result
was generalised in [18] to complete block triangular matrix algebras over an infinite
field.

Throughout the paper, R is a commutative associative ring with the identity
1 � 0. A subalgebra A of the matrix algebra Mn(R) is called a structural matrix
algebra if it has a basis of some matrix units Eij as an R-module and all diagonal
matrix units {Eii}ni=1 belong to this basis. If additionally no two symmetric matrix
units Eij, Eji are in this basis simultaneously, A is called an incidence algebra.
Then the set of all such pairs (i, j) for which Eij belongs to the basis is a partial
order � on the set N = {1, . . . , n}. Conversely, for any partial order � on N , all
possible R-linear combinations of the matrices {Eij | i � j} constitute an incidence
algebra

An(�,R) =
{∑

i�j

rijEij : rij ∈ R
}
⊆ Mn(R).

For example, if one takes the standard linear order ≤, the corresponding incidence
algebra will be the algebra of all upper-triangular matrices Tn(R). In contrast, if �
is the trivial partial order (equality), then An(=,R) coincides with the algebra of all
diagonal matrices Dn(R).

According to [7], the minimum number of idempotent generators ν of Tn(R)
equals �log2 n� in almost all cases. The exceptional cases are n = 2, 3, 4, when
ν = �log2 n� + 1. We will generalise this result to all incidence algebras of finite posets.
In other words, the following problem will be considered.

PROBLEM 1.1. Given an incidence algebra A of a finite poset over a unital commuta-
tive ring R, find the minimum number ν of idempotent matrices which generate A as
a unital R-algebra.

The solution to this problem is obtained in Theorem 5.6. It turns out that again
ν equals either �log2 n� or �log2 n� + 1, but delimitation between these two cases is
more complicated. It relies on embedding the Hasse diagram of the poset into the
complement of a hypercube graph. In the particular case of ν(Tn(R)), the choice
between the two formulae can be interpreted in terms of the existence of a Hamiltonian
path in a certain graph (see the proof of Corollary 5.7).

The paper is organised as follows. In Section 2, necessary definitions and known
results are given. In Section 3, it is shown that given idempotent generators of an
incidence algebra, the Hasse diagram of the poset can be embedded in the complement
of a hypercube graph. Conversely, Section 4 is devoted to a construction of idempotent
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[3] Idempotent generators of incidence algebras 3

generators when the Hasse diagram is represented as a subgraph of the complement of
a hypercube. In Section 5, the solution to Problem 1.1 is obtained in Theorem 5.6. To
formulate this result, new types of graphs are introduced in Definition 5.3.

2. Preliminaries

Let A be an associative R-algebra with the identity 1A. A subset S ⊆ A is said
to generate A as a unital ring if any element a ∈ A can be represented as a sum of
some products of elements from the set S ∪ {1A}, that is, a =

∑n
i=1 si,1 · si,2 · · · · · si,ki ,

where si,j ∈ S ∪ {1A}, some of the si,j may coincide and ki ∈ N. We denote
R1A = {r · 1A | r ∈ R}. A subset S ⊆ A generates A as a unital algebra if A can
be generated by S ∪ R1A as a unital ring. Generators of incidence algebras over finite
posets were described in [13, Theorem] and [8, Theorem 1.1].

Consider a partial order � on N = {1, . . . , n} and a bijection σ : N → N . Then we
can introduce a new partial order �σ given by i �σ j whenever σ−1(i) � σ−1(j). So the
posets (N ,�) and (N ,�σ) are isomorphic.

PROPOSITION 2.1 [17, Proposition 1.2.7], [8, Section 2]. For any incidence algebra
An(�,R), there exists a bijection σ : N → N such that An(�σ,R) ⊆ Tn(R). More-
over,An(�σ,R) = P−1An(�,R)P, where (P)ij = 1 if j = σ(i) and (P)ij = 0 otherwise.

If i ≺ j and there is no k such that i ≺ k ≺ j, then j is said to cover i. This relation
will be denoted by i ≺: j. The definition of an incidence algebra implies the following
result.

LEMMA 2.2. Let A, B ∈ An(�,R) and i ≺: j. Then (AB)ij = (A)ii(B)ij + (A)ij(B)jj.

For an incidence algebraA = An(�,R), we denote by

Z = Z(A) = {A ∈ A | (A)ii = 0, i = 1, . . . , n},

the set of matrices with zero diagonals. By Proposition 2.1,Z is a two-sided ideal. Let
Zk be the set of all possible sums of products Ai1 · · · · · Aim for any m ≤ k and all (pos-
sibly repeating) matrices Aij ∈ Z. We have Zn = (On) since P−1Z(A)P ⊆ Z(Tn(R))
by Proposition 2.1.

Consider the ideal Z2. Lemma 2.2 implies that (A)ij = 0 for all i ≺: j and any
A ∈ Z2. Conversely, for any i, j ∈ N satisfying i ≺ j and i ⊀: j, one may find a
chain i = i1 ≺: i2 ≺: · · · ≺: ik = j of length k ≥ 3 and so Eij = Ei1i2 · (Ei2i3 · · · · · Eik−1ik )
belongs toZ2. It follows that

Z2 = {A ∈ Z(A) | (A)ij = 0 for all i ≺: j}. (2.1)

The word ‘graph’ will mean an undirected graph without loops and multiple edges,
that is, a pair G = (V , E) with sets of vertices V and edges E; each edge is a set of
two distinct vertices. A graph is complete if any two of its vertices are joined by an
edge. Given an arbitrary graph G and any complete subgraph G′, the set of vertices
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of G′ is called a clique. Each clique with the maximum number of vertices is said
to be a maximum clique and its cardinality is the clique number ω = ω(G) of the
graph G.

The complement G = (V , E) of G is the graph with the same set of vertices V such
that for all x, y ∈ V , we have {x, y} ∈ E if and only if {x, y} � E. Thus, E ∩ E = ∅ and
(V , E ∪ E) is a complete graph.

For a partial order � onN = {1, . . . , n}, the (undirected) Hasse diagram is the graph
with the set of verticesN such that x, y ∈ N are joined by an edge if and only if either
x ≺: y or y ≺: x.

Given m ∈ N, then {0, 1}m denotes the set of all possible 2m tuples of zeros and ones
of length m. We will denote by Qm the m-hypercube graph. Its set of vertices is {0, 1}m.
Two tuples are joined by an edge if and only if they differ in precisely one coordinate.
So two tuples are joined in Qm if and only if they differ at least in two coordinates.

PROPOSITION 2.3 (Folklore). The graph Qm has the following properties:

(1) each vertex of Qm has degree 2m − m − 1;
(2) the clique number ω(Qm) = 2m−1;
(3) there are exactly two maximum cliques C0, C1 in Qm;
(4) each vertex from C0 is joined precisely to 2m−1 − m vertices from C1 and vice

versa;
(5) for m = 1, 2, the graph Qm is disconnected; if m ≥ 3, there exists a Hamiltonian

cycle in Qm, that is, a cycle that visits each vertex precisely once (except for the
starting vertex, which it visits twice);

(6) the graph Qm is naturally isomorphic to a subgraph of Qm+1.

PROOF. (1) Any vertex of the m-hypercube has degree m.
(2)–(4) Let C0 and C1 be the sets of all tuples that contain even and odd numbers

of ones, respectively. Then |C0| = |C1| = 2m−1. Two tuples with the same parity of the
number of ones are joined in Qm and so C0 and C1 are indeed cliques.

Let υ be a vertex in C0, then deg υ − (|C0| − 1) = 2m − m − 1 − 2m−1 + 1 =
2m−1 − m, that is, υ is joined to 2m−1 − m vertices from C1. The symmetric property
holds for any υ ∈ C1. This proves item (4).

Consider an arbitrary clique C in Qm. The union C0 ∪ C1 contains all vertices of the
graph. If C ⊆ C0 or C ⊆ C1, then clearly |C| ≤ 2m−1. Assume that C ∩ C0 � ∅ and
C ∩ C1 � ∅. Then |C| ≤ 2m−1 − m according to item (4). Thus, C0, C1 are maximum
cliques. For the same reasons, they are the only maximum cliques in Qm. This proves
items (2) and (3).

(5) The graph Q1 consists of two isolated vertices, while Q2 is the union of
two segments. Let m ≥ 3. We set υ = (0 . . . 0000), υ′ = (0 . . . 0110), w = (0 . . . 0111),
w′ = (0 . . . 0001). A possible cycle starts at υ, visits each vertex of C0 and finishes at
υ′. After that, it comes to w′, visits all vertices of C1 and finishes at w. Eventually, the
cycle returns to υ.

(6) An embedding sends a tuple (a1 . . . am) to (a1 . . . am0) for all ai ∈ {0, 1}. �
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[5] Idempotent generators of incidence algebras 5

3. A construction of an embedding of the Hasse diagram

Given idempotent matrices which generate an incidence algebra, it will be shown
that the Hasse diagram of the poset is isomorphic to a subgraph of the complement of
a hypercube. We assume first in the proof that the base ring R is a field and then we
turn to the general case.

LEMMA 3.1. Consider an incidence algebra A = An(�,R). Let A be generated by
distinct idempotent matrices A1, . . . , Au as a unital R-algebra for some u ∈ N. Then
the Hasse diagram of � is isomorphic to a subgraph of the complement Qm of the
m-hypercube for any m ≥ u.

PROOF
Case 1. Assume that R = F is a field. If m = 1, then u = 1, and the linear span of the
identity matrix In and A1 coincides with A. Hence, dimA ≤ 2, and we have either
n = 1 or n = 2 and A = D2(F). In these cases, the Hasse diagram consists of one or
two isolated points and so it can be embedded in Q1. Henceforth, we shall assume that
m ≥ 2.

Consider the tuple of matrices (A1, . . . , Am), where Au+1 = A1, . . . , Am = A1.
Proposition 2.1 implies that there is no loss of generality in assuming that A ⊆ Tn(R)
and so all the matrices A1, . . . , Am are upper-triangular. Since they are idempotent,
their diagonal entries must be idempotent elements of the field F. So the tuple
((A1)ii, . . . , (Am)ii) belongs to {0, 1}m for any i ∈ N = {1, . . . , n}. Consider the map
f : N −→ {0, 1}m given by f (i) = ((A1)ii, . . . , (Am)ii). Item 1 of [13, Theorem]
guarantees that f is injective.

We will show that f is an embedding of the Hasse diagram into the graph Qm.
Assume in contrast that there exists a pair i∗ ≺: j∗ such that the tuples f (i∗) and f (j∗)
differ exactly in one position. In other words, one can find k∗ ∈ {1, . . . , m} such that
(Ak∗)i∗i∗ � (Ak∗)j∗j∗ , but for any k ∈ {1, . . . , m} \ {k∗}, we have (Ak)i∗i∗ = (Ak)j∗j∗ .

Since A2
k = Ak and i∗ ≺: j∗, Lemma 2.2 implies (1 − (Ak)i∗i∗ − (Ak)j∗j∗) · (Ak)i∗j∗ = 0.

When k � k∗, the entries (Ak)i∗i∗ and (Ak)j∗j∗ are equal and belong to {0, 1}. Conse-
quently, 1 − (Ak)i∗i∗ − (Ak)j∗j∗ � 0 and we have (Ak)i∗j∗ = 0 for any k � k∗.

Item 2 of [13, Theorem] implies that there exists B in the linear span 〈A1, . . . , Am〉
such that (B)i∗j∗ � 0 and (B)i∗i∗ = (B)j∗j∗ . We can write B = λ1A1 + · · · + λmAm for some
λ1, . . . , λm from F. Then at least one of the matrices A1, . . . , Am must have a nonzero
i∗, j∗-entry. The only possibility is that (Ak∗)i∗j∗ � 0 and λk∗ � 0. Then

(B)i∗i∗ − (B)j∗j∗ =

m∑
k=1

λk((Ak)i∗i∗ − (Ak)j∗j∗) = λk∗((Ak∗)i∗i∗ − (Ak∗)j∗j∗) � 0.

This contradicts the requirement that (B)i∗i∗ = (B)j∗j∗ .

Case 2. Let R be an arbitrary unital commutative ring. Consider a maximal ideal
m � R and the residue field F = R/m. Let π : R → R/m be the natural projection.
We construct the surjective ring homomorphism πn : An(�,R)→ An(�, F) given by
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(πn(A))ij = π((A)ij) for all i, j = 1, . . . , n. Note that πn preserves scalar matrices, that is,
πn(RIn) = FIn.

Consider the matrices πn(A1), . . . , πn(Au). Though some of them may coincide,
there is no loss of generality to assume that πn(A1), . . . , πn(Au′) are all possible
pairwise distinct matrices and u′ ≤ u. Since the set {A1, . . . , Au} ∪ RIn generates
An(�,R) as a ring, the image {πn(A1), . . . , πn(Au′)} ∪ FIn generatesAn(�, F) as a ring.
Thus, An(�, F) is generated by idempotents πn(A1), . . . , πn(Au′) as a unital F-algebra.
According to Case 1, the Hasse diagram of � is isomorphic to a subgraph of Qm for all
m ≥ u′. In particular, we may take any m ≥ u. �

4. A construction of idempotent generators

The following lemma demonstrates how to obtain idempotent matrices that generate
the incidence algebra when we have an embedding of the Hasse diagram into the
complement of a hypercube.

LEMMA 4.1. Let the set N = {1, . . . , n} be partially ordered by a relation �. Assume
that the Hasse diagram of � is isomorphic to a subgraph of Qm. Then there exists a
natural number u ≤ m such that the incidence algebraA = An(�,R) can be generated
by some distinct idempotent matrices A1, . . . , Au.

PROOF. Let f : N −→ {0, 1}m be an embedding of the Hasse diagram into the graph
Qm. Given i ∈ N , then f (i) = (a(i)

1 , . . . , a(i)
m ) for some a(i)

k ∈ {0, 1}. The definition of
Qm implies that for any pair i ≺: j, there exist indices η � θ such that a(i)

η � a(j)
η and

a(i)
θ � a(j)

θ . So we may consider η = η(i, j) and θ = θ(i, j) as functions of pairs i ≺: j.
Proposition 2.1 guarantees that there is no loss of generality in assuming that all

matrices ofA are upper-triangular. For any k = 1, . . . , m, we introduce the matrix

(Ãk)ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a(i)

k if i = j;
1 if i ≺: j and η(i, j) = k;
0 otherwise.

Let S̃ be the set of these matrices. Note that S̃ ⊆ A. We need to show that S̃ generates
A as a unital R-algebra. Conditions A, B of [8, Theorem 1.1] must be checked.

Since the map f is an embedding, it is injective. So for any pair i � j, the tuples
(a(i)

1 , . . . , a(i)
m ) and (a(j)

1 , . . . , a(j)
m ) are distinct, that is, there exists an index ξ = ξ(i, j) such

that a(i)
ξ � a(j)

ξ . Therefore, (Ãξ)ii − (Ãξ)jj = ±1 and Condition A of [8, Theorem 1.1]

holds since 1 ∈ aij(̃S).
Consider a pair i ≺: j. Let η = η(i, j) and θ = θ(i, j). Then(

(Ãη)ii (Ãη)ij

0 (Ãη)jj

)
=

(
x 1
0 1 − x

)
,

(
(Ãθ)ii (Ãθ)ij

0 (Ãθ)jj

)
=

(
y 0
0 1 − y

)
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[7] Idempotent generators of incidence algebras 7

for some x, y ∈ {0, 1} ⊆ R. We set

B̃ =

⎧⎪⎪⎨⎪⎪⎩Ãη + Ãθ if x � y,
Ãη − Ãθ + In if x = y.

Consequently, (
(B̃)ii (B̃)ij

0 (B̃)jj

)
=

(
1 1
0 1

)
.

Then Condition B of [8, Theorem 1.1] is satisfied since 1 ∈ bij(̃S).
Thus, [8, Theorem 1.1] guarantees that the set S̃ generates A as a unital R-algebra.

However, the matrices Ã1, . . . , Ãm are not necessarily idempotent. We need to ‘slightly’
change their entries to make them idempotent generators.

Consider the idealZ2 from (2.1). Let π : A → A/Z2 be the natural projection onto
the quotient algebra A/Z2. We will prove that π(Ã2

k − Ãk) = 0 for any k = 1, . . . , m.
Since the matrices are triangular and their diagonals contain only zeros and ones,
we have (Ã2

k)ii − (Ãk)ii = 0 for all i ∈ N . Fix a pair i ≺: j. If (Ãk)ij = 0, then (Ã2
k)ij = 0

by Lemma 2.2. In the case (Ãk)ij = 1, we have k = η(i, j) and so (Ãk)ii � (Ãk)jj. Then
one of the entries (Ãk)ii, (Ãk)jj equals 1 and the other equals 0. By Lemma 2.2, it
follows that (Ã2

k)ij = 1. Thus, we have shown that Ã2
k − Ãk ∈ Z2, which is equivalent to

π(Ã2
k − Ãk) = 0.

Since π is an algebra homomorphism, we obtain π(Ãk)2 = π(Ãk), that is, all the
images π(Ã1), . . . , π(Ãm) are idempotents in the algebra A/Z2. It is known that
idempotents can be lifted modulo a nil ideal [12, Section 3.6, Proposition 1]. Hence,
there exist matrices A1, . . . , Am from A such that A2

k = Ak and π(Ak) = π(Ãk) for all
k = 1, . . . , n. Let S denote the set of these matrices.

We will prove that S generates A as a unital R-algebra. Since Ak − Ãk ∈ Z2 for
any k = 1, . . . , m, we have (Ak)ii = (Ãk)ii for all i ∈ N and (Ak)ij = (Ãk)ij for all pairs
i ≺: j. Then aij(S) = aij(̃S) = R and bij(S) = bij(̃S) = R in the terms of [8, Theorem 1.1].
Therefore, S generatesA as a unital R-algebra.

It remains to note that the matrices A1, . . . , Am are not necessarily pairwise distinct.
So we may choose some u ∈ N distinct matrices among A1, . . . , Am as required in the
lemma. �

5. The main result

In this section, we provide the solution to Problem 1.1 in Theorem 5.6. Before doing
that, we need to unite the results from two previous sections in one theorem.

THEOREM 5.1. Consider an incidence algebra A = An(�,R). Then the Hasse dia-
gram of � is isomorphic to a subgraph of the complement Qm of an m-hypercube if
and only if there exists u ∈ {1, . . . , m} such that A can be generated by some distinct
idempotent matrices A1, . . . , Au.
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PROOF. The implication (⇒) is given by Lemma 4.1, while the inverse (⇐) follows
from Lemma 3.1. �

Hence, we need to consider subgraphs of Qm. The following lemma imposes
restrictions on the possible number of vertices in such a subgraph.

LEMMA 5.2. Consider an arbitrary graph G on n vertices and the complement Qm of
an m-hypercube. If m < �log2 n�, there are no subgraphs of Qm isomorphic to G. When
m = �log2 n� + 1, there exists a subgraph of Qm isomorphic to G.

PROOF. Assume that G is a subgraph of Qm. Then Qm must have at least n vertices, so
2m ≥ n or m ≥ �log2 n�.

Now let m = �log2 n� + 1. Proposition 2.3(2) implies that the graph Qm contains
a clique of cardinality 2m−1 = 2�log2 n� ≥ n. Hence, any graph on n vertices can be
embedded in Qm. �

The previous lemma fails to cover only the case when m = �log2 n�. In fact, Q�log2 n�
can contain G or not. So we can divide all graphs into two disjoint classes.

DEFINITION 5.3. A graph G on n vertices belongs to the zeroth idempotent class if it is
isomorphic to a subgraph of the complement Qm of the m-hypercube for m = �log2 n�.
If a graph does not belong to the zeroth idempotent class, it is said to belong to the first
idempotent class. The number of the class will be denoted by idem(G). So we have
idem(G) ∈ {0, 1}.

The following example guarantees that for any m ∈ N, there exists a graph on n = 2m

vertices that belongs to the first idempotent class. Moreover, this graph is the Hasse
diagram of some poset.

EXAMPLE 5.4. If a graph G on n vertices has a vertex of degree greater than
2�log2 n� − �log2 n� − 1, then G belongs to the first class by virtue of Proposition 2.3(1).
For instance, we may consider a partial order on the set {1, . . . , 2m} such that all
elements 2, 3, . . . , 2m are pairwise incomparable and 1 is the least element. Then the
Hasse diagram of this poset belongs to the first class since the vertex 1 has degree
2m − 1 > 2m − m − 1.

The zeroth idempotent class is closed under the disjoint union of graphs on 2k

vertices, but the first class is not.

EXAMPLE 5.5. The disjoint union G1 + G2 of two arbitrary graphs G1, G2 on 2k

vertices always belongs to the zeroth idempotent class. Indeed, the total number of
vertices of G1 + G2 equals n = 2k+1 and so �log2 n� = k + 1. Proposition 2.3(2)–(3)
implies that the graph Q�log2 n� has two disjoint cliques C0, C1 of cardinality 2k. Hence,
G1 and G2 can be embedded in C0 and C1, respectively.

The following theorem provides the solution to Problem 1.1.
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[9] Idempotent generators of incidence algebras 9

THEOREM 5.6. Consider an incidence algebra A = An(�,R). Then the following
quantities coincide.

(1) The minimum number ν of idempotent matrices that generate A as a unital
R-algebra.

(2) The minimum m ∈ N such that the Hasse diagram of � can be embedded in the
complement Qm of the m-hypercube.

(3) The sum �log2 n� + idem(≺:), where idem(≺:) ∈ {0, 1} is the number of the
idempotent class of the Hasse diagram of � in terms of Definition 5.3.

PROOF. Quantities (1) and (2) are equal by Theorem 5.1. Also, Lemma 5.2 implies
that quantities (2) and (3) coincide. �

As a consequence, we can provide another proof of item (i) of [7, Theorem 6]. It
turns out that idempotent generators of Tn(R) are related to Hamiltonian paths in a
graph.

COROLLARY 5.7 [7, Kelarev et al.]. Let ν be the minimum number of idempotent gen-
erators of the algebra Tn(R) of all n × n upper-triangular matrices. Then ν = �log2 n�
if n ≥ 5 and ν = �log2 n� + 1 for n = 2, 3, 4.

PROOF. The algebra Tn(R) is an incidence algebra over the standard linear order ≤ on
{1, . . . , n}. Then the (undirected) Hasse diagram of ≤ is the graph with edges {1, 2},
{2, 3}, . . . , {n − 1, n}. It can be embedded in Q�log2 n� if and only if Q�log2 n� contains a
simple path on n vertices. Proposition 2.3(5) implies that Qm has a Hamiltonian path
whenever m ≥ 3, that is, �log2 n� ≥ 3, or n ≥ 5. The graph Q1 does not have edges and
Q2 does not contain a simple path on 3 vertices (and on 4 as well). It remains to apply
Theorem 5.6. �

PROBLEM 5.8. LetK be a noncommutative associative ring with an identity. Given an
incidence ringA = An(�,K), find the minimum cardinality ν of a set S of idempotent
matrices such that its union with the set of scalar matrices S ∪ KIn generates A as a
unital ring.
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