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The paper presents the results of an experimental and numerical study of turbulent thermal
convection in a rectangular box containing an extended immersed free-floating plate.
Varying the values of control parameters, such as Rayleigh number, aspect ratio and
vertical position of the plate, provides a wide range of possible modes, from immobile
and purely periodic to stochastic. We have shown that stable periodic motions occur when
the plate floats close to one of the heat exchangers. An increase in the distance between
the plate and the heat exchanger breaks the periodic motion and (at moderate Rayleigh
numbers) leads to a pronounced asymmetry, when the plate stays close to one of the walls
most of the time, makes rare excursions to the opposite wall and immediately returns.
As the Rayleigh number increases, the plate motions from one edge of the box to the
other reappear, but always have an irregular character. Regarding the dependence of the
system behaviour on the geometry of the box, both lower and upper limits of periodic plate
motions were found in the experiments. In the numerical simulations, the upper limit was
not achieved – the plate moves quasi-periodically through the chain of vortices of different
signs even at the largest aspect ratio being considered. The heat-insulating floating plate
provides the spatial and temporal variation of the heat flux and reduces the integral heat
flux, but the reduction in heat flux depends significantly on the vertical position of the
plate.

Key words: convection in cavities, turbulent convection, Bénard convection

1. Introduction

Turbulent Rayleigh–Bénard convection in confined volumes almost always leads to the
formation of a large-scale circulation (LSC), sometimes called the ‘mean wind’, which,
along with small-scale turbulent flows, provides transport of heat and various passive
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scalars (Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher 2012; Xia 2013). Of
interest are both the dynamics of LSC, which can be rather complex, and the ways to
control it. There are a number of ways of controlling large-scale flows, such as spatial
variation of temperature boundary conditions (Wang, Huang & Xia 2017; Bakhuis et al.
2018; Nandukumar et al. 2019; Vasiliev & Sukhanovskii 2021; Sukhanovskii & Vasiliev
2022), changes in surface roughness (Toppaladoddi, Succi & Wettlaufer 2017; Xie &
Xia 2017; Zhu et al. 2017; Jiang et al. 2018; Zhang et al. 2018; Zhu et al. 2018)
and vertical or horizontal baffles (Ciliberto, Cioni & Laroche 1996; Bao et al. 2015;
Vasiliev, Sukhanovskii & Frick 2022). Another promising approach is to introduce freely
moving immersed bodies with one or more degrees of freedom into the fluid volume.
The application of this approach requires an understanding of the dynamics of turbulent
convective systems with moving submerged bodies of finite size, which, on the one hand,
are entrained by the flow, and on the other hand, directly affect the heat and mass transfer.
A recent paper of Wang & Zhang (2023) shows that vertical freely rotating baffle results
in a remarkable and rather unexpected transformation of the LSC in Rayleigh–Bénard
convection in the cylindrical container.

Obviously, in the general case of arbitrary cavity geometry, shape and properties of the
floating body, a great diversity of the system behaviour is possible. To elucidate at least
the basic regularities of the behaviour of the system, which includes a convective cell and
a free-floating body, it is necessary to identify some simplified (academic) problems. As
such a problem, we can take Rayleigh–Bénard convection (horizontal layer, heated from
below and cooled from above) with a plate floating only along the horizontal.

A plate floating on the free surface of a fluid layer heated from below is a particular case
of this problem originating from the convective scenario of tectonic plate drift (Schubert,
Turcotte & Olson 2001). The first experiments of Elder (1967) showed that a floating plate
on the free surface is not a passive drifter and can move without preexisting streams. Later,
this problem has been studied experimentally (Zhang & Libchaber 2000; Zhong & Zhang
2005, 2007a), numerically (Gurnis 1988; Zhong & Gurnis 1993; Whitehead & Behn 2015;
Mao, Zhong & Zhang 2019; Mao 2021) and theoretically (Mac Huang et al. 2018). These
studies showed that interaction between the plate and the fluid flow may result in periodic
and irregular plate drifts, depending on the plate size and Rayleigh number. It should be
noted that numerical simulations were done using an infinite Prandtl number for a better
approximation of mantle convection.

Modelling of tectonic plate drift is an interesting but a particular case of the system,
which includes a convective layer and a free floating body. There are many configurations
in which a floating body of different nature can block the vertical heat flux. One can
mention convective envelopes of stars (e.g. the Sun), where a localized magnetic field
damps the motions of the conducting medium, but is entrained by the moving conducting
medium, so this band may be regarded as a floating obstacle for convective heat fluxes,
which can affect the formation of large-scale flows in the pole-equator direction. The cloud
clusters in the Earth atmosphere play an important role in radiative heat exchange. The
formation of an oil lens following large-scale oil spills can also be viewed as a floating
body, and estimating its drift requires an understanding of the interaction between an oil
lens and the surrounding fluid. In industrial applications, solid phase clusters can also have
a strong influence on non-isothermal chemical reactions, metallurgical and crystallization
processes. In the present study, we focus on some general properties of a free-floating
body inside a convective layer in a rather simple academic formulation (Popova & Frik
2003). In such a system, the character of body motion and the structure of the flow
significantly depend on the Rayleigh number, the geometry of the cell and the vertical
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Figure 1. Schematic diagram of Rayleigh–Bénard convection in a closed cell with a free-floating body.

location of the plate. Regular, periodic motions of the body from one edge of the cell
to the other were observed in the limited range of governing parameters. Changes in the
distance between the plate and the isothermal boundary, the length of the cell and the
heating rate lead to significant changes in the dynamics of the floating body. Transient
regimes, in which periodic oscillations occur irregularly, and chaotic regimes, in which
there are no intervals of regular oscillations, were observed. In addition to changes in the
flow structure, the insulating body inside the fluid can significantly affect the heat transfer
(Popova et al. 2022; Vasiliev et al. 2022; Filimonov et al. 2023). The variation of each
particular parameter can have a strong influence on the flow structure and immersed plate
dynamics. Therefore, a more systematic approach is required to better understand the role
of the main parameters.

The goal of this study is to reveal the specific features of the complex system consisting
of Rayleigh–Bénard convection and an immersed floating plate. The most attention is paid
to the plate drift dynamics, structural changes in the flow and variation of heat transfer.

The structure of the paper is as follows. The statement of the problem and governing
parameters are given in § 2. The experimental set-up and mathematical model are
described in § 3. The main results, including description of the periodic regime, so-called
convective pendulum (§ 4.1) and more complex non-periodic regimes, provided by
variation of aspect ratios (§ 4.2), immersion depth (§ 4.3) and Rayleigh number (§ 4.4), are
presented in § 4. The influence of the immersed body motion on heat transfer is described
in § 4.5. A summary and conclusions are given in § 5.

2. Statement of the problem and governing parameters

In the present study, we consider Rayleigh–Bénard convection in a closed cell with a
free-floating body held in a fixed vertical position. The floating body has one degree of
freedom and can move only along horizontal coordinate x (figure 1). At the boundaries of
the body, the no-slip and adiabatic conditions are fulfilled. The upper and lower boundaries
of the cell are kept at constant temperatures Tc and Th, and the sidewalls are adiabatic. All
solid boundaries satisfy the non-slip condition.

Thermal convection is governed by the following non-dimensional parameters: the
Rayleigh number Ra, which is the ratio of buoyancy to dissipative forces, and the Prandtl
number Pr, which is the ratio of kinematic viscosity ν to thermal diffusivity χ

Ra = (gα�TH3
1)/(νχ), Pr = ν/χ, (2.1a,b)

where �T = Th − Tc is the temperature drop between the lower and upper boundary, g
is the gravity acceleration, α is the thermal expansion coefficient and H1 is the layer
height. All experiments were performed with water at the average temperature T0 = 22◦C
at which the Prandtl number Pr = 6.6. The simulations were performed for the same value
of the Prandtl number.
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Ra Pr Γ1 Γ2 d

Experiments 8 × 106–2 × 107 6.6 2.8–12.5 1.14–5.1 0.1–0.5
Numerics 106–8 × 107 6.6 0.7–12.5 1.05–5.1 0.1–0.9

Table 1. Governing parameters in numerical and experimental runs.

When considering convection in a finite volume of fluid, it is necessary that geometrical
parameters be added to the control parameters. In the classical Rayleigh–Bénard problem,
the main geometric parameter is the ratio of the horizontal size of the cavity to the vertical
size. In problems with fixed inclusions (Cooper, Moresi & Lenardic 2013; Wang et al.
2017; Vasiliev et al. 2022) or free-floating bodies (Zhang & Libchaber 2000; Popova
& Frik 2003; Zhong & Zhang 2005, 2007a,b; Mao et al. 2019; Mao 2021), additional
parameters are introduced to determine the global structure of the flow and the heat
and momentum transfer. In our case, the problem includes three geometric parameters:
two aspect ratios that characterize the relative cavity extent and the relative horizontal
dimensions of the floating body, as well as the relative height of the body location:

Γ1 = L1/H1, Γ2 = L1/D, d = h/H1, (2.2a–c)

where L1 is the layer length, D is the plate size, and h is the distance between the plate and
the bottom (see table 1).

The main response characteristics of the convective flow are the global heat and
momentum transport represented by the dimensionless Nusselt number Nu and Reynolds
number Re, respectively. Within the Oberbeck–Boussinesq approximation, the Nusselt
number is

Nu = H1

�T

〈
∂T
∂y

∣∣∣∣
y=0

〉
x,t

, (2.3)

where 〈·〉x,t denotes averaging over time and over coordinate x.
For the Reynolds number, we use the definition which is based on the mean square root

of the fluid velocity,

Re = H1
√〈u · u〉t,V

ν
, (2.4)

where 〈·〉t,V denotes averaging over time and over the entire convection cell.
In a convective cell with a free-floating body, oscillatory modes arise at a certain

combination of control parameters. Then the natural dimensionless characteristic of the
body motions is the Strouhal number, which is defined as the body oscillation frequency f
measured in convective flow units, St = fL1/V . In other words, the Strouhal number is the
ratio of the characteristic velocity of the solid body (U = L1/τ0) to the convective velocity
(the free-fall velocity uf = √

gα�TH1):

St = U
uf

= L1

τo
√

gα�TH1
. (2.5)
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Figure 2. Experimental set-up: 1, lower heat exchanger; 2, upper heat exchanger; 3, inlets and outlets of upper
heat exchanger; 4, holders of upper heat exchanger; 5, cell walls (Plexiglas); 6, frame; 7, supporting rods; 8,
slot of upper heat exchanger; 9, free-floating disk; 10, Plexiglas baffles.

3. Methods

3.1. Experiment
The experimental set-up is a parallelepiped of length L = 500 mm, width W = 100 mm
and height H = 180 mm (figure 2). The side walls are made of 10 mm thick transparent
Plexiglas. The top and bottom plates are made of copper and act as heat exchangers.

The upper heat exchanger, which is 27 mm thick, is cooled by circulating
thermostatically controlled ethylene glycol. The channels in the heat exchanger are
designed so that the inlet and outlet are adjacent to each other to ensure uniform
temperature boundary conditions. In the middle of the plate, there is a 5 mm wide
longitudinal slot to allow free movement of the rod that controls the immersion of the
thermal insulating body.

The lower heat exchanger, which is 10 mm thick, is heated with a silicone heater
glued to the underside. The experiments were performed at constant temperature at
both boundaries. The temperature of the bottom heat exchanger was controlled using
a proportional–integral–derivative controller with an accuracy of 0.1◦C. The maximum
heating power was 150 W. Calibrated copper-constantan thermocouples were used to
record the temperature of the upper and lower heat exchangers. In the lower heat exchanger,
one thermocouple was located at the periphery (50 mm from the edge) and the other was
located in the central part. In the upper heat exchanger, two thermocouples were located at
different edges of the copper plate. Temperature and power measurements were recorded
with a measuring board (at a frequency of 1 Hz).

Distilled water was used as the working fluid, the level of which was approximately
20 mm above the upper heat exchanger. The free-floating body was a 1 mm thick Plexiglas
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disk with a diameter of D = 98 mm, which is slightly smaller than the width of the layer.
The body was submerged to a given depth by means of a thin rod which was fixed at the
centre of the disk and had a float attached to its upper end. Note that a series of experiments
with a body floating on a free surface (Zhang & Libchaber 2000; Zhong & Zhang 2005,
2007a,b) were performed using rectangular plates of hydrophobic material, which allowed
avoiding its contact with the model walls. In the experiment with an immersed body, it
is impossible to avoid touching the wall, which causes the rotation of the body about the
vertical axis and braking. The disc shape of the body allows one to minimize the interaction
between the floating body and the model walls, which was successfully demonstrated by
Popova & Frik (2003).

The free-floating body movements were registered with a time interval of 6 s using a
Bobcat B2020 CCD camera. The position of the body was determined by the location of
the thin rod attached to the centre of the disk. The duration of the experiments varied from
6 to 24 h.

An important difference between our set-up and the one described by Popova & Frik
(2003) is the possibility of changing the geometric parameters of the cell. For this purpose,
two vertical Plexiglas baffles 5 mm thick were placed inside the cell, which bound the
working cavity of length L1. By varying the position of the baffles and the distance
between the heat exchangers, we can be vary L1 and H1 within a fairly wide range. In the
experiments described below, the width and height of the layer were fixed (W = 100 mm,
H1 = 40 mm), and L1 varied from 112 to 500 mm.

3.2. Numerical simulations
A full understanding of the behaviour of the complex system, which includes an extended
floating immersed body and Rayleigh–Bénard convection, requires knowledge of the
structure of the flow and temperature field, as well as the distribution of temperature and
viscous stresses at the body surface. It is a bit of a challenge to get all these characteristics
experimentally, so that in addition to experiments, we perform a series of numerical
simulations in a setting very close to the experimental one. Direct three-dimensional
(3-D) numerical simulations for the developed convective flows demand significant
computational resources and are not suitable for our purposes as we intend to vary the main
control parameters. Therefore, we limited ourselves to two-dimensional (2-D) numerical
simulations.

Numerical simulations were performed within the framework of a two-dimensional
model which includes the equations of free convection of incompressible fluid in an
Oberbeck–Boussinesq approximation and the equation of motion of the solid plate. The
unsteady fluid flow is described by the Navier–Stokes equation, which includes the
buoyancy force, the temperature equation and the continuity equation:

∂u
∂t

+ (u · ∇)u = −∇p
ρ

+ ν∇2u − gα(T − T0), (3.1)

∂T
∂t

+ (u · ∇)T = χ∇2T, (3.2)

∇ · u = 0. (3.3)

Here, u = (ux, uy) denotes the velocity vector field, x is the horizontal coordinate, y is the
vertical coordinate, ρ is the density, T is the temperature, T0 is the reference temperature
and p is the pressure.
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The motion of the solid plate is described by Newton’s equation:

dV
dt

= ( f p + f ν)x

m
, (3.4)

where V is the plate velocity, which is purely horizontal, f p and f ν are the pressure and
viscous forces, and m is the mass of the plate. The forces are calculated by the integration
over the plate surface,

f p =
∮

pn dS, f ν = −
∮

τw dS, (3.5a,b)

where τw is the viscous wall stress. The impact of the plate into the wall is considered
inelastic. The model of the solid plate motion in the fluid is implemented using the
immersed boundary method (Mittal & Iaccarino 2005). A detailed description of the
mathematical model and results of its testing are presented by Filimonov et al. (2023).

At all solid boundaries (including both plate surfaces), no-slip conditions are set for
the velocity. The upper and lower boundaries are held at fixed temperatures. The lateral
boundaries and boundaries of the plate are adiabatic. At the initial moment of time, the
fluid velocity in the computational domain is zero, and the temperature is the arithmetic
mean of the upper and lower boundary temperature. The plate is located in the centre of
the cell (x0 = 0).

Numerical calculations were performed with the in-house CFD code σ Flow, the
numerical algorithm of which is based on the unstructured spatial grid and finite volume
method for hydrodynamic equations.

The approximation of convective and diffusive terms of the equation of motion is
carried using the second-order central difference schemes. The relationship between the
velocity and pressure fields, providing the fulfilment of the continuity equation, is realized
using a SIMPLE-like splitting procedure. To integrate the equation of motion in time, the
Crank–Nicholson method of second-order accuracy is used. Both viscous and convective
terms of the equation of motion are treated implicitly. The convective terms of the energy
transfer equation are approximated by the second-order upwind TVD scheme, and the
unsteady term of the temperature equation is approximated by the second-order three-layer
scheme. An algebraic multigrid method is used to solve the linear system resulting from
the discretization of the pressure correction equation. To speed up calculations, we use the
parallel computation technology based on decomposition of the computational domain
into several adjoining subdomains.

The simplicity of the geometry and the use of the immersed boundary method to
describe the motion of the solid plate allows the application of a structured computational
grid.

A mesh independence study was performed by varying the cell size of the mesh and
examining the integral parameters. Verification calculations were performed for flow at
Γ2 = 1.73, Ra = 107 and d = 0.1. Using the numerical solution on three different meshes
with cell sizes coarse 0.5 mm, base 0.25 mm and fine 0.125 mm, we performed the
procedure of estimation of grid convergence and discretization error (Celik et al. 2008).
The following integral parameters were chosen for the estimation: heat flux, mean kinetic
energy and mean viscous dissipation rate of kinetic energy. The grid convergence index,
GCI, for the fine mesh with factor of safety of three and formal second-order accuracy does
not exceed 2 %. The GCI values for the base mesh remain within 5 %. The results confirm
that the numerical accuracy of the modelling with the base mesh is within acceptable limits
for CFD modelling (see table 2). During numerical simulation, the time integration step
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L (mm) Ra �h (mm) Nu Re St

122.5 8 × 106 0.250 2.77 63.91 0.037
122.5 8 × 106 0.125 2.64 62.60 0.039
170 1 × 107 0.500 8.46 102.4 0.037
170 1 × 107 0.250 8.44 100.8 0.037
170 1 × 107 0.125 8.00 98.90 0.034
170 4 × 107 0.250 13.02 231.2 0.027
170 4 × 107 0.125 12.37 224.0 0.026
170 8 × 107 0.250 16.73 347.9 —
170 8 × 107 0.125 15.95 341.7 —

Table 2. Nusselt number Nu, Reynolds number Re and Strouhal number St calculated for different Rayleigh
number using different grids (at Ra = 8 × 107, the plate motion is aperiodic).

remained constant and was chosen to be 0.03 s. The maximum Courant–Friedrichs–Levy
number did not exceed unity and the average value over the whole region was 0.32 ± 0.25.
The average simulation time was at least 3000 s of physical time. Then the results
of the described mathematical model of two-dimensional Rayleigh–Bénard convection
modelling were cross-verified with the results of modelling performed by van der Poel
et al. (2012). For this purpose, three calculations for Ra = 108 with different aspect ratios
of the computational domain were performed: Γ1 = 4.25, 4.9 and 10.3. Obtained results
are in a very good agreement with van der Poel et al. (2012). In the first two configurations,
the flow with three large scale rolls in the computational domain was established, and for
the third configuration with seven rolls. The deviation in the Nusselt number between the
results of our calculations and numerical results (van der Poel et al. 2012) does not exceed
2 %.

4. Results

4.1. Convective pendulum
We will begin the description of the results with consideration of the basic mode, in which
the plate executes periodic motions from one wall to another – the convective pendulum
mode. Such a pendulum mode was observed earlier both when the rectangular plate was
floating on the surface (Zhang & Libchaber 2000) and when the disk was floating near
the bottom (Popova & Frik 2003). The mechanism of periodic motion of the plate in this
mode is as follows. The plate, being close to one of the walls, blocks the vertical heat
flow, and in the gap at the opposite wall, an intense upward flow is formed. It promotes the
development of a large-scale flow, which entrains the plate and carries it to the opposite
wall, after which all events are repeated in reverse sequence. The experiments of Popova
& Frik (2003) have shown that in a relatively short cavity (4.25 < Γ1 < 8.50, Γ2 = 1.70),
stable periodic motions are realized in the whole range of the Rayleigh numbers considered
but only at a sufficiently low position of the disk (d � 0.15). As the distance between the
disk and the bottom increases, the periodicity begins to break down. The details of this
process will be described below.

To illustrate the mechanism of convective pendulum, we present a set of velocity fields
obtained by 2-D numerical simulations for the layer of depth H = 40 mm, the plate located
at a height of h = 4 mm (d = 0.1), the Rayleigh number Ra = 8.6 × 106, and the aspect
ratios Γ1 = 3.06 and Γ2 = 1.25. Figure 3 shows the individual phases of the ‘pendulum’
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Figure 3. Instantaneous velocity fields at (a)–(e) five time moments, indicated in panel ( f ), where the
variations of the plate position (blue line) and total kinetic energy of the fluid (red line) are shown for one
period of the convective pendulum. Numerical simulations for Γ1 = 3.06, Γ2 = 1.25, Ra = 8.6 × 106 and
d = 0.1. Black arrows under the corresponding panels indicate the plate velocity.

motion. Figure 3(a) corresponds to the instant of time when the plate passes the centre
of the layer, moving to the right. It is ‘pulled’ by an intense vortex located at the right
wall. Figure 3(b) shows the time when the plate is already in contact with the right wall
and an intense vortex of the opposite sign is spinning at the left wall. Figure 3(c) shows
the time of plate ‘departure’ from the right wall. It is pulled by the vortex at the left wall,
which begins to grow at this stage, reaching the size of half of the cell by the time the
plate passes the centre of the cell (figure 3d). In figure 3(e), the plate is pressed against
the left wall and a new vortex begins to develop in the vacated heated space on the right
side, drawing the plate towards itself. The change in the flow structure during the plate
movement is characterized by significant changes in the total kinetic energy of the fluid
(see figure 3f, which shows changes in the plate position and kinetic energy during one
cycle and indicates the time instants at which the velocity fields are depicted). The time
dependence of the kinetic energy Ek shows that there is a sharp rise in Ek as the plate is
parked near one of the walls. The mechanism of such sharp pulsations of kinetic energy
is due to the fact that the liquid under the plate is strongly overheated. Its potential energy
increases, which inevitably leads to instability with the result that a heated jet of liquid
breaks forth from under the plate, forming an intense vortex (figure 3b). Then, as is seen
in figure 3(c), this vortex grows, losing its intensity, and after reaching a certain size, it
carries the plate to the opposite wall.

As noted above, the convective pendulum occurs in a limited domain of control
parameters, beyond which the disturbances of the periodic regime are observed. The
identification of the domain, in which the convective pendulum exists, and investigation
of possible scenarios of periodic mode failure is a complex and time-consuming problem.
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This is due to the fact that, despite the apparent simplicity of the system, there is a set
of parameters which have a significant influence on the structure and dynamics of the
convective flow and, as a consequence, on the plate motion. First of all, it is the geometry
of the layer determined by the aspect ratio Γ1. At large values of Γ1 (horizontally stretched
layer), a convective flow usually represents a set of convective cells, the size of which
is comparable to the layer thickness. At Γ1 ∼ 1, it is a single cell, and in the case of
vertically stretched layer, at small values of Γ1, the convective flow can be formed by a
single-cell structure stretched in the vertical direction or by a set of cells located one above
the other. The aspect ratio Γ2 determines the degree of influence of the immersed body
on the flow; with increase of Γ2, the influence of the body on the structure of convective
flows decreases.

Another important parameter is the depth of the plate immersion (relative distance from
the plate to the bottom d). In the case of small d, when the body is located near the
temperature boundary layer, there is a noticeable decrease in the heat flux under it, and
the main convective flow is located above the body. When the body is located closer to
the middle of the layer, the formation of competing convective cells located above and
below the body is observed. All the above processes depend on the convection intensity
determined by the Rayleigh number and the fluid properties determined by the Prandtl
number. The shape and properties of the immersed body, in addition to its size and position
in the layer, can also affect the system. The conducted experiments revealed a number of
additional factors, which are related to the specific realization of the floating body and
conditions at the boundaries. Due to a large number of parameters, a detailed study of the
described system requires significant efforts. In the following, we demonstrate possible
scenarios of the evolution of the convective pendulum associated with the variations in the
main parameters.

4.2. Variation of aspect ratios Γ1 and Γ2

First, let us show how the convective pendulum is affected by a change in the layer length at
fixed values of the plate size and height (both aspect ratios are changed). To do this, we set
the plate in the layer of depth H = 40 mm at a height h = 4 mm (d = 0.1), fix the Rayleigh
number Ra = 8.6 × 106, and perform a series of experiments varying the horizontal size
L1 from L1 = 112 mm to L1 = 500 mm (2.8 < Γ1 < 12.5, 1 < Γ2 < 5). The different
regimes of the disk motions in the laboratory experiments are shown in figure 4. It can be
seen that the most stable periodic motions of the disk are realized at Γ1 ≈ 5 and Γ2 ≈ 2,
i.e. when the layer is noticeably stretched in the horizontal direction and the disk covers
approximately half of the layer length. At smaller values of the layer length, the periodic
motions remain quite regular, although with small disruptions, when the disk does not
reach the wall. At Γ1 ≈ 3, Γ2 ≈ 1.25 (the range of possible displacements of the disk is a
quarter of the diameter), the amplitude of the oscillations drops and they converge to one
edge of the layer, so that the disk rarely reaches the other edge. The oscillogram obtained
at the smallest value of the cell length (Γ1 = 2.8, Γ2 = 1.14, figure 4a) seems unexpected:
after staying in the centre of the layer for an hour and a half, the disk began to move for
the next hour and a half with a slow but fairly regular oscillation. In the last stage of the
experiment, the disk again rested steadily in the centre of the layer. Repeated experiments
with the same set of parameters showed that the regime arises at the stability boundary of
the disk rest – where motions can appear and disappear, or having started, die away.

As the aspect ratio increases, the periodic motion of the disk begins to break down (see
figure 4g, which shows the mode Γ1 ≈ 6.24, Γ2 = 2.55), and at Γ1 � 7.35, Γ2 � 3, the
disk reaches one of the cell edges and remains there until the end of the experiment.
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Figure 4. Disk displacements in the layer at Ra = 8.6 × 106 and d = 0.1 for different values of aspect ratio
Γ1 and Γ2: (a) Γ1 = 2.80, Γ2 = 1.14; (b) Γ1 = 3.13, Γ2 = 1.28; (c) Γ1 = 3.75, Γ2 = 1.53; (d) Γ1 = 4.25,
Γ2 = 1.73; (e) Γ1 = 5.0, Γ2 = 2.04; ( f ) Γ1 = 5.63, Γ2 = 2.30; (g) Γ1 = 6.25, Γ2 = 2.55. (Experiments.)

Numerical simulations for the same range of governing parameters generally give a
similar picture of the disk motions, although qualitative differences are observed for the
entire range of Γ1 and Γ2 considered. Almost perfect periodic motion is observed at Γ1 =
3.06, Γ2 = 1.25 (figure 5b), whereas with decreasing aspect ratios to Γ1 = 2.76, Γ2 =
1.125, the plate oscillates near one wall being unable to move away from it (figure 5a). In
the experiment, similar behaviour of the disk was observed at Γ2 = 3.06, Γ2 = 1.25. With
increasing aspect ratios, the periodic motions in the numerical simulations become less
regular, although they persist almost over the entire Γ2 range considered (figure 5). Even
at the maximum values of Γ1 = 12.5, Γ2 = 5.1, the plate continues to move across the
entire layer, although a whole chain of vortices of different signs is already formed in the
cavity, which it should pass at each cycle. These vortices sometimes impede the advance
of the plate to the opposite side, and sometimes turn it around and the plate returns to the
wall of departure without reaching the opposite edge.

Figure 6 shows the variations in the density of the convective flow energy and plate
centre displacement for the entire computation time and three sets of aspect ratios Γ1 and
Γ2. Figure 6(a) corresponds to the mode shown in figure 3. It can be seen that the motion
is quasi-periodic. Moreover, all phases of the cycle shown in figure 3 are qualitatively
repeated in each cycle, although they dramatically differ in details. As the aspect ratio
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Figure 5. Plate displacements in the layer at Ra = 8.6 × 106 and d = 0.1 for different values of aspect ratio
Γ1 and Γ2: (a) Γ1 = 2.75, Γ2 = 1.12; (b) Γ1 = 3.05, Γ2 = 1.25; (c) Γ1 = 3.68, Γ2 = 1.50; (d) Γ1 = 4.25,
Γ2 = 1.73; (e) Γ1 = 4.90, Γ2 = 2.00; ( f ) Γ1 = 5.75, Γ2 = 2.35; (g) Γ1 = 6.25, Γ2 = 2.55; (h) Γ1 = 12.5,
Γ2 = 5.10. (Numerical simulations.)

increases, the number of convective cells in the layer increases and the variations of the
mean energy density in the whole layer become less pronounced. The time of wall-to-wall
travel of the plate increases as expected, and the fraction of the plate idle time at the walls
decreases. At Γ1 = 5.76, Γ2 = 2.35 (figure 6b), there is still some correlation between
the bursts of flow energy and vortex motion, but at Γ1 = 12.5, Γ2 = 5.1 (figure 6c), the
fluctuations of the flow energy density become weak and the plate motions do not correlate
with them.

The structure of the velocity field during plate motion in extended cells is illustrated in
figure 7 (for Γ2 = 2.35) and figure 8 (for Γ2 = 5.1). In the first case, approximately five
convective cells (vortices) are generated in the cell and transformed during plate motion.
Thus, when the plate is pressed against one of the side walls, three vortices of similar
sizes are formed in the free part of the cavity, and either one large vortex (figure 7a,c) or
many small ones (figure 7d) are generated above the plate. Despite individual failures, the
periodic motions of the plate remain quite stable.

In the second case, representing the largest value of the aspect ratio considered in the
experiment, the characteristic size of the convective vortex becomes of the order of L/10
(from 9 to 13 vortices can be counted on different panels of figure 8). As mentioned
above, in the experiments, the disk motion in the cavity stopped at Γ2 > 3 – the chain
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Figure 6. Oscillations of the flow energy density E(t) and disc position x0(t) in the box for (a) Γ1 = 3.06,
Γ2 = 1.25, (b) Γ1 = 5.76, Γ2 = 2.35, and (c) Γ1 = 12.5, Γ2 = 5.1. Numerical simulations for Ra = 8.6 × 106

and d = 0.1.

of convective vortices proved to be unable to move the disk in an orderly manner. In the
2-D model, the situation appears to be more stable – the disk ‘breaks through’ the chain of
vortices moving from one edge of the box to the other, although it does not always manage
to travel the whole distance, turning around on one of the intermediate vortices.

The average period of disk motions from one wall to another grows with increasing
layer length, which is expected since the path length grows. The Strouhal number, which
characterizes the dimensionless frequency, correspondingly decreases (see figure 9a). Note
that it is this figure that shows the qualitative differences between the experiment data and
the numerical simulations. First, in 2-D simulations, the Strouhal number is significantly
larger than in the experiment for all values of Γ2. Second, the nature of the dependence of
the Strouhal number on the aspect ratio is also different. In the simulations, at Γ2 < 2, the
Strouhal number is almost constant (i.e. the plate gains approximately the same velocity
and the time period is proportional to the length of the box), while at larger values of

979 A23-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1064


P. Frick and others

(b)

mm s–1

(c)

(d )

(e)

(a)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Figure 7. Same as in figure 3, but for a cell with Γ1 = 5.76, Γ2 = 2.35. The time moments when velocity
fields were recorded are indicated in figure 6(b). See supplementary movie 1 available at https://doi.org/10.
1017/jfm.2023.1064, for a movie of this regime.

Γ2, it gradually decreases (approximately as St ∼ Γ −0.7
2 ). In the experiment, St decreases

rapidly with increasing Γ2. It is worth emphasizing that the presented experimental points
correspond to the whole range of Γ2 values in which the oscillatory modes were observed
and in the whole range, the rate of decline is much higher (approximately St ∼ Γ −2.5

2 ).
The idle time, when the plate stays near the lateral wall, characterizes the relaxation time
of the convective system, during which it restores the basic structure after motion of the
plate. Figure 9(b) shows the dependence of non-dimensional idle time on Γ2. We see that
up to Γ2 ≈ 3, it follows the power law but then at larger Γ2, in the multi-cell regime, the
idle time is independent of the aspect ratio.

In the experiments and numerical simulations described above, both aspect ratios
varied simultaneously with increase of the layer length. Let us, by means of numerical
simulations, show what happens if we increase Γ1 at fixed Γ2 = 1.25, dimensionless plate
height d = 0.1 and Rayleigh number Ra = 8.6 × 106, i.e. consider the regime in which a
stable convective pendulum was observed at Γ1 = 3.06. As can be seen from figure 10,
a twofold reduction of Γ1 to Γ1 = 1.53 fundamentally changes the structure of the flow
and the oscillation mode of the plate. Now, the convective flow consists of two vortices,

979 A23-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1064
https://doi.org/10.1017/jfm.2023.1064
https://doi.org/10.1017/jfm.2023.1064


Rayleigh–Bénard convection with an immersed floating body

(b)

(c)

(d )

mm s–1

(a)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Figure 8. Same as in figure 3, but for a cell with Γ1 = 12.5, Γ2 = 5.1. The time moments when velocity
fields were recorded are indicated in figure 6(c). See supplementary movie 2.
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Ra = 8.6 × 106 and d = 0.1. Black dashed line corresponds to t/tf ∼ 1/

√
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one of which dominates; as a result, the plate, except for the transient stage, oscillates
near one wall. If the layer height is increased by a factor of two, obtaining Γ1 = 0.77, two
competing vortices are preserved, but without a clear predominance of one of them (this
is clearly seen in the mean fields), which leads to non-periodic motions of the plate from
one wall to another (figure 11).

4.3. Variation of the plate immersion depth
Now, we fix the aspect ratio Γ2 = 1.7 and the Rayleigh number Ra = 107 and study using
2-D numerical simulations what happens if the plate immersion depth changes. As we
know, at low plate position (d = 0.1), a regular oscillating mode appears (figure 12a).
At d = 0.2 (figure 12b), the motions become less regular. Most of the time, the plate
oscillates near one wall and makes attempts to travel towards the opposite wall. We see
that only rare attempts are successful, but even in these cases, the disc immediately floats
back. Interestingly, this wall asymmetry persists both in the simulation and experiment.
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Figure 10. Distributions of (a,b) velocity and (c,d) temperature for Γ1 = 1.53, Γ2 = 1.25, Ra = 8.6 × 106

and d = 0.1. (a,c) Instantaneousand (b,d) average fields are shown. Panel (e) presents the displacements of the
plate. (Numerical simulations.)

In the experiment, such asymmetry can be explained by many reasons (imperfection of
heat exchangers, deviation of boundaries from strict horizontality, inaccuracy of horizontal
alignment of the plate itself, etc.), but in simulations, the symmetry is perfect.

At higher position (d = 0.3–d = 0.4, see figure 12c,d), the ‘coasting’ of the plate
becomes more prolonged while the distant drifts are more rare. The solutions defining the
structure of flows in the considered system are symmetric with respect to the immersion
depth d = 0.5, i.e. the approach of the plate to the upper or lower heat exchangers leads
to similar dynamics. This is confirmed by the results of simulations for the plate floating
near the upper boundary (d = 0.875), shown in figure 12( f ).

Note that the symmetric boundary conditions can lead to the idea that the plate motions
should cease at d → 0.5. It was these arguments that limited the experiments to relatively
small values of d in the first study of Popova & Frik (2003). However, at d = 0.5, the
intensity of coasting decreases, but the plate continues to travel from one edge to the other
(figure 12e). It means that symmetry arguments should be used carefully for predicting
the behaviour of convective systems. Convective flows are not purely symmetric because
ascending (descending) convective jets evolve along their path providing vertical and
horizontal asymmetry.
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Figure 11. Same as in figure 10 but for Γ1 = 0.77, Γ2 = 1.25, Ra = 8.6 × 106 and d = 0.1.

Motivated by results of numerical simulations, we returned to experiments at large d
and found that even at d = 0.5, the movements exist. The disk travels from one edge to
the other are very rare and not so regular as in numerical simulations, but they do occur
(figure 13).

As the plate moves away from the bottom and approaches the central plane, the flow
structure becomes more complex because the plate destroys the dominant vortices of the
H layer thickness scale, and facilitates an active interaction of the vortices that are formed
above, below and at a distance from the plate. The exact structure of the flow depends on
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Figure 12. Plate displacements in the layer at Ra = 107 and Γ2 = 1.73 for different plate immersion depth d:
(a) d = 0.1; (b) d = 0.2; (c) d = 0.3; (d) d = 0.4; (e) d = 0.5; ( f ) d = 0.875. (Numerical simulations.)
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Figure 13. Disk displacements in the layer at Ra = 107 and Γ2 = 1.73 for different disk immersion depth d:
(a) d = 0.1; (b) d = 0.3; (c) d = 0.5. (Experiment.)

the aspect ratios Γ1 and Γ2. We show in figure 14 some examples of two velocity field for
d = 0.4 and d = 0.5 (Ra = 107 and Γ2 = 1.73).

At d = 0.4, the plate is almost all the time in the state of ‘coasting’ near the right
border of the cavity, with small-amplitude irregular oscillations and rare excursions to
the left wall. Hence, the plate motion practically does not affect the sufficiently stable
vortex existing at the opposite wall. When the plate moves slightly away from the wall, an
upward flow of hot liquid rushes into the resulting gap, intensifying the vortex structure
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Figure 14. Examples of the flow structure in the layer at Ra = 107 and Γ2 = 1.73 for plate immersion depth
(a,b) d = 0.4 and (c,d) d = 0.5.

above the plate. The descending fluid flow on the left supports the vortices under the plate
(figure 14b).

The mechanism of rather regular plate motions observed in numerical simulations at
d = 0.5 remains unclear. When the plate is near the wall, there are quite a lot of vortices
of different signs above and below it. Although the total effect of which is assumed to be
weak, it is sufficient to carry the plate away from the wall rather quickly (figure 12). As
the plate moves, a circular flow is formed around it. In general, the viscous effect of this
flow should be weak, since the forces under and above the plate have opposite directions
(figure 14d). Nevertheless, the plate traverses the entire cavity quite confidently, reaching
in most cases the opposite wall.

4.4. Variation of the Rayleigh number
The Rayleigh criterion includes the scale of degree three, i.e. it is very sensitive to the
characteristic scale, and is unambiguously determined in problems having, in general,
a single characteristic scale (the thickness of an infinite fluid layer in the classical
Rayleigh–Bénard problem). In closed cavities, different geometrical parameters (aspect
ratios) appear, which is the reason why the Rayleigh number ceases to be a universal
governing parameter. This is exactly the case for the problem under consideration, in which
the change in the layer thickness while maintaining the complete geometric similarity
requires a proportional change in both the box length and the floating plate dimensions.

In the experiment, a significant increase in the Rayleigh number is most readily achieved
by increasing the thickness of the layer H, but the study of the dependence of the flow
behaviour on the Rayleigh number while maintaining full geometric similarity is rather
difficult and we restrict ourselves to a numerical study of the dependence of the flow
character on Ra at a given geometry. Numerical experiments were performed at fixed
geometry Γ1 = 4.25 and Γ2 = 1.73 in the range of the Rayleigh number 106 ≤ Ra ≤
8 × 107. Different depths of plate immersion d = 0.1, 0.2, 0.3 and 0.4 were considered.

The oscillograms of the plate motion for three vertical positions and four values of the
Rayleigh number are shown in figure 15. For plate motions near the bottom (d = 0.1),
weak heating (Ra � 107) leads to regular periodic modes, which are described in detail
in § 4.1. As the Rayleigh number increases, the oscillatory motions of the plate cease to
be harmonic, but the plate executes sufficiently steady motions from one edge of the box
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Figure 15. Plate displacements in the layer at Γ1 = 4.25 and Γ2 = 1.73 for three plate immersion
depths: (a,d,g, j) d = 0.1; (b,e,h,k) d = 0.2; (c,f,i,l) d = 0.4, and for different Rayleigh numbers (a,b,c)
Ra = 5.0 × 106; (d,e, f ) Ra = 1.0 × 107; (g,h,i) Ra = 2.0 × 107 and ( j,k,l) Ra = 8.0 × 107. (Numerical
simulations.)

to the other. At the maximum value of the Rayleigh number under consideration (Ra =
8 × 107), the regular motions from one edge to the other are broken, being interrupted by
small-amplitude oscillations of the plate at one wall.

At d ≥ 0.2 (the figure shows the results for d = 0.2 and d = 0.4) and weak heating
(Ra � 5 × 106), the plate is pressed against one wall, moving away from it to insignificant
distances. At Ra ≈ 107 along with the oscillations near the wall, isolated excursions
appear (sometimes reaching the opposite wall) after which it returns to the same wall.
At Ra ≈ 2 × 107, the asymmetry of motions (possibly caused by the fact that the cavity
retains a large-scale vortex of the same sign) is broken – motions from one wall to another
are interspersed with local small-amplitude oscillations at one or the other wall. Further
growth of the Rayleigh number does not fundamentally change the character of plate
motions.

It is worth noting that in the experiments at small d, the periodic motions are also
observed (although the periodicity of the motions is significantly different, see § 4.1).
For large d, the accumulated experimental data do not allow us to draw unambiguous
conclusions about the dependence of the character of the disc motions on the Rayleigh
number. Note that according to Popova & Frik (2003), at d > 0.15 and Ra ≈ 107, there is
a stagnation zone, in which the disc does not float. Our experiments have shown that the
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Figure 16. (a) Reynolds number and (b) Nusselt number as functions of the aspect ratio Γ2 at
Ra = 8.6 × 106 for the plate floating at d = 0.1 (blue circles). Corresponding values for the Rayleigh–Bénard
convection without the plate are shown by green squares. Since the parameter Γ2 can not be used in the case of
RBC, we show the value of the parameter Γ1 at the upper bound of each panel.

arising modes are rather unstable and even at the same values of the governing parameters,
the disk in one experiment can demonstrate rather intense movements, while in the other
experiment, it can stick to the wall and not move at all.

4.5. Influence of moving immersed body on heat transfer
The horizontal plate blocks the vertical motion and heat flux, so it is reasonable to assume
that as Γ2 increases, for fixed values of the Rayleigh number and the height at which the
plate is located, the Reynolds and Nusselt numbers, which characterize the intensity of
convective flow and heat flux, should also increase. Figure 16(a) shows the dependence
of the Reynolds number, calculated from the numerical data using (2.4), on the aspect
ratio Γ2. For comparison, we show the Reynolds number values for Rayleigh–Bénard
convection in the cavity of the same size but without a plate. In the absence of the plate,
the Reynolds number is weakly dependent on the aspect ratio, decreasing slightly for
small values of Γ . The plate significantly reduces the intensity of the convective flow
– at the minimum considered, Γ2 = 1.14, the Reynolds number in the cavity with the
plate is almost three times smaller than that in the free cavity. In the elongated cavity, this
difference decreases and for largest Γ2, it is less than 10 %. The Nusselt number behaves
in a similar way (figure 16b). It should be noted that the scaling exponent in the relation
Nu ∼ Raβ for classical Rayleigh–Bénard convection is less than ‘1/3’ up to relatively high
values of Rayleigh number (∼ 1010) (Ahlers et al. 2009; Chillà & Schumacher 2012).
It means that there is a weak dependence of Nusselt number on the flow structure even
in Rayleigh–Bénard turbulent convection. Here, we see that transformation of the flow
structure with Γ1, for a 2-D Rayleigh–Bénard convection without floating plate, leads to
weak changes in Nusselt number, which is in a good agreement with van der Poel et al.
(2012) and Wang et al. (2020).

As shown by Vasiliev et al. (2022), in the case of a fixed heat-insulating plate, the heat
flux variation characterized by the ratio Nu/Nu0 (Nu0 is the Nusselt number in the case of
Rayleigh–Bénard convection without the plate) depends significantly on the plate height
for fixed values of Rayleigh number and the aspect ratio. Qualitatively, the results for the
moving plate agree well with those of Vasiliev et al. (2022). The Nusselt number grows
with increasing distance from the plate to the bottom at a fixed Rayleigh number and with
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Figure 17. (a) Nusselt number as a function of the Rayleigh number for different depths of the plate immersion,
black dotted line corresponds to Nu ∼ Ra0.27 and blue dotted line to Nu ∼ Ra0.33. (b) Normalized Nusselt
number versus the plate immersion depth for different Rayleigh number. Here, Nu0 is the Nusselt number for
Rayleigh–Bénard convection without the plate Γ1 = 4.25, Γ2 = 1.73.

increasing Rayleigh number at a fixed vertical position (figure 17). The reason for the
increase in the Nusselt number in both cases is the change in the distance of the plate from
the temperature boundary layer. If the ratio h/δT increases (δT ∼ H/2Nu – the average
thickness of the temperature boundary layer), the plate has a weaker effect on δT and heat
injection into the layer.

In the case of increase in the plate height, there is an immediate growth of h/δT , as well
as in the case of Rayleigh number increase – due to the decrease of δT . It should be noted
that the plate motion, even though it has no appreciable effect on the Nusselt number (total
heat flux), significantly affects the structure of the flow. Therefore, a weak change in the
Nusselt number (integral characteristic) can be accompanied by appreciable variations in
the spatial distribution of the heat flux. To illustrate the influence of the heat-insulating
floating plate on the temperature distribution, we present the instantaneous temperature
fields for different d (figure 18). When the gap between the plate and the hot bottom is
small (d = 0.1), the fluid circulation under the plate is weak. As a result, the fluid under
the plate heats up and the vertical temperature gradients become relatively small, which
means that the heat flux is effectively suppressed. It can also be seen that the overheated
fluid moves with the plate. When the gap is increased (d = 0.2), the circulation under
the plate becomes more intense. The appearance of small-scale structures under the plate
shows that a thin thermal boundary layer has been already formed near the bottom and
heat flux under the plate is increased. When the plate is located in the middle of the layer
(d = 0.5), it has a strong influence on the flow structure and temperature distribution in
the bulk of the fluid, but has only a weak influence on the temperature boundary layers
near the top and bottom.

Figure 19 presents the averaged vertical temperature profiles in the cell with Γ2 = 1.73.
The cell is short and the central part of the bottom is always under the plate. At d = 0.1,
the fluid under the plate is fully heated, while at d ≥ 0.2, the boundary layer remains well
pronounced even at the centre. The second set of temperature profiles is drawn for the line
x = 0.2L1, where the boundary layer can be recognized at any d.

The Reynolds number that characterizes the intensity of the flow also grows with the
Rayleigh number, according to the power law Re ∼ Ra0.58 (figure 20). As it was mentioned
earlier, the plate significantly affects the heat flux if h/δT � 10. Here, it is evident that for
all vertical positions, the plate has a weak effect on the value of Re. Thus, a significant
change in the flow structure does not lead to appreciable variations in the flow energy.
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Figure 18. Instantaneous temperature fields for different d: (a,b) d = 0.1; (c,d) d = 0.2; (e, f ) d = 0.5. Here,
Ra = 1 × 107, Γ1 = 4.25, Γ2 = 1.73. The arrow shows the plate motion direction.
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Figure 19. Time-averaged vertical profiles of non-dimensional temperature Θ = (T − Tc)/�T at
(a) x = 0.5L1 and at (b) x = 0.2L1 for Γ1 = 4.25, Γ2 = 1.73 and Ra = 8.6 × 106.

5. Discussion and conclusions

In this paper, we have studied turbulent thermal convection in a confined volume
containing an extended free-floating body. Obviously, such a system, with an arbitrary
geometry of the cell and a body floating in the fluid, can exhibit a wide range of regimes,
differing in the structure of arising convective flow, and the dynamics of the immersed
body and its influence on the heat and mass transfer in the cavity. For this reason, we
have confined ourselves to a more academic example, and have studied experimentally
and numerically the problem of convection in a rectangular cell heated from below, in
which a thin plate is placed at a certain height so that it can be carried by the flow without
changing its vertical location. To be precise, the problem of Rayleigh–Bénard convection
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Figure 20. (a) Reynolds number as a function of the Rayleigh number for different plate immersion depth,
black dotted line corresponds to Re ∼ Ra0.58. (b) Normalized Reynolds number versus the plate immersion
depth for different Rayleigh numbers. Here, Re0 is the Reynolds number in the case of Rayleigh–Bénard
convection without the plate. Γ1 = 4.25, Γ2 = 1.73.

in a length- and width-limited box with a thin horizontal heat-insulating plate that can
move freely in a strictly horizontal direction (i.e. it has only one degree of freedom).

The experiments and numerical simulations show that the presence of a free-flowing,
thermally insulating, horizontally extended plate in a horizontal layer of fluid heated
from below and cooled from above significantly affects the structure of the flow and
fundamentally changes its temporal dynamics. The drift of the plate in the considered
system is caused by the convective flow, which provides a non-zero integral value of
viscous stresses at the plate surface. By varying the values of control parameters, such
as the Rayleigh number, aspect ratio and vertical position of the plate, one can obtain a
wide range of possible modes, from immobile and purely periodic to stochastic.

The simplest mode occurs when heating is moderate, the box is not too extended and the
plate floats in the vicinity of the thermal boundary layer. Then, the plate performs regular
movements from one edge of the box to the other and the system works as a ‘convective
pendulum’.

The domain of the ‘convective pendulum’ mode is confined in the parameter space, but
there is no sharp transition from one mode to another, which does not allow us to specify
the exact boundary of this domain. We have explicitly examined the dependence of this
mode on the aspect ratio (relative length of the box), the Rayleigh number and the relative
immersion depth (vertical location of the plate).

First of all, it should be noted that stable periodic motions arise when a body floats
close to one of the heat exchangers (small d). This fact was ascertained already in the
first experimental study of such a system (Popova & Frik 2003). Our experiments and
numerical simulations confirm this conclusion and show that as the distance between the
plate and the heat exchanger increases, the role of vortices formed in the space beneath the
plate becomes increasingly more noticeable and the character of the plate motion becomes
more complex. Both the experiments and the numerical simulations show that an increase
in d breaks periodical plate motion and leads to obvious asymmetry, when the plate
stays close to one wall most of the time, makes rare attempts to reach the opposite wall
and returns immediately. In the experiment, such asymmetry can be explained by many
reasons (imperfection of heat exchangers, deviation of boundaries from strict horizontality,
inaccuracy of horizontal alignment of the plate itself, etc.), but in the simulations, the
symmetry is perfect and therefore it can be considered an intrinsic feature of the described
system.
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Second, a stable periodic regime occurs at moderate heating (Rayleigh number). At
small d, neither experiment nor numerical simulation has ascertained the lower boundary
of periodic modes (minimal Rayleigh number) – the plate motions become so slow that the
reliable determination of the period of movements requires experiments, which will last
several days and are hardly feasible. Note that for moderate Rayleigh numbers and fixed
aspect ratio, the frequency of disk oscillations depends linearly on the Rayleigh number
(Popova & Frik 2003), similar to periodic oscillations of a float on the surface, studied
by Zhang & Libchaber (2000). At d � 0.2 and small Rayleigh numbers (Ra � 107), the
plate motions are not observed at all. An increase in the Rayleigh numbers causes the
plate to perform movements from one edge of the box to the other, but they always have
an irregular character.

As for the dependence on the geometry of the box (more precisely on the ratio of its
length to the dimensions of the body described by the aspect ratio Γ2), both lower and
upper limits of periodic plate motions were found in the experiments. In our experiments,
the periodic mode was observed in the range 1.53 � Γ2 � 3. In numerical simulations
at d = 0.1, stable periodic motions were established at smaller box lengths, namely, at
Γ2 ≥ 1.25, and no upper limit was set – the periodic mode was observed even at the
largest considered value Γ2 = 5.1. In the experiments at large aspect ratios, the periodic
motion of the disk begins to break down and at Γ2 � 3, the disk reaches one of the cell
edges and remains there until the end of the experimental run. In contrast, in the numerical
simulations, the plate moves quasi-periodically through the chain of vortices of different
signs even at the largest aspect ratio being considered.

A quantitative characteristic of the periodic motion of a body in a convective system is
the oscillation period or the dimensionless Strouhal number associated with it. It is the
dependence of the Strouhal number on the aspect ratio that shows a significant difference
between the results of numerical simulations and the results of laboratory experiments.
As the aspect ratio increases, the Strouhal number decreases. Note that the experiments
give a power dependence with an exponent of the order of −2.5, whereas the numerical
simulations give a much weaker dependence, namely, an exponent of −0.7.

The observed differences between the results of experimental and computational studies
can be explained by a significant simplification of the problem when changing to a
2-D description. First, the dynamics of 2-D turbulent flow is fundamentally different
from the dynamics of 3-D turbulent flow. Second, the quantitative characteristics may
be influenced by the specifics of the implementation of the submerged floating body
experiment. The shape of the plate (disk in experiments and rectangular plate in 2-D
numerical simulations) may lead to different plate behaviour near the sidewalls, since a
rectangular plate completely blocks the vertical flow near the sidewall, while in the case
of a disk plate, gaps remain in the corner regions. This could be one possible source of
the observed discrepancies between experiments and 2-D modelling. To better understand
the fundamental differences between 2-D and 3-D flows, and the role of the plate shape, it
is necessary to perform 3-D modelling (in which direct contact of the plate with the side
walls can be excluded) with rectangular and disk plates.

The heat-insulating plate, as expected, reduces the integral heat flux, but the effect of the
plate on the heat flux is highly dependent on its vertical position. The plate with the size
close to half the layer length (D = 0.53L) significantly reduces the integral heat flux when
the gap between the plate and the bottom is comparable with the thickness of the thermal
boundary layer h ∼ δT . An increase of the ratio h/δT due to a change of the plate location
or an increase of the Rayleigh number (δT decreases with Ra) substantially reduces the
heat-insulating effect of the plate. The plate drift due to a remarkable impact on the flow
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structure considerably affects the distribution and temporal variation of the vertical heat
flux. At the same time, despite significant changes in the flow structure, the plate has very
little effect on the mean flow energy in the layer.

Finally, we can conclude that Rayleigh–Bénard convection with an immersed
free-floating body is a complex system demonstrating behavioural diversity. The
convective pendulum regime can have technological applications, for example, as a
convective mixer. Free-floating objects of various sizes and shapes are commonly
encountered in industrial and geophysical systems, and can cause remarkable changes in
flow dynamics and heat and mass transfer. We have shown that a change in each parameter,
even in the relatively simple academic statement, can have a strong influence on the flow
structure and the dynamics of the immersed plate. Therefore, it is hardly possible to study
the whole variety of the observed regimes. We expect that future studies of this system
will focus on configurations that have practical or fundamental importance.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1064.
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