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Abstract

In this paper we consider how much we can say about an irreducible symmetric space M which admits
a single hypersurface with at most two distinct principal curvatures. Then we prove that if N is
conformally flat, then N is quasiumbih'cal and M must be a sphere, a real projective space or the
noncompact dual of a sphere or a real projective space.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 40, 53 C 35, 53 A 30.

Recently, the following problem was proposed by B. Y. Chen and L. Verstraelen
[3]: if we assume that an irreducible symmetric space M admits a single submani-
fold with a particular property, how much can we say about the ambient space?
With respect to this problem, the author showed in [4] the following: (1) If M
admits a (connected) locally symmetric hypersurface N (dim N > 3) with at most
two distinct principal curvatures, then M must be a sphere, a real projective
space, or the noncompact dual of a sphere or a real projective space. (2) If an
irreducible symmetric space M admits an Einstein hypersurface N (dim N ^ 3)
with at most two distinct principal curvatures, then M must be of rank 1.

The purpose of this paper is to prove the following:

THEOREM. If an irreducible symmetric space M admits a conformally flat hyper-
surfaced N (dim N > 4) with at most two distinct principal curvatures, then M must
be a sphere, a real projective space, or the noncompact dual of a sphere or a real
projective space.
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It is well-known that an w-dimensional (n > 4) hypersurface N in a sphere, a
real projective space, or the noncompact dual of a sphere or a real projective
space is conformally flat if and only if it is quasiumbilical (see [1] for instance).
Hence, we know that: A conformally flat hypersurface N (dim JV > 4) with at most
two distinct principal curvatures in an irreducible symmetric space is quasiumbilical
(see Theorem 8.1 of [3]).

1. Symmetric spaces and basic formulas

Let M be a connected Riemannian symmetric space. As usual if G denotes the
closure of the group of isometries generated by an involutive isometry for each
point of M, then G acts transitively on M; hence the isotropy subgroup H, say at
0, is compact and M = G/H. Let @, § denote the Lie algebras corresponding to
G, H, respectively. Then we call

© = $ + 2fl, and $ = [3#, m]
by the Cartan decomposition. It is well-known the space Tt consists of the Killing
vector field X whose covariant derivative vanishes at 0; in particular, the
evaluation map at 0 gives a linear isomorphism of 9ft onto T0M: X *-* A^O).
Hence we have

LEMMA 1.1. For the curvature tensor RatO

R(X,Y)Z=-[[X,Y],Z] forX,Y,ZeWl.

LEMMA 1.2. A linear subspace L of the tangent space T0M to a symmetric space
M is the tangent space to some totally geodesic submanifold N of M if and only if L
satisfies the condition [[91, 31], 9i] c 5R, where

m= {XeW; X(0)<=L).

Next, let N be a hypersurface of an (n + l)-dimensional Riemannian manifold
M. And let V and V' be the covariant differentiations on M and N, respectively.
Then the second fundamental form A of the immersion is given by
(1.1) vxY=VxY

(1.2) Vxl=
for vector fields X, Y tangent to N and a unit vector field £ normal to JV, where g
is the metric tensor of JV induced by the immersion from the metric tensor g of M.
The equations of Gauss and Codazzi are then given respectively
(1.3) R'(X, Y; Z, W) = R(X, Y; Z, W) + g(AY, Z)g(AX, W)

-g{AX,Z)g{AY,W),
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(1.4) R(X, Y; Z, 0 = g((VxA)Y, Z) - g((VYA)X, Z),

for vector fields X, Y, Z, W tangent to N and £ normal to N, where R and R' are
the curvature tensors of M and N, respectively, and R(X, Y; Z, W) =
g(R(X,Y)Z,W).

The following result is basic:

LEMMA 1.3 (CHEN & NAGANO [2]). If an irreducible symmetric space M admits a

totally geodesic hypersurface, then M must be a sphere, a real projective space, or
the noncompact dual of a sphere or a real projective space.

2. Proof of Theorem

Let N be a hypersurface in M and Ex,... ,En be an orthonormal basis of TXN,
x G N. Then the Ricci tensor S" of N satisfies

(2.1) S'(Y, Z) = £ R'(E,, Y; Z, Et)
i-i

= S(Y, Z) - R{£, Y; Z, t) + trace^(^y, Z) - g(A2Y, Z)

for Y, Z G TXN, where S denotes the Ricci tensor of M.
We suppose that there is a point x0 at which two principal curvatures a, /? are

exactly distinct. Then we can choose a neighborhood U of x0 on which a ¥= f$. We
put Ta = { X e TU\AX = aX} and Tp = { X e TU\AX = 0 * } . Then the equa-
tion (2.1) gives

(2.1)' S'(Y,Z) = S(Y,Z)-RU,Y;Z,Z)

+ (pa +(n- p)P)g(AY, Z) - g(A2Y, Z),

where p denotes the multiplicity of a. Thus the scalar curvatures p' and p of N
and M satisfy

(2.2) p'=t S'(Elt Et)

= p - 2 5 ( | , $)+(pa+{n- p)fi)2 -(pa2 +(n - p)fi2)

= ^ \ p +P(P~ 1)«2 + 2p(n - p)afi + (it - p){n - p - 1)02,

where the last equality holds since M is Einsteinian. Now, by the assumption that
N is conformally flat, the Weyl conformal curvature tensor of iV vanishes. Thus
by (2.1)' and (2.2), we see that the curvature tensor R of M satisfies
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(2.3)

(n - 2){R(X, Y; Z, W) + g(AX, W)g(AY, Z) - g(AX, Z)g(AY, W)}

= g(Y, W){R(L X; Z, f) -(pa + (n -p)fi)g(AX, Z) + g(A2X, Z)}

-g(X,W){R(£,Y; Z, £)X -(pa +(n - p)p)g(AY, Z) + g(A2Y, Z)}

+ g(X,Z){R(Z,Y;W,i)-(pa+(n - p)fl)g(AY,W) + g(A2Y,W)}

-g(Y, Z){R(£, X; W,£) -(pa +(n - p)P)g(AX,W) + g(A2X,W)}

^ , Z ) - g(X,Z)g(Y,W)}

n-p)ap +(n-p)(n-p-

• {g(X, W)g(Y, Z) - g(X, Z)g(Y, W)}

for X, Y, Z, W tangent to N.
Let X, Y, Z, W and T be vector fields tangent to N. By differentiation of (2.3)

with respect to T, we may obtain, after a straightforward computation, that
(2.4) (n - 2){g(AT, X)R(W, Z; Y, £) + g(AT, Y)R(Z, W; X, £)

+ g(AT, Z)R(Y, X; W, | ) + g(AT, W)R(X, Y; Z, £)

+g((VTA)g(AY,Z) - g((v'TA)X,Z)g(AY,W)

+ g(AX,W)g((v'TA)Y,Z) - g(AX,Z)g((v'TA)Y,W)}

= g(Y,W){-R(AT,X;Z,i)

-R(£, X; Z,AT) -(pTa +(n - p)Tfi)g(AX, Z)

-(pa +(n-p)P)g((v'TA)X, Z) + g((v'TA2)X, z)}

-g(X, W){-R(AT, Y; Z, £) - R(£, Y; Z, AT)

-(pTa+(n-p)TP)g(AY,Z)

-(pa +(n-p)fi)g((v'TA)Y, Z) + g((v'TA2)Y, Z)}

+ g(X,Z){-R(AT,Y;W,£)

-R(i,Y;W, AT) -(pTa +(n - p)T{i)g(AY,W)

-(pa +(n -p)fi)g((v'TA)Y,W) + g((v'TA2)Y,W)}

-g(Y,Z){-R(AT,X;W,i)

-R(t, X; W,AT) -(pTa +(n - p)Tp)g(AX,W)

-(pa+(n-p)P)g((v'TA)X,W)+g{(v'TA2)X,w)}

^ Ta/3 +(n-p)(n-p-

•{g(X,W)g(Y,Z)- g(X,Z)g(Y,W)}.
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If X, Y, Z, W are vectors in Ta such that X = W, Y = Z and X, Y are
orthonormal, then by (1.4) and (2.4) we find
(2.5)

(« - 2){2aXag(T, X) + 2aXag(T, Y) + 2aTa)

+ aYag{T, Y) + g((al - A)v'YY, AT)

+ aXag(T, X) + g((al - A)v'xX, AT)

-(pTa +(« - p)T/3)a -(pa +(n - p)0)Ta + Ta1}

T<*2 + 2p(n-p)TaP+(n-p)(n-p-

In particular, for X = T, (2.5) implies

(2.6) 4(n-2)aXa = -2{-(2p - l)aXa -(n - p)0Xa - ( « - p)aX0}

^ - l)aXa + 2p(n - p)£Xa

2p(n -p)aXP + 2{n - p)(n - p -

Let T = X, W = a in Tfi and Y, Z in Ta be orthonormal vectors. Then (2.4)
gives

(2.7) -(/i - 2)fi(fi - a)g( v'zu>, Y) = 0

for orthonormal vectors Y, Z in Ta. By linearization, we find

(2-8) P{g(v'r<*,Y)-g(V'z<*,Z)}=0

for orthonormal vectors Y, Z in Ta. Similarly, we have

(2-9) ag (v ; i ^ ,« 2 ) = 0,

(2.10) a{g{v'uX,Ul)-g(v'U2X,U2)}=0

for X in Ta and orthonormal vectors wx, w2 in 7^.
Let y = W, ZvnTa be orthonormal vectors and T = w1; A' = w2 unit vectors in

Tp. Then (2.4) gives

(2.11)

(n - 2){-Pg(au u2)Za - a(a -

= -p(a -

-P(a - P)g(VuZ, «2) +

uZ, «2) +(a2 -
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For unit vectors Y = W = <oo in 7^, Z in Ta, and T = w^ X = w2 in 7̂  which are
perpendicular to w0

(2.12)

(n - 2){-/8g(Wl, «2)^8 + fi(a - p)g(ult <*2)g{v'uZ, <oo)

-fi(a -

-(pa +(n-p)fi)(a - P)g(VaZ,w2) +(a2 - 02)g( V̂  Z, «2).

Subtracting (2.12) from (2.11), we obtain

(2.13) a{(-PZa + pZfi)g(olt «2) - a(a - )8)g( v'aZ, <o2)}

Putting <ox = «2
 a n d using (2.10), we find

(2.13)' a{-pZa + pZp - al.g( VaZ, «x)} = 0

Let Zj , . . ..AT ,̂ w1,...,wn_/, be an orthonormal basis of TxiV such that X1,...,A
r
;,

(resp. « ! , . . . , « „ ) forms an orthonormal basis of Ta (resp. 7^). Since M is
Einstein, we have

(2.14) = £ *(*,., Jfy; Jfy, t) + E
7 - 1 A - l

= ̂ (a +(n-p)X,p-(n-p)(a -

using (2.10) for all /, k. From (2.13)' and (2.14) we obtain

(2.15) a{(pa +(n-p)p)Xia +(n - p)(a - p)Xtp} = 0.

Now, we assume that dim Ta > 3. Let X, Y = Z, T = Ŵ  be orthonormal
vectors in Ta. Then (2.4) gives

(2.16) (R - l)aXa = 0.

If a # 0, then from (2.6) we obtain (n — p — 1X« - P)XP = 0- Since we may
assume p # n - 1, we have XP = 0. Therefore from (2.9), (2.10) and (2.13)' we
obtain g(V'uZ, w2) = 0 for all av a2 in T0. If a = 0, then (2.6) gives Xp = 0.
Then (2.11) and (2.12) imply

(2.11)' P2{(n -p + l)g( v : Z, «2) - g( v:2Z, «x)} = 0
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(2.12) '

Putting «! = w2 in (2.12)', we have

for orthonormal vectors w0, wx in 7 .̂ Combining (2.14) and (2.17), we obtain
g( V^Z, u) = 0 for all u in Tp. By hnearization, we find

Summing up (2.11)' and (2.18), we have

( « - J p + 2)g(v: iZ,W 2) = 0,
that is,

g(v: iZ,w2) = 0

for all Wj, «2 in 7 .̂ If dim Jn = 2, then we have only to show Xa = Xfi = 0 for all
unit vectors Jf in 7],, since we can make use of the above argument. Then from
(2.6) and (2.15)

(2.19) a{(2a + (« - 2)fi)X,a +(» - 2)(a - fi)X,0) = 0

(2.20)

{(2«2 - 9« + 9)o - ( » - 2)(« - 3)/8}A;.a - ( « - 2)(n - 3)(o - / S ) ^ = 0.

Hence we obtain Xta = Xtfl = 0. Therefore we have R(X, Y; Z, £) = 0 for all X,
Y, Z in 777. From Lemmas 1.1, 1.2 and 1.3 we obtain the conclusion.
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