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Abstract

In this paper we consider how much we can say about an irreducible symmetric space M which admits
a single hypersurface with at most two distinct principal curvatures. Then we prove that if N is
conformally flat, then N is quasiumbilical and M must be a sphere, a real projective space or the
noncompact dual of a sphere or a real projective space.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 40, 53 C 35, 53 A 30.

Recently, the following problem was proposed by B. Y. Chen and L. Verstraelen
[3]: if we assume that an irreducible symmetric space M admits a single submani-
fold with a particular property, how much can we say about the ambient space?
With respect to this problem, the author showed in [4] the following: (1) If M
admits a (connected) locally symmetric hypersurface N (dim N > 3) with at most
two distinct principal curvatures, then M must be a sphere, a real projective
space, or the noncompact dual of a sphere or a real projective space. (2) If an
irreducible symmetric space M admits an Einstein hypersurface N (dim N > 3)
with at most two distinct principal curvatures, then M must be of rank 1.
The purpose of this paper is to prove the following:

THEOREM. If an irreducible symmetric space M admits a conformally flat hyper-
surfaced N (dim N > 4) with at most two distinct principal curvatures, then M must
be a sphere, a real projective space, or the noncompact dual of a sphere or a real
projective space.
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It is well-known that an n-dimensional (n > 4) hypersurface N in a sphere, a
real projective space, or the noncompact dual of a sphere or a real projective
space is conformally flat if and only if it is quasiumbilical (see [1] for instance).
Hence, we know that: A conformally flat hypersurface N (dim N > 4) with at most
two distinct principal curvatures in an irreducible symmetric space is quasiumbilical
(see Theorem 8.1 of [3)).

1. Symmetric spaces and basic formulas

Let M be a connected Riemannian symmetric space. As usual if G denotes the
closure of the group of isometries generated by an involutive isometry for each
point of M, then G acts transitively on M; hence the isotropy subgroup H, say at
0, is compact and M = G/H. Let &, £ denote the Lie algebras corresponding to
G, H, respectively. Then we call

G=9+M, and $=[M, M]
by the Cartan decomposition. It is well-known the space M consists of the Killing
vector field X whose covariant derivative vanishes at 0; in particular, the
evaluation map at O gives a linear isomorphism of It onto TyM: X — X(0).
Hence we have

LEMMA 1.1. For the curvature tensor R at 0
R(X,Y)Z=-[[X,Y), Z] forX,Y,Ze M.

LEMMA 1.2. A linear subspace L of the tangent space TyM to a symmetric space
M is the tangent space to some totally geodesic submanifold N of M if and only if L
satisfies the condition [[R, N], N] € RN, where

N={XeM X0)eL}.

Next, let N be a hypersurface of an (n + 1)-dimensional Riemannian manifold
M. And let v and V¥’ be the covariant differentiations on M and N, respectively.
Then the second fundamental form A of the immersion is given by
(1.1) VxY = VY + g(4X,Y)§,

(1.2) Vb = —AX,
for vector fields X, Y tangent to N and a unit vector field £ normal to N, where g
is the metric tensor of N induced by the immersion from the metric tensor g of M.
The equations of Gauss and Codazzi are then given respectively
(1.3) R(X,Y;ZW)=R(X,Y; Z,W) + g(AY, Z)g(AX, W)

_g(AX’ Z)g(AY’ W)a
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(1.4) R(X,Y; Z,§) = s((vxA)Y, Z) - g((vy4) X, Z),

for vector fields X, Y, Z, W tangent to N and £ normal to N, where R and R’ are
the curvature tensors of M and N, respectively, and R(X,Y; Z, W) =

g(R(X,Y)Z,W).
The following result is basic:

LEMMA 1.3 (CHEN & NAGANO [2)). If an irreducible symmetric space M admits a
totally geodesic hypersurface, then M must be a sphere, a real projective space, or
the noncompact dual of a sphere or a real projective space.

2. Proof of Theorem

Let N be a hypersurface in M and E,,...,E, be an orthonormal basis of T, N,
x € N. Then the Ricci tensor S’ of N satisfies

(21) S(Y.Z)= Y R(E,Y: Z, E)

i=1
=S8(Y,Z) - R(§,Y; Z, £) + trace Ag(AY, Z) — g(A%Y, Z)

for Y, Z € TN, where S denotes the Ricci tensor of M.

We suppose that there is a point x, at which two principal curvatures a, 8 are
exactly distinct. Then we can choose a neighborhood U of x, on which a # 8. We
put T, = {X € TU|AX =aX} and Ty = { X € TU|AX = BX}. Then the equa-
tion (2.1) gives

(2.1) S(Y,Z)=S(Y,Z)-R(¢,Y;Z,¢)
+(pa +(n-p)B)g(A4Y, Z) - g(4%Y, Z),

where p denotes the multiplicity of a. Thus the scalar curvatures p’ and p of N
and M satisfy

(22) o = ¥ S(E, E)

i=1

= p—25(£, &) +(pa +(n —p)B) —(pa® +(n — p)B?)

=2 —2p+p(p—1Da’+2p(n—p)a +(n—p)(n—p—-1)B

where the last equality holds since M is Einsteinian. Now, by the assumption that
N is conformally flat, the Weyl conformal curvature tensor of N vanishes. Thus
by (2.1Y and (2.2), we see that the curvature tensor R of M satisfies
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(2.3)

(n—2){R(X,Y; Z,W) + g(AX,W)g(AY, Z) — g(AX, Z)g(AY,W))

= g(Y,W){R(¢& X; Z,8) —(pa +(n —~ p)B)g(4X, Z) + (47X, Z)}

—g(X,W){R(£,Y; Z,£) X —(pa +(n — p)B)g(AY, Z) + g(4*Y, Z)}
+8(X, Z){R(&,Y; W, &) —(pa +(n — p)B)g(AY, W) + g(A’Y, W)}
—g(Y, Z){R(&, X; W, §) —(pa +(n — p)B)g(AX, W) + g(A*X, W)}
+ =L {e(x,W)g(Y, 2) - g(X, Z) (v, W))

n+1

L (p(p = Ve +2p(n — p)a +(n - p)(n - p ~ §?)

{g(X,wW)g(Y, Z) - g(X,Z)g(Y, W)}

for X, Y, Z, W tangent to N.
Let X, Y, Z, W and T be vector fields tangent to N. By differentiation of (2.3)

with respect to T, we may obtain, after a straightforward computation, that
(2.4) (n — 2){g(AT, X)R(W, Z;Y,£) + g(AT,Y)R(Z,W; X, §)
+g(AT, Z)R(Y, X; W, £) + g(AT,W)R(X,Y; Z, £)
+g((vi4)g(4Y, Z) - g((v74) X, Z)g(AY, W)
+2(AX, W)g((v;A)Y, Z) — g(AX, Z)g((V;A)Y, W)}
=g(Y,W){-R(4T, X; Z, §)
—R(§, X; Z, AT) — (pTa +(n — p)TB)g(4X, Z)
—(pa+(n—p)B)g((v3A) X, Z) + g(( V'TAZ)X, Z)}
—g(X,W){-R(AT,Y; Z,¢) - R(¢,Y; Z, AT)
—(pTa +(n — p)IB)g(A4Y, Z)
—(pa+(n—p)B)g((v;A)Y, Z) + g(( v;4%)Y, Z))
+g(X, Z){-R(AT,Y; W, £)
—R(&,Y; W, AT) —(pTa +(n — p)TIB)g(AY, W)
—(pa+(n—p)B)g((v7A)Y, W) + g((v742)Y, W)}
—g(Y, Z){-R(AT, X; W, £)
~R(¢, X; W, AT) —(pTa +(n — p)IB)g(AX, W)
—(pa+(n=p)B)eg((vrA) X, W) + g((v5a®) X, W)}
1

——(p(p~1)Ta® + 2p(n = p)Top +(n = p)(n — p ~ 1)TB?)

{g(X,W)g(Y,Z) - g(X,Z)g(Y,W)}.
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If X,Y,Z, W are vectors in T, such that X=W, Y=2Z and X, Y are
orthonormal, then by (1.4) and (2.4) we find
2.5)

(n — 2){2aXag(T, X) + 2aXag(T,Y) + 2aTa}
= 2{-2A4Ta + aYag(T,Y) + g((al — A)V}Y, AT)
+aXag(T, X) + g((al — A)ViX, AT)
—(pTa +(n—p)IB)a —(pa +(n — p)B)Ta + Ta*}
(p(p—1)Ta® + 2p(n — p)TaB +(n — p)(n — p — 1)TB?).

In particular, for X = T, (2.5) implies
(2.6) 4(n—2)aXa=-2{-(2p — 1)aXa —(n — p)BXa —(n — p)aXB}

L (2p(p - DaXa + 2p(n - p)BXa

n-1
+2p(n—p)aXp+2(n—p)(n—p—-1)BXB}.
Let T= X, W=win Tz and Y, Z in T, be orthonormal vectors. Then (2.4)

n—1

gives

2.7 ~(n—2)B(B - a)g(vz0,Y) =0
for orthonormal vectors Y, Z in T,. By linearization, we find
(238) B{8(V40,Y) — g(Vse, 2)} = 0
for orthonormal vectors Y, Z in 7. Similarly, we have

(2.9) ag( v, X, ©,) =0,

(2.10) a{ (v, X, 0,) — (V. X, 0,)} =0

for X in T, and orthonormal vectors w,, w, in Tp.
Let Y = W, Z in T, be orthonormal vectors and T = w;, X = w, unit vectors in
Tg. Then (2.4) gives

(2.11)
(n = 2){-Bg(w,, ;) Za — a(a - B)g( V., Z, &,)
= —B(a— B)g(V,Z, &) + B(a — B)g(V.,Z, 1)}
—B(a - B)g(V.,Z, w;) + Bg(wy, ©,) ZB
—(pa+(n-p)B)a~-B)g(V.,Z w,)+(a® - B*)g(V., Z, ,).
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For unit vectors Y = W = wgin Tz, Zin T, and T = w;, X = w, in T which are
perpendicular to w,
2.12)
(n - 2){—38(‘*’1’ ©,)ZB + B(a — B)g(w, wz)g(V;‘,Z, wo)
—B(a - 3)8(V‘:lz’ ‘4’2)}
= -B(a~- B)g( V2, ‘*’2) + Bg(w;, 0,) ZB

~B(a - B)e(v.,Z &)+ B(a—B)g(V, Z )

_(pa +(n _P)B)(a - B)g(V;,Z’ “’2) +(a2 - Bz)g(V;lZ, ‘*’2)-
Subtracting (2.12) from (2.11), we obtain

(2.13) a{(-BZa + BZB)g(w,, w,) — ala — B)g( V. Z, ,)}

= af(a - B){g(w,, w,)8( V. Z, w,) — 8(V,,Z, ©,)}
Putting v, = w, and using (2.10), we find
(2.13) a{-BZa + BZB — ol.g( V. Z, @)} =0

Let X,...,X,, wy,...,0,_, be an orthonormal basis of T, N such that X,,..., X,
(resp. @,...,w,_,) forms an orthonormal basis of T, (resp. Tg). Since M is
Einstein, we have

0=S(x,¢)
4 n—p
(2.14) = Y R(X, X;; X, £) + 1 R(X,, 0,5 &y, §)
j=1 k=1

=pXa +(n—p)X,B —(n — p)a— B)g( VX, w),

using (2.10) for all i, k. From (2.13)’ and (2.14) we obtain
(2.15) a{(pa+(n—p)B)Xa +(n—p)a-B)XB}=0.

Now, we assume that dim7, > 3. Let X, Y = Z, T = W be orthonormal
vectors in 7T,,. Then (2.4) gives
(2.16) (n-1)aXa=0.
If @ # 0, then from (2.6) we obtain (n — p — 1Xa — B)XB = 0. Since we may
assume p # n — 1, we have XB = 0. Therefore from (2.9), (2.10) and (2.13)" we
obtain g(v,, Z, w,) = 0 for all w;, w, in T,. If a = 0, then (2.6) gives XB = 0.
Then (2.11) and (2.12) imply

(2.11y B*(n—p+1)g(v,Z ) -8(V,Zw)}=0
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.12y
B*(n — 2){-g(w;, 0,)g( V. Z, w) + 8( V. Z, 0,)}

= ,32{(” -p+ 1)8(V«:,Z, “’2) - 8(V«;22’ ‘*’1)} =0.
Putting w; = w, in (2.12)', we have
(2.17) 8(vi,Z @) = 8(v.,Z, o)

for orthonormal vectors w,, w;, in Tp. Combining (2.14) and (2.17), we obtain
g(V,Z, w) = 0 for all w in Tj. By linearization, we find

(2.18) 8(v.,Z, wy) + 8(V.,Z, ;) = 0.
Summing up (2.11) and (2.18), we have
(n—p+2)8(v,,Z, &) =0,
that is,
g( Vo2, @) =0

for all w, w, in Tp. If dim T, = 2, then we have only to show Xa = X8 = 0 for all
unit vectors X in 7, since we can make use of the above argument. Then from

(2.6) and (2.15)
(2.19) a{(2a +(n - 2)B) X;a +(n—2)(a = B)X,B} = 0
(2.20)

{@n* = 9n+ 9a —(n—2)(n—-3)B} Xa —(n—2)(n - 3)(a— B)X,8=0.
Hence we obtain X,a = X, = 0. Therefore we have R(X,Y; Z, £) = 0 for all X,
Y, Z in TU. From Lemmas 1.1, 1.2 and 1.3 we obtain the conclusion.
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