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Abstract

In this paper a technique for constructing Fitting Classes is applied to certain groups of nilpo-
tent length three which have non-unique minimal normal subgroups. A characterisation of the
minimal Fitting Class of some of these groups is also given.

1991 Mathematics subject classification (Amer. Math. Soc.) 20 D 35, 20 D 10.

Some recent work on minimal Fitting classes deals with groups of nilpotent
length three or more which are monolithic, that is, which have unique min-
imal normal subgroups (see Bryce [5], Bryce, Cossey and Ormerod [6] and
McCann [2], [3] and [4]). The study of Fitting classes based on monolithic
groups goes back to Dark [7], a paper to which the above are indebted.

This paper applies methods of Fitting class construction, which are similar
to those in the above papers, to certain non-monolithic groups. The groups in
question are of nilpotent length three and have non-unique minimal normal
subgroups which are operator-isomorphic with respect to conjugation. They
are semi-direct products of elementary abelian r-groups (where r is prime)
by certain /-groups, given in matrix form. Facts about general linear groups,
especially Lemma 1.4, will play an important role in this paper. We note here
that all groups dealt with will be finite.

In Section 1 we define the groups on which the Fitting classes will be
based. Some basic results from the theory of linear groups will also be given.
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[2] Fitting classes based on groups of nilpotent length three 449

Section 2 deals with the "basic" Fitting class construction, while in Section
3 we look at the minimal Fitting class of an even more restricted type of
(non-monolithic) group. The final section gives some results which indicate
why the groups dealt with have been so restrictively chosen.

I would like to thank an Roinn Oideachais for the support of a post-
doctoral fellowship while doing some of the research contained in this paper,
as well as the Mathematics Departments of Colaisti na hOUscoile, Gaillimh
agus Corcaigh. I would also like to thank Professor Hermann Heineken for
his hospitality at Universitat Wurzburg in July/August 1988.

1. Notation and preliminary results

The notation and conventions of this section will be used throughout the rest
of this paper. We let p, q and r be primes and a, m and t be natural
numbers which satisfy:

(i) p?2,p?r-
(ii) q*r;

(iii) p \ ( q - l ) ;
(iv) p\t;
(v) t is the minimal natural number such that qa\{r' - 1);

(vi) 1 < m < p.

We let F be the field with rl elements and denote the additive group of
F by U. Thus U can be considered as a vector space of dimension t over
Zr (the field of order r , that is, the prime field of F), or as an elementary
abelian r-groupof rank t. We let the multiplicative group of F be generated
by y,, say.

By the theory of finite fields the automorphism group of F is cyclic of
order t, so by (iv) there is an element, Sx, of order p in Aut(F). Multipli-
cation by yl in F induces an invertible linear transformation on U, as does
the "natural" action of 5X. We identify Aut(C/) with GL(f, r), the general
linear group of invertible txt matrices over Zr. In addition we identify yx

and <J, with the transformations induced by them on U. So we consider yx

and 5X as t x t matrices over Zr (relative to some fixed basis of U). By (v)
there exists an element co{ e (y,) such that o(w,) = qa, and, also by (v),
U is irreducible under (coj . It may be seen that <J, normalises (y{) and
hence also (&),), but <S, does not centralize either of these two groups.

In order to construct groups with operator-isomorphic minimal normal
subgroups we take the tensor-product of the above representation of (yx, SJ
with the identity representation of suitable degree. Since we shall be dealing
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450 Brendan McCann [3]

directly with general linear groups, we define the tensor-product in terms of
matrices. Namely we define the mt x mt matrices (when m is as in (vi))
y, co and 8 by:

', 0\ (co,

7 = ;co =

co,

V 0

0 \

co.)

and

(8X

8 =
S

That is y, co and 8 have txt blocks, equal to y{, col and 8X respectively,
along the main diagonal and zero entries elsewhere.

We define V to be the direct sum V = VX@V2® ••• ®Vm, where, for
i = 1, ... ,m, Vt; £ U. We let (y, 8) operate on V with the "natural"
action, that is V{,... , Vm are operator-isomorphic {y, (J)-submodules of V
and (y, 8) acts on Vt as (y,, 8X) on U (for i = I, ... , m).

For ease of notation we further define K to be the class of groups which
satisfy: K = V » (co, 8), where V and {co, 8) are defined as above for
some suitable p, q, r, a, m and t which satisfy (i), . . . , (vi). We will
construct Fitting classes to show that if Kx and K2 are elements of K, then
Kx € Fit(A:2), the minimal Fitting class containing K2, if and only if K{ £
K2 . To construct these classes we take some fixed (co, 8) and V, identify
Aut(F) with GL(mt, r) and examine the centralizers of certain subgroups
which have co as an element in Gh(mt, r). The following notation will be
used:

Note that since (co) is a characteristic subgroup of (co, 8), we have

and CGL(m, J(co,8}) < C. We also note the following elementary result
from linear algebra.
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[4] Fitting classes based on groups of nilpotent length three 451

LEMMA 1.1. Let F be the field with r' elements. Then C^GL(m,F).

PROOF. Let g € GL(mt, r). Then we can write g as

( S\\ " • Si

where the gtj are t x t block matrices, (i, j = 1, . . . , m). We then have
gco = cog if and only if

So we see that col commutes with all of the g(j. An application of Schur's
lemma (Huppert [1, I, 10.5]) shows that CEnd((/)(w,) s F. Thus C is iso-
morphic to the group of invertible m x m matrices over F .

Lemma 1.1 is useful in that it allows us to calculate the order of a Sylow
/^-subgroup of C from that of GL(m, F). Before we determine a particular
Sylow p-subgroup of C we need some more notation. We define 5 to be the
least non-negative integer such that p\{rst - 1), and we define /? by means
of / / T (rst - 1). Here the symbol T stands for "the largest power of p to
divide". For our fixed m, as in (vi), we let m — sk + e, for a suitable k
and e, with 0 < e < s. We will retain this definition of s, fi, k and e in
what follows.

We let
Wt = Vs{i_l)+l®...®Vsi, f o r i = l , . . . , f c ,

and consider restrictions of (y, 8) to Wl, say. We define F^, to be the field
of order rst and, as Wl has order rst, we consider Wy to be the additive
group of F^t. Now, iy( has a subfield of order r' so we embed F (as
above) in F^,. In particular we have (y) < F^t, the multiplicative group
of F^t. We let F^ operate by multiplication on Wx, and can check that,
relative to a suitable basis, this action of y on Wx is given in st x st matrix

U yj

(where we identify Aut(H^) with GL{st, r)). By the definition of /? and
s, we have p^ T \F^i \, so, since F^i cyclic, there is an element, h , of order
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/ r in Aut(Wj) which centralises y and thus also co. We assume h to be
given in st x st matrix from (relative to the above basis of Wl).

We let C, = CAut{fV)(co). By Lemma 1.1 we have C, * GL(s, F). Now

we have | GL(s, F)\ = (rst - l){rst - / ) • • • (rst - r(s~1)l), so we see that, by
the definition of s and P, / / T | C , | . If we consider 8 to be restricted to
W. (that is, we consider 6 to be the st x st matrix:

/S, 0 \

we see by Sylow's theorems that S normalises some Sylow p-subgroup of
Cj (this because S € N). Since, by comparison of orders, (h) is a Sylow
^-subgroup of C,, we may assume that, as matrices, S normalises {h}.

W e d e f i n e t h e m t x m t m a t r i c e s h t , i = 1 , ... , k , a s f o l l o w s

*/ =

'st

\0

st

ith block
'et

(where In is an n x n identity matrix for the natural number n). Then
{ h x , ... , h k ) = {hx) x ••• x (hk) * C p , x ••• x Cp> .

In addition, by the above identifications, we have (hx, ..., hk) <C and
S (considered once more as an mt x mt matrix) normalises each one of
(/*,), . . . , (hk). We let P = {hx, ... , hk). Since (w> is cyclic of order q"
and q is a prime with (by (iii) say) q ^ 2, N/C is cyclic. Thus {d)C/C
is the unique subgroup of order p in N/C. The following result tells us
something about (S)P.

LEMMA 1.2. (S)P is a Sylow p-subgroup of {5)C.

PROOF. We need only show that P is a Sylow p-subgroup of C. Since
P has order pkp, we must show, by Lemma 1.1, that pkfil\GL(m, F)\.
Note that the trivial case where s > m (whence k = 0) is covered by taking
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[6] Fitting classes based on groups of nilpotent length three 453

P = 1. Now

| G L ( m , F)\ = ( r ' m - \){rtm - / ) • • • (r'm - rt{m~l))

= (rlm - l)(r'im-1] - 1) • • • ( / - \)rm{m-x)tl2.

Let n be such that 1 < n < m . Then n = sd + e , for suitable values d
and e with 0 < e < s. We can see that if p divides rnt - 1, then p divides
ret - 1. By the choice of 5, this implies that p\(rnt - 1) if and only if n is
a multiple of s.

Suppose now that n = fs < m, for some suitable / . We show that
/ T ( / " - 1 ) . We have

rHl - 1 = rtsf - 1 = ( r ' s - l ) ( r ' s { f - l ) + ... + rts + l ) .

Since rts = 1 mod(//), we have

= / m o d ( / ) .

But f < m < p. Thus /? does no? divide rw(/-1) -\ + rts + 1, so we
conclude pfi 1 (r*1 - 1).

There are exactly fc distinct values of n with s\n and 0 < « < m. We
thus have pkp T |GL(m, F) | .

We note that H^, ... , H^, Vsk+l, . . . , ^fe+g are all invariant under
(to, 3, P). The next lemma shows how Wt may be decomposed under cer-
tain subgroups of (co, P).

LEMMA 1.3. Let 1 / x e P . Then either
(i) Wt is irreducible under (x, co)

or

(ii) JC centralises Wt and, in particular, ^ ( , _ 1 ) + 1 , ... ,Vsi are all invariant

under (x, co).

PROOF. If s = 1 then Wi = Vi and we are done. Now assume that
s>\ and that Wt is not irreducible under (x, co). In addition we assume,
without loss of generality, that C.AW^ = 1. Thus {x, co) is an r -group
of automorphisms of W{. We apply Maschke's Theorem to find a subgroup,
T, of Wt such that T is irreducible under (x, co) and that C{x)(T) = 1.

Since T is invariant under (co), we see that \T\ — rdt, for some d with
1 < d < s. Now {x, co) is abelian so, in particular, (x) must act fix-
point freely on T. Thus o(x)|(|r| - 1), whence we have p\[rdt - 1), which
contradicts our choice of s. We conclude that x centralises Wt.
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MAIN LEMMA 1.4. Let g be a p-element of (8)C which does not centralize
co. Then CAut(K)((g, co)) is isomorphic to a subgroup of GL(m, Frn), where
Frn is the field with r" elements, and n is such that t = np.

PROOF. We demonstrate the result first in the case where there is a de-
composition V = Ul © • • • e Um , where Uj is a faithful irreducible (co)-
submodule, which is invariant under {g, co), for j = 1, . . . , m.

By the definition of V and (co) we see that all the Uj are operator-
isomorphic to Vx with respect to (co). We assume that U{, ... , Ud are all
(g, co) -isomorphic but that Ux is not (g, co) -isomorphic to any of Ud+l, . . . ,
Um. Let c e CAut(V)((g, co)). Then for any j , Uj is (g, co)-isomorphic
to Uj and we infer that c normalises the groups S = U{ © • • • © Ud and
T = Ud+l © • • • © Um . We identify Aut(5) and Aut(7) with the "natural"
subgroups of Aut(K). Thus

By considering the restriction of (g, co) to Ul and identifying Ul with
the additive group of F, the field with r'(= rnp) elements, we see, using
say [3, III.3], that CEnd{(/ ^((g, co)) is isomorphic to Frn, the subfield of F
formed by those elements fixed by the Galois automorphism of order p. As
in Lemma 1.1 we have CAut(5)((g, co)) = GL(d, Frn). We assume inductively

that CAut(r )((g, co)) < GL(m - d, Fr») and conclude that

Frn) x GL(m - d, /> )

< GL(m, Frn).

For the general case we may assume, by Sylow's theorems, that g e
(S)P. T h e n Wx,...,Wk, Vsk+1 ,...,Vm a re all i nva r i an t u n d e r (g, co).
If none of Wx, ... , Wk is irreducible under (g?, co), then by Lemma 1.3
g^ centralises W{,... , Wk (since gp e P). Since P already centralises

Vsk+\' • • • ' ^m' w e s e e ^ a t s" = ^' ^ a t ^S> °(s) — P • Now let U be a
submodule of Wi which is irreducible under (g, co). By a result of Zassen-
haus (see, for example [2, II.5] for a proof), either U is irreducible under
{co) or U is the direct sum of p (w)-submodules. In the latter case, since all
(w)-submodules of V have order greater than or equal to r', the contradic-
tion \U\>rpt>rmt = \V\, would arise. Thus, applying Maschke's Theorem,
we find a decomposition Wi = Ui @ •••@Ui for / = 1, . . . , k, where the
Ur are invariant under (g, co) and are irreducible under (co). This brings
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[8] Fitting classes based on groups of nilpotent length three 455

us back to the case already dealt with, so we now assume that Wx, say, is
irreducible under {^, co) (and so also under (g, to}).

We assume an enumeration such that Wx, ... , Wd are operator-isomor-
phic with regard to {g, co), for some d < k, but that Wx is not operator-
isomorphic to any of Wd+X,... , Wk, Vsk+X,... , Vm. As above, we let
S = Wx e • • • ® Wd a n d T = Wd+X ®---®Wk® Vsk+l e • • • 0 Vm a n d h a v e

^ ' ( U ) ) •

For notational convenience, we assume C^(WX) = 1. We let o(g) = p^+l

and let x - g9 , so xw has order p*qa . In addition we let F^, be the field

with rst elements, identify Wx with the additive group of i y and xco

with an element of order p qa in the multiplicative group of F^t. Applying

Schur's Lemma as in Lemma 1.1, we see that CEnd,wJxco) is isomorphic

to F^i. As above we let F^n be the subfield of order rsn in iy, which
comprises those elements fixed by the Galois automorphism of order p and
see that

Since Wx, ... ,Wd are {g, co) -isomorphic, we see, as in Lemma 1.1, that

Since Frn can be identified with a subfield of F^n, we see that GL(d, F^)
can be embedded in GL(sd, Frn). We again inductively assume that the
group CAut( r )((g, co)) can be embedded in GL(w - sd, Frn), whence

< GL{sd, f>) x GL(m - sd,

<GL(m,Frn).

COROLLARY 1.5. Let g be as in Lemma 1.4. Then there exists no element
in CAut(K)((S' w)) which satisfies o(y) = qa.

PROOF. By Lemma 1.4 C"Aut(F)((g, co)) is isomorphic to a subgroup of
GL(m, Frn). But GL(w, Frn) can be embedded as a subgroup of GL(mn, r ) .
If there exists an element y of GL(wn, r) with o(y) = qa , then we see that
qa\{re - 1) for some e with e < mn. But mn < pn — t and we have a
contraction to condition (v).
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2. A Fitting class construction

For this section we let K = V x (co, 8) be a fixed element of K relative
to the fixed primes and natural numbers p, q, r, a, m and t which satisfy
(i), . . . , (vi) of Section 1. We recall that a Fitting class, F , is a set of groups
with the following properties:

1. If G is an element of F , then so is every isomorphic copy of G;
2. If G, < G G F , then G, € F;
3. If G = G{G2 with Gj < G and G},e F , for ; = 1, 2, then G e F .
For the set of primes n we also recall that the re-residual of the group G

is

(f(G) = f]N
N<G,G/N a n-group

and the n -radical of G is

= (N\N < G, N is a w-group).

(We use p to denote the set {p} , where p is a prime —p denotes the set
of all primes except p.) Note that if Gl < G, then 0K(Gl) < 0*(G) and
0;t(G1) = Gl n On{G), while if G = GXG2 where Gx and G2 are normal in
G, then 0*(G) = (/(G^O^O,).

In order to construct a "non-trivial" Fitting class which contains K we
use the following lemma which deals with certain normal products of groups
isomorphic to V x (co).

LEMMA 2.1. Let H be a group and let AlBl, ... , AfBf be subgroups of
H such that for i= 1 , . . . , / :

(i) AiBi = V xi (co), with At ^ V and Bt ^ («);
(ii) Afi^H;

(iii) let C^C^A^ then BiCJCi is a Sylow q-subgroup of H/Cr

Then, for a suitable enumeration, there exists an e < f such that

(AlBl,...,AfBf)=AlBlx-AeBexQ,

where Q is a q-group.

PROOF. We use induction on / . The lemma is obviously true for / = 1.
We now assume

(AlBi,..., Af_xBf_x) = AlBl x • • • x AeBe x (2,,
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[10] Fitting classes based on groups of nilpotent length three 457

for a suitable tf-group Qx, and e, < / - I . If AfBfn(AlBl,... , Aj_xBf_y)
= 1 then {A{BX, ... , AJBJ) = AJBJ x (AlBl, ... , Aj_yBj_y) and, apart
from reordering the indices, we are finished.

Suppose now that AfBf n {AXBX, . . . , Af_xBf_y) ^ 1. Then, since every
minimal normal subgroup of AfBf is contained in A,, we have Aj n (Ay x
• • • x Ae ) / 1. If Af is not a subgroup of Ax x • • • x Ae then, by Maschke's

Theorem say, we have AJ = AJXAJ-, where Aj = Af n (̂ 4, x • • • x ^ ) and

^y is a complement to Aj which is invariant under By x •• x Be . We see
that

[Af,Bxx---xBe]<Afr\Af=\.

Now, no element of Ax x • •• x Ag is centralised by 5j x • • • x Be so there

is some b e By x • • • x Be which does not centralize Aj- (but does centralize
Af). Since (w) operates fix-point freely on V we see that bCj- £ B^Cf/C^.
But clearly BfCf/Cf is a normal Sylow ^-subgroup of / / /C^ (by (iii)), so
we have a contradiction. Thus Aj- < Ay x ••• x Ae . Since ^^ = 0 r ( ^ ^ ^ ) ,
we have

Af = [Af,Bf]

<[Ay x-xAe,Bf]

= [Ay,Bf]x...x[Ae,Bf]

= (AyD Af) x • • • x (A^n Af).

We may suppose that AyDAj^ 1. If in addition, say, A2nAj^ 1, then
we see that

q f

which again contradicts (iii). Thus we conclude Aj = Ax.
We let Q2 be a Sylow ^-subgroup of CA B B (Ay). By (iii) and comparison

of orders we see that AyByBj = AxBy x Q2 . Note that Q2 is normal in H,
since it is characteristic in AyByBj. We let Q = QXQ2 and then have Q < H
and Q n (AyBx, ... , Ae Be) = I, whence

(AyBy, ... , AfBf)=AyBy X • • • X ^ Bg X Q.

The main steps in the proof of the following result are analogous to those
of Construction IV. 1 of [4]. It is hoped that the more complicated situation
dealt with here will justify the somewhat extreme length of the proof.

CONSTRUCTION 2.2. Let F be the class of groups which satisfy the following
conditions:

(i) Qf{Qf'(G)} = (AyBy,... ,AfBf,R), for a suitable f (possibly / = 0 ) ,
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where

(ii) R = Or[(f{<f'(G)}] and, for i = 1 , . . . , / ,

(iii) Afi^tf'iG);
(iv) AiBi Si V xi (co), wirA Ai * K a«rf 5 . 2 <<w);
(v) to Ci = C^,' (.4,.), ^e« BiCi/Ci is a {normal) Sylow q-subgroup

of<f'{G)/Ct;

(vi) 0q[Op{Op'(G)}}=l.

Then F is a Fitting class (which clearly contains K = V x (w, S)).

PROOF. We first show closure with regard to normal subgroups. Let Gx <
G G F . By [4, II.6],

where ^ ^ , , . . . , ^ 5 . and /? satisfies (i), . . . , (vi). Note that Rl =

(^{O"'(<?!>} n i? = O ^ C ^ ^ G , ) } ] . By Lemma 2.1 with (vi), we may as-
sume, without loss of generality, that

(AlBl,..., AfBf) = A

t

(<

€

[XB

Ax

1 x • •• x

t_Ax.

n (/j

^ / -

We see

[^'(G,)}

then

• By

that there

consider-
Now suppose that, say, AXBX n

is a ^-element b, say, with 1

ing the action of {co) on K, we have Ax = [Ax, 6] < (f{(f'{Gx)}. Since

(y (Gx) is generated by /^-elements, there must be a p-element, x , i n 0^ (Gx)
such that x does not centralize BXCX/CX for otherwise the factor-group

(f'(Gx)/((f'{Gx)nCx) (which is isomorphic to (f (GX)CX/CX) would have
a non-trivial ^-factor-group isomorphic to (b). Now, since Bx is cyclic of

order qa (with q / p), we conclude that ^ , 5 j = ^ , [ 5 , , x] < 0^ (Gx),

whence, in fact, AXBX < (^{(/'(G,)} .
We can now assume the AiBi to be ordered such that (AXBX, . . . , AdBd) <

(f{(f'(Gx)}, for some suitable d,and ^.5_/n0p{0p'(G,)} < ^^(^{(^ ' (G,)}
< / ? , , for 7 > d, and since (vi) is trivially satisfied for Gx, we conclude
that G, e F .

To show that F is closed with regard to normal products, we let G = GXG2

where G, and G2 are normal in G and are elements of F . We let

0"{0"'(G,.)} = (AjXBjX,..., AjfBjfj, * , . ) , for j = 1, 2,
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where Rj = 0 r [ 0 p { 0 p ' ( G > ) } ] < Or[(f{(f'(G)}] a n d AjXBjX,..., AJfBJfj sa t-

isfies (iii), . . . , (vi) in (f (Gj). Again we assume, by Lemma 2.1 that

and note that AjlBji x ••• x AjfBjf = 0" [(?{& (Gj)}] is, in particular,

a characteristic subgroup of Gj. We show that, say, AuBn is a nor-
mal subgroup of 0"'(G). Equivalently, we show that 0^ (G2) normalises
AuBn . Note that, by the theorem of Krull-Remak-Schmidt (Huppert [1,
p. 69]), if x e G, then either {AnBn)

x = AuBn of {AnBuf is one of
4 Ft A R
AnDn, . . . , ^ i / ^ i ^ •

Now AnBn is subnormal in (AnBn, 0r(G)), is generated by ^-elements
and, by comparison of orders, contains a Sylow ^-subgroup of the group
(AuBn , 0r(G)). Thus AuBn = 09'((/(„£,,, 0r(G))), and so, in particular,
R2 (which is a subgroup of 0r(G)) normalises AnBn .

Suppose, without loss of generality, that b e B2l does not normalize

AnBu . Since q > p > 3 we can assume that (AnBn)
b = AnBn and

( A i 2 B i 2 ) b = A 1 3 B 1 3 . W e l e t B j ( = (bjt) f o r j = 1 , 2 a n d i= 1 ,...,fr

Then we can also assume that (bn)
b = bn and [bn)

b = bl3. Since A2lB2l

has defect at most two in 0" (G), w e h a v e [bn,b,b] = bnb~2bi3 eA2lB2l.
From above, Au x • • • x Axf normalises A2lB2l, so we have

Au x Al2 x Al3 — [Axl x Al2 x Al3, bub{2 bl3] < A2lB21,

that is, AnxAl2xA13<A2l, which is a contradiction to the order of A2l.

We conclude that <?{0P'{G2)} normalises AuBn .

Finally we let x be a ^-element of 0*" (G2) which does not normalize
AUBU . Since /? / 2 we again assume that (AllBll)

x = Al2Bi2, (Al2B12)
x =

Ai3B13, (bn)
x = bl2 and (^12)^ = b13 (where the bt are as above).

Now, b~xbl2 = [bu, x] is a ^-element of 0^ (G2), and so is contained in

(f{(f (G2)}. By Sylow's theorems we may assume that

b b € (c? ) x • • • x (b )

so bu bi2 = (£2i)*
21 • • • (*2/2)

?2/2 > f ° r suitable powers e2i. By considering the
action of (co) on F , we see that for e2i £ 0mod(^a), we have

A2i = \-A2i' (b2i)e2'l = \-A2i > bHbn\ ^AUX A\2

(since the AjiBji have been shown to be normal in Qf{(f'(G)}).
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Since we then have A2i < An x An , we can have e2j £ 0mod(#a) for at
most two values of / . Thus we may assume that b^lbn = {bx2)

e2i{b22f
n •

But then

An x An = [An x An, bn bl2]

= [An x An, A2lB2l x A22B22]

= A2l x A22 (by comparison of orders).

Now A2l x A22 is normal in (f (G2) (since the A2i are), so we have that
Al3 = {An)

x < A2l x A22 , whence An x Al2 x Al3 < A2l x A22 , which, by

comparison of orders, is again a contradiction. We conclude that Of (G2)

normalises AnBn , that is, the AjiB-i are normal in Of (G).
We let Cn =C(f'(An) and show that (v) holds for BnCn/Cn. To do

this we first look at the case where there is an element x € Of (G2) such that

Then, since AnBu/An = C . , we have, in fact, AnBn = [AnBn , JC] <

0^ (G2). Using commutator arguments as above, we may assume AnBn =

A2lB2l and also Bn = B2l. Now a Sylow ^-subgroup of (f (G)/Cn is

contained in 0"' {(f' {G)}Cn/Cn and

09'{<f'(G)}Cn/Cu = (09'{(f\Gl)}CJCn)(0
9l{Op\G2)}Cu/Cll)

= ((Bn x ••• x BiA)Cn/Cn)((B2l x...xB2f2)CJCu)

so BnCn/Cn is a Sylow ^-subgroup of (f (G)/Cn , as desired.

Now we can assume that [(f (G2), AnBn] < An. Suppose also that

some ^-element of (f (G2) does not centralize An . Say, without loss of
generality, that B2l does not centralize An . Then we have, by normality,
1 ^ [An , B2l] < An n A2lB2{ = An n A2l. Again by considering the action
of (to) on V, we see that CB (AunA2l) = 1 and CB (AnnA2l) = l. We

let C = CQP'{G)(All n A2i), and have An < C, so

[Buc/c, <f'(G2)c/c] < AUC/C = y(G)/~.

Thus BnC/C centralises (f'(G2)C/C.
Since (co) acts operator-isomorphically on V{, ... , Vm (as in Section 1)

we see that An D A2l can be decomposed as

Anr\A2l = Vu®---®Vle, for some e with e < m,
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where Vu = U (as in Section 1), for i = 1 , . . . , e and Vu and K are
operator-isomorphic with regard to B2l for all i and j (this follows from
(iv)).

Now, (f (G2)C/C is generated by /j-elements, so there is a p-element
in Of (G2), g say, such that gC does not centralize B2lC/C, and we may
assume that gpC does centralize B2lC/C. We let V = An n A2X, g =
gC, (&)) = B2lC/C and (y) = BnC/C, and we identify g, w and y with
the elements of Aut(F) which they induce.

Replacing m with e, as above, we see that (g, &>) and V satisfy the
hypotheses of Lemma 1.4. But then we have a contradiction to Corollary
1.5, since y centralises (g, cb), o(y) = qa and C{9){V) s CB (V) = 1. We

conclude that all ^-elements of (f {G2) centralize An. Thus the Sylow q-

subgroupof (f'{G)/Cn are contained in &{&'{Gx)}Cn/Cn =BuCn/Cn

and again we see that BnCn/C{l is the (normal) Sylow ^-subgroup of

(f'(G)/Cn.
We have thus far demonstrated (iii), (iv) and (v) for the AjiBji. Now

0q[(f{0"'(G)}] < O"'[(f{(f\G)}] = (AjtBjJj = 1, 2; i = 1, ... , /}) and we
apply Lemma 2.1 to see that

AlBl x-*AfBfxQ,

for a suitable value / , where the AdBd are among the AjiBji and Q is a

g-group. Clearly Q = 0q[(f{Op(G)}]. Since Gx and G2 are elements of F ,
we have

Qr\<f'(Gj) = 09[(f'(Gj)] = 0q[(f{<f\Gj)}] = 1,

so [Q, (f'(Gj)] = 1 (for 7 = 1 , 2 ) , whence Q < Z{(f'{G)} . Now we see

that, for R = Or[<f{<f'(G)}],

QD(AlBl x ••• xAfBf, R) = Qn{AiBl x ••• xAfBf) = 1,

so, if we let E — (AlBl x ••• x A,Br, R) then we see that QE/E is

in the centre of (f'(G)/E. In addition (f\G)/QE is a p-group, since
QE = (f{<? (G)} . But now 0" {G)/E is nilpotent and so has a factor-group
isomorphic to Q. Since Q is a p'-group we conclude Q = 1. Thus

and properties (ii), . . . , (vi) are satisfied.
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By applying the above construction in the respective cases we see that if K{

and K2 are elements of K, then K{ e Fit(tf2) if and only if AT, £ K2. This
type of result seems to indicate that the question as to whether two groups
generate the same minimal Fitting class may generally be more easily solved
in the case where both groups are extensions of elementary abelian r-groups
by /-'-linear groups, where the linear groups in question are of nilpotent length
greater than or equal to two.

3. Some Fitting classes which are minimal

We once more let p, q, r, a, m and t be fixed primes and natural num-
bers which satisfy (i), . . . , (vi) of Section 1. In order to construct some min-
imal Fitting classes we place two extra conditions on these numbers, namely

(vii) P
2T(q-l),

(viii) pT\GL(m,F)\ (equivalently: pT\GL(m, Fr*)\, where t = pn),
where F, as in Section 1, is the field with r' elements. Since p ^ r, (viii)
requires that p does not divide any of the numbers r' - \ , ... , rmt - \ . To
reassure ourselves that we are not dealing with the empty set we may check,
for example, that the following satisfy conditions ( i ) , . . . , (viii): p = 5, q =
11, r = 3, a = I, t = 5, m = 2 (note: m = 3 will also do, but not m = 4).

We let the group K* — V*x(co*, S*) be constructed in a manner analogous
to the group K of Section 1, relative to the above more restricted values of
p, q, r, a, m, and t. We note that, by Lemma 1.1 condition (viii) implies
that pT\C*\, where, analogously to Lemma 1.1, C* = CAui,v.Jco*).

We recall that if G is a (finite) group then Fit(G), the minimal Fitting
class which contains G (or Fitting class generated by G), is

Fit(G) = n{F : F a Fitting class with G 6 F} .

We note that it is well known that if e is a prime which divides the order of
the soluble group G, then S£ c Fit(G), where Se is the (Fitting) class of all
finite e-groups.

CONSTRUCTION 3.1. ¥'it(K*) is the class of groups which satisfy
(i) 0"(G)e Fit(V* x (co*)),
(ii) (f{(f'(G)} = AlBlx- • x A fBf, for a suitable f {with possibly / = 0),

where, for i = 1 , . . . , / ,

(iii) 4*,«0" ' (G)
and

(iv) AiBi a V* x (to*), with Ai a V and Bt a {co*}.
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PROOF. We note first that, for the case m = 1, that is, where V* is
irreducible under (co*), this result is contained in Bryce [5, Example 5.3]. In
addition we easily see that K* is an element of the above class.

The class of groups which satisfy (i) is easily seen to be a Fitting class,
so we show that the groups that satisfy (ii), (iii) and (iv) also form a Fitting
class. We deal first with normal products. We let G = GXG2, where, for
j = 1, 2, Gj < G and such that (ii), (iii) and (iv) hold for Gj. We see,

in particular, that (/{^'(Gj)} = O'VfO"'(G;.)}], whence (f{0"'(G)} =

We now apply Construction 2.2 (relative to the above p, q, r, a, m and
t) and see that, since the groups which satisfy (ii), (iii) and (iv) form a
subset of F (as in Construction 2.2), we have G e F . Since Of {Of(G)}
is generated by ^-elements, Construction 2.2 also shows that (f{(f (G)} =
{AlBi, ... , AfBf) for a suitable / , where the AiBi satisfy (iii), (iv) and (v)

of II.2. In addition Og[(f{(f'(G)}] = 1, so by Lemma 2.1, we may assume

that (f{(f (G)} = AiBl x • • • x AfBf, and this shows that G satisfies (ii),
(iii) and (iv) (of Construction 3.1).

This proof is unusual in that closure with regard to normal subgroups is as
complicated to demonstrate as closure with regard to normal products. We
let GX<G, where (f{(f'{G)} = ^ , 5 , x ••• x AfBf, and (ii), (iii) and (iv)
are satisfied. As in the proof of Construction 2.2, we have

G,)} n AXBX) x ••• x (( /{(/(G,)} n AfBf),

and either AiBi < (^{(/(G,)} or (f{(f(Gl)}nAiBi < A,.

Suppose for some / that (f{(f'{Gl)}nAiBi < Ar We then have that

[Of (G{), AjBj] < At, since otherwise, as in the proof of Construction 2.2,

we would have, by commutators, that AiBi is a subgroup of (/{O" (Gj)} .

Thus if x is any /^-element of (f (Gj) and 8X is the automorphism of Ai

induced by conjugation with x, then 6X commutes with B( (considered as a
subgroup of Aat{At)). Since J?T|C*| (for C* as above), we must have 6X =

lAut(j4). Thus A{ is centralised by all p-elements of Of (Gj) (which is gener-

ated by p-elements) and we conclude that (f{(f'(Gl)}f)AiBi < Z{(f'(Gl)} .

We put Z = (^{(/(G,)} n AiBi, and let

S = ^ { ( / ( G , ) } n (AXBX x . . . x /! , ._,£,_, x AMBi+l x • • • x AfBf).

Thus Qf{Qf'{G{)} = SxZ and ( / ( G , ) / ^ x Z) is a p-group, so <f'{GJ/S
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is nilpotent. The Sylow r-subgroup of OF (Gx)/S is isomorphic to Z , so, by
nilpotency, (f {G{)/S has a factor-group isomorphic to Z . Since 0p (G{)
has no non-trivial //-factor-groups, we conclude Z = 1. For a suitable
enumeration of the AiBi we can now assume that

( /{( / (G,)} = AlBl x • • • x AeBe(e < f),

and have verified that Gx satisfies (ii), (iii) and (iv).
We denote by X the class of groups which satisfy (i), . . . , (iv). Thus

X is a Fitting class which has K* as an element, so Fit((7*) c X. Now
let G be any element of X. We show that G is an element of Fi t ( i f ) .
We have G = (f(G)(f'(G), and this is a normal product. By (i), (f(G) e
Fit(K* xi (co*)) C Fit(K*), so it suffices to show that (f'(G) e Fit(K*).

L e t Dt = AXBX x • • • x Ai_lBi_l x Ai+1Bi+l x • • • x AfBf, f o r / = 1 , . . . , /
(where we are taking G to be the group of the statement of the construction).

We first show that 0*" {G)/D( e Fit(AT*). For notational convenience we work
"modulo" Di, that is, we write Dt = I. We let P be a Sylow p-subgroup

of (f'(G) (so 0"'(G) = AtBtP), and write P = CP(At). As in the proof of
Construction 2.2, we have [P, AtB{] = AiBi. In addition, considering Bt

and P/P as the "natural" subgroups of Aut(/i1), we see, by condition (viii),
that no element of P/P centralises Bt. By condition (vii), p2T(q - 1), so
we conclude that P/P = Cp . Since P centralises At we see that there is a
decomposition Afi^ — AjBi x P.

We now work modulo P. Then Ai is self-centralising in (f (G) and

Or (G) has a Sylow /7-subgroup, (x), which is cyclic of order p . We identify
Ai with V*, B( with (co*) and (x) with the "natural" subgroup of Aut(F*).
Conditions (vii) and (viii) now imply that (x) is a Sylow p-subgroup of
N* = NAutiV*){((*>*)) • Thus (x) and (3*), and hence also (co*, x) and

(co*, 3*), are conjugate in iV*. Thus

(f'(G)/P Si V* x. (co* ,x)*V*x (co*, <5*) = K*.

It follows that

*G={(gAiBi,gP)\ge(f\G)}

iiBi)x{(f\G)/P)*PxK*.

Since G contains all /7-elements of (0"'(G)/AiBi) x ((f'(G)/P), it is subnor-

mal in the latter group. Thus (f (G) is isomorphic to a subnormal subgroup
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of P x K*. Since P is a p-group, the remark preceding this construction

shows that P e Fit(K*). We conclude that OP'{G)/Di e Fit(K*).

Since f]{=l Z). = 1, we see that (f (G) is isomorphic to

{(gDl,...,gDf)\ge(f'(G)}

which, as above, is subnormal in ((/ (G)/Dx) x ••• x ((f'(G)/Df). Thus

(y (G) is isomorphic to a subnormal subgroup of an element of ¥it(K*),
and so G e Fit(AT*) and X = Fit(K*).

4. Concluding remarks

One major difference between the Fitting classes F , , say, of Construction
2.2 and F2 of Construction 3.1 is that SrSp C F , , while S rSpnF2 = N{p r } ,
where Sf S is the class of all (finite) extensions of r-groups by ^-groups and
N, r, is the class of all nilpotent {p, r}-groups, for the given values of p
and r. Thus the extra conditions (vii) and (viii) of Section 3 yield more
precise information about the {p, r}-groups in Fit(AT*).

To show that the latter is not always the case, we let p, q, r, a, m and t
satisfy (i), . . . , (vi) of Section 1, and add in the new condition

(vii)' p\\GL(m,F)\
(in contras t to (viii) of Sect ion 3). W e can take p = 5,q = ll,r — 3,a =
1, t = 5 a n d m = 4 , to see tha t such n u m b e r s do exist. W e let K =
V xi ( w , S) be cons t ruc ted as in Sect ion 1, relat ive to t he above n u m b e r s .

PROPOSITION 4.1. Fit{K) n SrSp g N ^ r} (that is, there are non-nilpotent

{P, r}-groups in Fit(K)).

PROOF. We let s and /? be defined as in Section 1. Thus, by (vii)', s ̂  0
and /? > 1. We let hl be defined analogously to hx of Section 1. Thus hl

centralises 6) in Aut(K) and 3 normalises (/?,). We form the semidirect
product G = V x {&, 6, A,). Since Cr°'(G) = V xi (&>} < K, we see that K is
subnormal in G. Since Fitting classes are known to be closed with regard to
subnormal products, we see that (AT)G e Fit(^) (where (^)G is the normal
closure of K in G).

We define W{ analogously to Wi in Section 1. Considering the restric-
tions to Wx, we see by Lemma 1.3, that Wx is irreducible under (&>hx). As
in [3, III.3], say, we may identify Wx with the additive group of i y , the
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field with rst elements. We also identify cbh1 with an element of order pfiqa

in the multiplicative group of F^t and 8 with the Galois automorphism of
order p. Letting n be such that t = np, and F^n be the subfield of order
rsn which comprises those elements fixed by the action of 8 , we see by, say
[3, III.4], that A, i F^n. Thus 8 does not centralize A,.

We let c = [S,hl]. Then 1 / c e {K)G n (A,). Since (c) is characteristic

in (A,), which is normal in (&>, 8, hx), we have that V x (c) < (K)G e
Fit(K). Thus V xi (c) is a non-nilpotent group which is an element of SrS n

Fit(AT).

We finally indicate why condition (vi) (that is 1 < m < p) of Section 1 is
necessary in order to construct Fitting classes like those in Construction 2.2.
We let G be a subgroup of GL(e, K), where K is any field, and define the
tensor-products

g 0\

J " s o ;
v i e •

and
#11 • " g\e

ge\ ' ' ' See .

(where Ie is the exe identity matrix). Thus both tensor-products are groups
of e2 x e2 matrices which are isomorphic to G.

PROPOSITION 4.2. (i) Ie®G and G®Ie commute elementwise in GL{e2,K),
(ii) Ie®G and G®Ie are conjugate in GL{e2, K).

PROOF, (i) is easy to verify directly. For (ii), we write G = Ie®G and
let G act operator-isomorphically, with its "natural" action, on the vector-
spaces Ul, ... , Ue, all of dimension e over K, where un,... , uie is a
basis of {/( (i = 1, ... , e) which induces the given representation of G.
We let U = C/j © • • • © Ue, that is, U is the direct sum of e operator-
isomorphic G-submodules. We choose a new basis of U by letting w.. = u,t
i, j = 1, . . . , e.

We can check that the action of G with respect to the w.. is represented

by G <8> Ie. Thus G and G ® Ie are equivalent representations and hence
conjugate in GL(e2, K).
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We let (col, dx) be as in Section 1 and, letting Frn be the subfield of order
rn in F (as in Section 1, where t = np), we see that Frn is centralised by
the action of 8X. We can thus consider (col, <S,) to be represented over Frn,
that is, (oj^S^KGUp^^).

We let

G = Ip®(a)l,6l)<GUp2,Fl,),

G=(col,dl)®Ip<GL(p2,Fr,)

and we let (cb) = Ip®((ox). We identify GL{p2, Frn) with the "natural"

subgroup of GL(p2n, r) = GL{pt, r). By Proposition 4.2 G and G are
conjugate and centralize each other in Gh(pt, r). Since Z((col, d{)) = 1,
we have that (G, G) = GxG. Now let V be the direct sum V = Ul®---®U ,
where Ui s U (as in Section 1), for i= 1 , ... ,p ,and let K = VxG. Thus
K is constructed analogously to K of Section 1, only with m—p.

From the above considerations K and V x G are isomorphic and also
Vx(GxG) is the normal product of K and VxG. So Vx(GxG)e Fit(K).
By considering condition (v) of Construction 2.2, we see that a Fitting class
construction directly analogous to that of Construction 2.2, with V x (co) in
place of V xi (co), is not possible.
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