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Abstract--The effects of bending on diffraction profiles and intensities have been directly evaluated. 
It has been shown that: 

(1) bending may cause large reductions in intensities or even the total loss of them, 
(2) due to bending, the profile of the reflection may become asymmetrical and it may display two 

or more maxima, 
(3) bending effects vary with the class of reflections and they become larger with the increasing 

order of diffraction, and 
(4) the interference function for a bent lattice must be evaluated for each set of lattice parameters, 

whereas the interference function for an undeformed lattice can be made invariant with respect to 
lattice parameters. 

I N T R O D U C T I O N  

Thin crystallites of clay minerals are rather suscep- 
tible to being bent during the sample preparation pro- 
cesses for electron and X-ray diffraction analysis. 
Bending of crystallites seems to be caused by struc- 
tural factors in some of these minerals. How bending 
may affect the intensities and the profiles of reflections 
is the subject of this report. A special case of bending 
(cylindrical one) was the subject of the investigations 
by Blackman (1951), Whittaker (1955 and the refer- 
ence given there), Waser (1955), and Kunze (1956). 
A more general approach to bending effects was pro- 
posed by Cowley (1961). Unlike the simple method 
described in the following, the formulations in these 
previous studies are either mathematically complex 
or do not lend themselves readily to a systematic eva- 
luation of bending effects on diffraction intensities. 

The effects of bending on diffraction intensities and 
profiles can be directly evaluated by studying the 
properties of the interference function for bent lat- 
tices. The latter function expresses the interference 
effects between the waves scattered by each of the 
unit cells in a crystalline solid. For an undeformed 
and orthogonal lattice the interference function (S) 
may be expressed as: 

M - 1 N - 1 P - 1  

S =  Z Z Z expE21tis-R~,.p3 (la) 
m 0 n=O p=0  

Rm.p = ma + nb + pc, (lb) 

where the magnitude of the reciprocal lattice vector 
Isl is equal to 2 sinO/2, and M, N, P are the number 
of unit cells along the X, Yand Z directions. The vec- 
tors a, b, and e are the lattice parameters. The pos- 
ition vector Rm, p defines the location of each lattice 
point with respect to a common origin. For intensity 

calculations one needs the quantity ISl 2 which can 
be expressed in the following form: 

ISI2 = sin2 nMut.  sin2 nNu2. sin 2 nPu3 , (2) 
sin 2 nu~ sin 2 nu2 sin 2 nu3 

where the parameters ul, u 2 and u 3 are fractional 
coordinates in terms of reciprocal lattice parameters. 
The interference function (equation 2) is independent 
of any real or reciprocal cell parameters and it there- 
fore needs to be calculated but once. The function 
affects each reciprocal lattice point in the same way, 
namely depending on the thickness of the crystal in 
the direction of the reciprocal lattice vector. Further- 
more the above function is symmetrical at the reci- 
procal lattice point, resulting in a symmetrical diffrac- 
tion profile. 

D E R I V A T I O N  O F  THE I N T E R F E R E N C E  
F U N C T I O N  FOR BENT LATTICES 

When a crystal lattice is bent, in general the lattice 
points will be randomly displaced. This will then give 
rise to a randomness between the phases of their scat- 
tering and in this sense the scattering from such a 
collection of unit cells becomes noncoherent. For sake 
of simplicity, an orthogonal crystal with one atom 
per unit cell will be considered. For the evaluation 
of the interference function one needs to define the 
position vecto r Rm,p in the equation (lb) for each of 
these displaced lattice points. This will be done in 
the following for two special cases of bending: spheri- 
cal and cylindrical. Any other mode of bending may 
well be expressed as a combination of these special 
c a s e s .  

Spherically bent lattice 
In Fig. l(a) a spherically bent lattice plane is 

shown. The plane was coincident to the X Y  plane 
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before the deformation. Each lattice point after the 
bending can be defined by the spherical coordinates 
r, cp, and 0. From these, r is the radius of the sphere 
and also the radius of the curvature for the bending. 
For a three-dimensional case, one can consider 
several such concentric spheres with radii rp = r + 
p.c, where p is the number of unit  cells in the Z 
direction and c is the cell parameter in that direction. 
The spherical coordinates can be transformed to the 
original XYZ cartesian coordinates via the other car- 
tesian coordinate system x'y'z' (Fig. la): 

X -~ x' = rp sin~b cos0 
Y = y' = rp sin~b sin0 

Z : z' - rp = rp (cosq~ - 1"0). 
The angles ~b and 0 may be computed in radians as: 

r : + (3) 

0 = tan- 1 (nb/ma). (4) 
The position vector of any lattice point may now be 
given by: 

R = jxX + j y g +  j~Z. 
Where ix, Jr, and j~ are unit  vectors along the X, y 
and Z directions. The interference function can be 
rewritten: 

M-1N-1P-I 
S =  ~ ~ ~exp{2nis '[ j~rpsinq~cosO 

m - 0  n 0 p = 0  

+ jyrp sin ~b sin 0 + j~rp(cos <b - 1.0)]}. 

Remembering s = h'a* + k'b* + l'c*, where h', k', and 
l' are not only integers but also continuous variables: 

U - 1  N - 1  e - 1  ( [-h' 
S =  ~ ~ E exp{2n i rp l - s inq~c~  

rn=0 t~=0 p=0 [, L a 

+ ~ s i n  �9 sin 0 + ~(cos 05 - 1)]} - (5) 

The ~b and 0 angles actually possess subscripts of 
(m, n, p) as defined by the equations (3) and (4). These 
subscripts have been dropped for simplicity of expres- 
sion. 

Cylindrically bent lattice 
The model for cylindrically bent crystal is given 

in Fig. lb. The stack of lattice planes parallel to X Y  
becomes, after deformation, cylindrical surfaces with 
a radius rp around a common cylinder axis. The 
radius of any one of the cylinders is given by rp = r + 
p.c, where p is the number of lattice planes and c 
is the spacing between them. The lattice points may 
now be first defined by cylindrical coordinates r, 0, 

Z Z 

y xo 

(a) (bl 

Fig. L Bending models with their curvelinear and rectangu- 
lar coordinate systems. (a): Spherically bent lattice where 
r, 4~, and 0 are the spherical coordinates of the lattice point 
P. (b): Cylindrically bent lattice where r, 0, and z' are 

the cylindrical coordinates of the lattice point P. 

z' (Fig. lb). The X Y Z  cartesian coordinates may be 
obtained from these cylindrical coordinates via the 
other orthogonal coordinate system x'y'z' shown in 
the same figure: 

X = y' = rp sin0 
Y = z ' =  nb 

Z = x' - rp = rp (cos0 - 1-0). 
As in the case for spherical bending the interference 
function may be written for a cylindrical lattice: 

M - 1  N - 1 P - 1  

s - - E E E  
m - 0  n- -0  p - -0  

x exp{27zi[rp~sinO + rp~(cosO--1-0) + k'nl} 
o r  

S = Z Z exp~2~i | rp- -s in  0 + rp (cos 0 - 1-0) 
m=o p~0 L 1_ a 

N - 1  

x ~ exp(2gik'n). (6) 
n = 0  

Where 0 = ma/rp (in radians) and all the other sym- 
bols have the same meaning as in the spherical case. 

We can conclude from the above derivations that 
the interference function for a bent lattice is specifi- 
cally defined by the lattice parameters of the crystal 
and it therefore must be calculated separately for each 
bent crystal. This is in contrast to the interference 
function for undeformed lattices. The new interference 
function for a bent lattice does not refer to the reci- 
Procal space with the curvelinear coordinates but 
with its natural coordinates h ~, k', and l'. 

t I f  the unit cell contains more than one atom then the 
bending will also cause displacements of the atoms within 
the unit cell. The above formulation will remain valid pro- 
vided that the new positions of the displaced atoms within 
the unit cell are used for the structure factor calculations. 
Thus the bending of the unit cell can be accounted for 
in the structure factor without any modifications in the 
above interference functions. 

DIFFRACTION EFFECI"S OF BENDING ON THE 
SINGLE CRYSTAL REFLECTIONS 

The interference functions, as reformulated, have 
been computed for several sets of parameters. An 
orthogonal lattice with parameters a = 5.2 A, b = 
9.0 A, and c = 10.0 A (similar to those of a mica)but  
with a single atom per unit cellt has been considered. 

CX'.M. 23'4 I~ 
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We chose hypothetical crystals in the form of a square 
in the X-Yplane, with an edge (A) of 135A, 270A, 
540 A, and 1080 A in order to demonstrate the typical 
bending effects. Larger linear dimensions require 
hours of computing time. These small crystallite sizes 
may be helpful for considering deformation of clay 
crystallites and mosaic blocks in real crystals. In large 
crystals the bending may well be accommodated by 
a smaller deformation of mosaic blocks rather than 
a uniform deformation of the whole crystal. 

In the Z direction the thickness of the crystal has 
been varied between 10A (a single lattice plane) to 
100 A (ten lattice planes). Several radii of curvature 
(r = 4000, 2000, 1000, 500, and 250 A) have been con- 
sidered in order to cover a wide range of bending 
angles. The bending angle is defined as e = A/r (in 
radians). The interference function has been computed 
for each combination of A and r and it has been 
normalized so that its maximum value is 1.0 corre- 
sponding to that of an undeformed lattice. For bend- 
ing angles of 0"04 rad or larger, it was found that 
the number of lattice planes in the Z direction does 
not cause any appreciable differences in the values 
of the interference function. In fact for a bending 
angle of 0.135rad for A = 135A and r = 1000A the 
value of the normalized interference function for 10 
lattice planes is about 1 per cent different from that 
of the function for a single lattice plane. The graphs 
of the interference function given in this report are 
for a two-dimensional lattice plane. 

It is important to note the deviations of the norma- 
lized interference function from the normalized inter- 
ference function of an undeformed lattice. This devia- 
tion describes the diffraction effects of bending in a 
rather simple and graphical manner. The interference 
function for an undeformed two-dimensional lattice 
(i.e. with a single unit-cell thickness) is always unity 
along the c* direction of hk reciprocal lattice rows, 
as shown with dashed lines in Fig. 2, 4-6. Deviation 
of the interference function from this horizontal line, 
directly gives the effects of bending on the intensity 
and the profile of the reflections. For a three-dimen- 
sional lattice with multiple lattice planes in the Z di- 
rection the interference function for unbent crystal 
will be a symmetrical peak centered at the integer 
values of l'. As mentioned above there is very little 
difference in the values of the normalized interference 
functions for bent two- and three-dimensional lattices. 
The curves for bent two-dimensional lattices may also 
be used to a very close approximation for bent three- 
dimensional lattices. The deviations of these curves 
from the symmetrical profiles centered at the recipro- 
cal lattice nodes give the diffraction effects of bending 
in the case of bent three-dimensional lattices. Follow- 
ing this simple approach the interference function has 
been plotted for different orders and classes of reflec- 
tions under various conditions of bending. It has been 
found that the bending models considered do not 
modify diffraction profiles and intensities along the 
[hk0]* directions but along the c* direction. The 
properties of interference function are therefore de- 
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Fig. 2. Profiles of the interference function for a spherically 
bent crvstallite with various linear dimensions (A) and for 
a radius of curvature of 1000A. Dashed lines give the 
values of the interference function for the unbent crystal, 

scribed in the c* direction for hk and 001 reflections 
in the following paragraphs. 

hk reflections fi'om spherically bent" crystal 
All the hk reflections are similarly affected by the 

spherical bending of the crystal. As an example, these 
effects are described for three orders of Ok reflections; 
these are 02, 04 and 06 reflections with increasing 
Bragg angles. The bending effects can be typically 
studied for a radius of curvature of 1000/~ in crystal- 
lites with linear dimensions A = 135, 270, 540 and 
1080 A. The profiles of the interference functions for 
these cases are given in Fig. 2. For a crystallite with 
a linear dimension A = 135 A and with a radius of 
curvature of 1000A (c~ = 0'135 rad), the interference 
function has values very close to unity at the positions 
l' = 0-0 along the hk rows. The interference function 
shows, however, appreciable deviation from the 
dashed lines at other l' positions for all three reflec- 
tions 02, 04 and 06. There is an asymmetrical broa- 
dening of the profile for these reflections. For a cry> 
tallite with A = 270A, the interference function 
shows a significant reduction from the value of i.0. 
This reduction is about 12 per cent for the 02 reflec- 
tion, 37 per cent for the 04 reflection, and 65 per cent 
for the 06 reflection. The profile of the interfer- 
ence function becomes broad and asymmetrical for 
all these reflections in increasing amount with the 
order of diffraction. Furthermore the peak positions 
shift from their normal positions for the higher order 
reflections. In fact, the maximum for the 04 reflection 
shifts from l' = 0 to l' = 0-1 and similarly the peak 
for the 06 reflection appears at l' = 0"3. For a crystal- 
lite with a linear dimension of 540 A, the 02 reflection 
has lost 80 per cent of its normal intensity. In addi- 
tion, the profile of the interference function displays 
now two maxima at l' = -0-2 and l = 0-2. The inter- 
ference function shows about 96 and 97 per cent 
reductions in intensity for tlae reflections 04 and 06 
correspondingly. Therefore, these reflections will prac- 
tically disappear. For a crystallite with a linear 
dimension of 1080 A, the function has a value close 
to zero, even for the 02 reflection; therefore it has 
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Fig. 4. Profiles of the interference function for a cylindrically bent crystallite with various dimensions (A) 
and for a radius of curvature of 1000 A. Dashed lines give the values of the interference function for the 

unbent crystal. 

not been plotted. There will be virtually no more 
coherent scattering from this crystallite. 

Selected area electron diffraction (SAD) patterns of 
beidellite from Black Jack Mine, Idaho have been 
studied recently by Given  and Pease (1975). These 
SAD patterns show features similar to those described 
for the bending of a crystallite with A = 270/~ and 
A = 540 A. Typical SAD patterns of three beidellite 
crystallites are given in Fig. 3. These patterns indicate 
large reductions in intensity with increasing order of 
diffraction in the directions Ok, hk, and h0. Although 
these intensity reductions are larger along the b* than 
along the other directions, we may still consider a 
spherical bending for the beidellite crystallites in 
order to give a qualitative explanation for the 
observed data. The calculated intensity ratios of the 
02/06 and 02/33 reflections for an undeformed beidel- 
lite crystallite are both about 6:5, whereas the 
observed ratios for the 02/06 reflections range 
between 3:1-5:1 in Figs. 3(a) and 3(b), respectively. 
Similarly, the observed intensity ratios for the 02/33 
reflections range between 2:1-4:1 in Figs. 3(a) and 
3(b). In the SAD pattern in Fig. 3(c) all the reflections 

except 02 are very weak or missing. The large reduc- 
tions in intensity or the total loss of reflections were 
shown in Fig. 2 for the interference functions of crys- 
tallites with A = 270 A and A = 540 A, and bent to 
a radius of curvature of 1000A. The dimensions of 
the beidellite crystallites are much larger and beidel- 
lites have more atoms per unit cell than the models 
used in Fig. 2. It would be prohibitively time consum- 
ing to calculate the exact corrections for bending 
effects on the beidellites. The above explanation is, 
therefore, to be considered as strictly qualitative. 

hk reflections from cylindrically bent crystal 
As seen from equation (6) and also from the geo- 

metry of the cylindrical bending, all hk reflections are 
not affected in the same manner by the deformation. 
Specifically, the reflections from the set of planes per- 
pendicular to the cylinder axis behave differently from 
the others. In our model, where the cylinder axis is 

parallel to the b-axis of the crystal, Ok reflections form 
such special reflections. Therefore, the profile of the 
interference function will be discussed separately for 
Ok and hk reflections. The effects of the bending are 
typically displayed in Fig. 4 for the crystallites with 
linear dimensions of 135A~ 270A, and 540A, and 
with a radius of curvature of 1000 A. 

The profile of the interference function for 02, 04 
and 06 reflections are exactly the same. The profile 
is symmetrical and changes in width only with the 
linear dimension of the crystallite (Fig. 4). The peak 
position of the interference function appears exactly 
at l' = 0 or an integer as expected also from an unde- 
formed lattice. The only difference between the dif- 
fraction profiles of a bent and unbent crystal is the 
following: for an unbent two-dimensional lattice the 
interference function has always the value of unity 
in the c* direction of the hk rod. The interference 
function for a two-dimensional bent lattice, however, 
behaves as though there are several unit cells in the 
c* direction. This is due to the fact that bending of 
a two-dimensional lattice generates a sequence of 
several layers. 

Other hk reflections behave similar to the 11, 22, 
and 33 reflections for which the interference function 
is plotted in Fig. 4. For a crystaltite with a linear 
dimension of 135 A, all three orders show very small 
reductions in their intensities. A crystallite size of 
270 A, on the other hand, displays the effects of bend- 
ing rather clearly. The values of the interference func- 
tion drops to 0.97 for the 11 reflection, 0.88 for the 
22 reflection and to about 0'76 for the 33 reflections. 
The profiles for all these reflections are asymmetri- 
cally broadened and peak positions are displaced to 
l' = 0'1 for the 22 and 33 reflections. For a crystallite 
size of 540 A the effects of bending on the above re- 
flections are rather drastic. The profile of the 11 reflec- 
tion displays two maxima at l ' =  0.2 and l =  -0 .2  
with an average loss of 55 per cent from its normal 
intensity. The 22 reflection displays three maxima at 
l' = -0.3,  l' = 0.0, and l' = 0.3 with a loss of intensity 
of about 60 per cent. The profile of the 33 reflection 
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Fig. 3. Selected area electron diffraction patterns ofbeidellites displaying various degrees of bending 
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Fig. 5. The interference function for the 001 reflections 
from a spherically bent crystallite with a linear dimension 

of 135 A and with different radii of curvature. 

becomes rather broad and irregular, with about 90 
per cent loss of intensity. 

Effects of  bending on 001 reflections 
This special class of 00l reflections undergoes much 

larger intensity losses and distortions in their profiles 
for the bending models considered above. The con- 
tinuous profile of the interference function in the 
range of l' = 0.5-4.0 has been plotted in Fig. 5 for 
a spherically bent  crystal. Cylindrical bending gives 
also a similar profile for the interference function in 
the same range. Various radii of curvature (250, 500, 
1000, 2000 and 4000A) have been considered for a 
crystallite size of 135 A. The profile shows a continuous 
decrease in the value of the interference function with 
the increasing l' index of the reflection. This reduction 
is increasing drastically with decreasing radius of cur- 
vature i.e. with increasing amount of bending. Thus 
the behaviour of the interference function predicts 
anomalous intensity ratios for. the different orders of 
001 reflections and higher background intensity for 
the bent crystallites. This suggests some caution in 
interpreting the intensities of basal reflections espe- 
cially for clay minerals where the diffraction data are 
often limited to this special class of reflections. Why 
these reflections undergo so much distortion and loss 
of intensity can be easily inferred from Fig. t(b). As 
seen on the upper right quadrant of the circle in this 
figure, bending of this model generates a series of lat- 
tice planes parallel to 001 but with an irregular spac- 
ing and hence random phasal relationships between 
them. 

THE PARAMETERS OF BENDING 

A few comments should be made on the question 
of how bending can be defined. The apparent para- 

meters of the bending a r e  the linear dimension (A) 
of the crystallite and the radius of curvature (1"). The 
ratio (c 0 of these two parameters is defined as the 
bending angle (i.e. c~ = A/r). The question arises 
whether this radio can be used for evaluating the dif- 
fraction effects of bending it;~stead of using two para- 
meters A and r. If such a relationship can be derived, 
this obviously will reduce the computations to a 
marked degree. In order to explore this possibility 
the interference function has been evaluated for 
several sets of Air values. The results for crystaltite 
sizes of 135A and 270A for the spherical bending 
are plotted in Fig. 6. By doubling the edge of a two- 
dimensional square crystallite, the number of lattice 
points will be increased four times. Therefore it is 
expected that the interference functions would show 
some similarity for the sets 135/1000 and 270/4000; 
135/500 and 270/2000; and 135/250 and 270/1000. In 
fact, Fig. 6 shows that the interference function has 
similar, but not identical, profiles for the cases 135/ 
1000 and 270/4000; and for 135/500 and 270/2000. 
The maximum values of the interference function are 
distinctly different for the above sets. This similarity, 
however, breaks down when the bending angle is in- 
creased. In fact, the pair 135/250 and 270/1000 show 
completely different profiles for the interference func- 
tion. Thus the bending must be defined by the two 
parameters A and r and not simply by their ratio, 
i.e. with the bending angle (~). This also is the case 
for cylindrical bending. 
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Fig. 6. The variations in interference function for the 06 
reflection for different sets of Air values. Numbers next 
to the curves give the radii of curvature in thousands of 

angstroms. 
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