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1. Introduction

This paper is a continuation of (4). The main aim of this paper is the intro-
duction of the concept of sex-linked duplication. In addition, we shall give
several equivalent definitions for the concept of a genetic algebra and make
several remarks on overlapping of generations.

2. Sex-linked duplication

In analogy with duplication, one can define the concept of sex-linked
duplication. However, caution is required since a natural naive approach
which first comes to mind fails. Consider the simple gametic algebra with
basis D and R, where D2 = D, R2 = R, and DR = iD+^R. . With basis
a = D and b = D — R we obtain a2 = a, ab = \b, and b2 = 0. The sex-
linked algebra ((2), Section 4) has a basis Dx D, DxR, RxR, D, R, with, for
example, {DxR)D = \{Dx D)+\(RxD)+^D+iR (we are improving the
notation used in (2)). By calculation

(DxD){D-R) = \{DxD-DxR) = \\Dx(£>-R)] = \{a x b).

The naive approach, which involves pretending as if a and b are genotypes and
following the usual rules for sex linkage, would give

(DxD)(D-R) = (a xa)b = \\aa xb + aa] = \\a x b + a].

Hence, unlike the case of duplication, it is not in general correct to apply the
expected rule with a basis other than the original.

Nevertheless, a theory of sex-linked duplication is possible. We consider a
baric algebra A with weight w, i.e. we include the weight into the structure we
are considering. The sex-linked duplication algebra of the algebra {A, w) is the
algebra C with underlying vector space Ax A® A where Ax A is as in (4,
Section 3), and product defined as follows:

(a x b@c){d x e@f) = \{ab xf<$w(f)ab) + i[de x c@w(c)de~\.

If we identify axb with ax fe©0 and c with 0©c we obtain the following:

(a x b)(c x d) = 0 for all a, b, c, deA

ab = 0 for all a, be A

(a x b)c = c(a xb) = \\ab xc+w(c)afr].
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We first show that the operation is well defined. Define

(a, b)c = %[abxc+w{c)ab~\

and extend by linearity to a multiplication of elements in G by elements of A.
Since • is trilinear in a, b, and c and symmetric in a and b, the product of an
element of / and an element of A is 0. Hence this induces a multiplication of
elements of Ax A by elements of A: (axb)-c = %[abxc+w(c)ab~]. Thus we
obtain an algebra with the table as given above. This agrees with the definitions
in the special cases discussed in (2).

Now x e C can be expressed uniquely as xi + x2 where x^eAxA and
x2 e A.

C is not baric. In fact, C has a basis consisting of nilpotent elements.
However, we shall see that C2 is baric. For x = axb+c define w'(x) = w(c)
and w"(x) = w(a)w(b). It is easy to see that w' and w" extend to linear functions
on C. (For w", we extend as usual to a bilinear function on G and note that we
obtain 0 if either factor is in /.) Now if x = (a x b) • c, then

w"(Xl) = \w"(ab x c) = iw(ab)w(c) = iw(a)w(b)w(c)
and

w'(x) = w(x2) = \w(c)w(ab) = iw(a)w(b)w(c).

Hence by linearity, for arbitrary c e C2, w'(c) = w"(c). Note also that

Using bilinearity, if xeAxA and ye A then w'{x-y) = iw"(x)w(y). Let D
be the subset of C consisting of all elements x such that w'{x) = w"(x). We
have shown that C2 is included in D. It follows that D is a subalgebra of C.
We now show that D, and hence C2, is baric. Finally, let x, y e D. Then

= w'(x)w'(y).

Since it is clear that w' is non-trivial on C2, hence on Z), tv' is a weight. Hence
D is baric.

We shall show later that D is a genetic algebra. The proof will be given by
means of a convenient basis-free definition of a genetic algebra.

As in the base of duplication, the property of being special train is not
preserved. Use the ordinary zygotic algebra with basis a, b, c and table a2 = a,
ab = \b,b2 = \c, ca = cb = c1 = 0. I = (axb, bxb, axe, bxc, exc, b, c).
Now b x b = i(a x b){b) e I2. However, (axa+a)(b xb) = £(a x c+c) 412

since I2 = (axb, bxb, axe, bxc, exc).
We note that if ab = 0 in A then (a x b)x = 0 for all x in C.
Sections 4 and 5 of (2) can be redone in the spirit of this section to make them

more transparent. We shall not pursue this exercise here.
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Sex-linked duplication is not as applicable as duplication. For example,
if the formalism is attempted in the case of polyploidy the genetic significance
becomes obscure. Nevertheless, the operation does lead to the correct result
in many genetic systems.

3. Definitions for a genetic algebra

In this section we shall introduce certain equivalent definitions for the con-
cept of a genetic algebra. Although some of the equivalences appear to be
known, they are not, as far as we know, found in the literature.

We let A be a baric algebra and N the ideal of elements with weight 0. The
right powers N' of the ideal N where r is an integer are defined inductively as
N1 = N and Nn+1 = N"N. Note that for non-associative algebras Nr is not
necessarily an ideal and NrNs does not necessarily equal Nr+S. We also define
two other types of powers. 7V[n] is the set of all linear combinations of products
of elements of A with at least n terms from N. Nin) is the set of all linear
combinations of right products of elements of A with at least n terms from N.
Clearly iV(n) and N™ are ideals.

We summarise the basic properties of these powers.

Lemma

(i) JV(n+1) is the smallest ideal containing NMN;

(ii) N(r) = Nir+1)=>Nir) = JV(S) ifs>r;

(iii) N™N™ c Nlr+S\-

(iv) Nir) <= Nlr\-

(v) iV[ 2 r" ] c JV(r).

The elementary proof is left to the reader. Consider the special train algebra
with basis {a0, au a2, a3} and multiplication table:

aiaj = ai+J u n l e s s i=j = 2 a n d a2a2 = a3.

(We are using the usual convention that ai+J = 0 if i+j>3.)
In this case

= (alta2,a3), N™ = (a2,a3), N<3> = (a3), JV<*> = 0,

= (fla, a3), N[ 3 ] = (a3), N ^ = (a3), iV[5] = 0.

It follows from the table that this is a uniform counterexample which
shows that the first three parts of the Lemma are false if ( ) and [ ] are inter-
changed and that the inclusion in (iv) cannot be reversed. More generally,
consider the algebra with basis {ao» Ou •••> <*n} ^vith multiplication table:

unless i=j and alal = al+l.
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This example shows that the result in (v) is sharp in the sense that Nl2'~1] c= N(r + 1 )

is not always valid.
We are now ready to state the following theorem:

Theorem 3.1. Let A be a baric algebra and N the ideal of elements with weight
0. Then the following conditions are equivalent:

(1) A is a genetic algebra;

(2) Nw = 0 for some n;

(3) Nw = Ofrom some n;

(4) If B denotes multiplication by b in the multiplication algebra M(A), then
b e N=>B e rad M(A).

Proof. It is clear that (1)=>(2). In fact, if a0, au ..., an is a basis of A with
table satisfying:

ataj = IXijkak where Xooo = 1 (1)

for k<j AOjk = 0 (2)

and for i, j>0 and k g max (i, j), Xijk = 0 (3)

then N = (au a2, ..., an) and N^"+l) = 0. (2)<s>(3) follows from the inclusions
Ni2"''i^Nin)cNln'i. We next show that (2)=>(1). Now/f has the form Xao@N.
LetN= Nw =>Nm =>...=>iV(r) = 0. L e t l g s g r - 1 . SinceN<s) andN(s+1)

are ideals, Ao operates in a natural way on the vector space N^/N^**1'*. Further-
more for beN, B operates on N(s)/N<-S+1\ in fact BNis)/N<-s+1) = 0. Hence
there exists a basis of N'-S)/N(s+1'' with respect to which Ao is lower triangular.
B is, of course, 0 regardless of the basis! If the bases for the various s are lifted
in any manner, we obtain a basis for N. It is now easily seen that with respect
to a0 and the new basis for N the algebra is genetic. (The argument is the same
as that of the last part of the proof of Theorem 2.1 in (4).)

To prove that (2)=>(4) suppose beN and JV(B) = 0. Consider the right ideal
BM(A). Since y4[5M(^)]n<=A^(n) = 0. Thus Be BM(A)<= rad M(A). Con-
versely, Berad M(A) for all beN implies that ANW = 0 for some r. It
follows that Nir+1) = 0. This completes the proof.

Remarks. The above use of quotient spaces could also be used to simplify
the proof of Theorem 2.1 in (4). Incidentally, as an alternative source to the
text on Lie algebras mentioned in (4), we mention (6) and the references there.

Definitions (2) or (3) may be used to give an alternative proof that Ax A is
genetic if A is genetic. Note first that M, the ideal of elements of weight 0 in
Ax AisNxA. It is easy to see that Mm<=.NwxA + NxN. More generally, we
have the following table of inclusions for r ^ 1 where by convention we let
jV° = JV<°> = Nm = A:

MrczNr-1xN; (4)
1 ) xN; (5)
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M[r]c £ (iV[s]xNtr-s]). (6)
s= 0

(4) and (5) are easily proved by ordinary induction. (6) is easily seen by com-
plete induction. The result that A genetic=>^4 x A genetic is clear from the table.

The following Theorem can now easily be proved.

Theorem 3.2. If A is a genetic algebra with weight w and C is the sex-linked
duplication algebra, then the subalgebra D of C consisting of all elements x such
that w'(x) = w"(x) is a genetic algebra.

In this case M, the ideal of elements of weight 0 = NxA + N. We obtain
the following table for r ^ 2:

(8)

MCr]c £ (JVwxN[r"s]) + iVw. (9)
s = 0

In the special case where NA = N the above inclusions become equalities.
Note first that the above condition implies that A2 = A since N — NAczA2

and A2 necessarily contains an element of weight different from zero. The
verification is then routine. Note that although it is easy to construct genetic
algebras with NA # N, (such as e.g. the mutation algebra in (2, Section 3)
where r+s = 1), most algebras studied in (2), (3), and (4) satisfy NA = N.

It is interesting to note that in this case M(r) and M[r] are ideals even in the
original algebra AxA + A.

We make two final remarks concerning the types of powers studied here.
First, a special train algebra may be defined as a genetic algebra satisfying
Nr = N(r).

It is clear from the tables that duplication and sex-linked duplication rarely
lead to special train algebras. For example, if NA = N and N2 # 0 it is clear
that in either case M2 # M(2).

Secondly, the polyploidy algebras studied in (3) satisfy NA = N as well as
jV<r> = Nlr\ Furthermore, in the special case studied in (2), N(r)IN^r+1'> is
1-dimensional for all r such that N(r) # 0. It might be worth while to give
special names to algebras having such desirable properties; however, we shall
not pursue this subject here.

4. Overlapping of generations

We consider a generalisation of the situation discussed in (1, Section 3).
The usual implicit assumption that mating occurs at discrete intervals is kept,
but we assume that a fixed ratio of a population in a given generation survive
into the next generation. We also assume that the survivors are indistinguish-
able from the new generation with respect to further breeding. Certainly a more
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refined study in population genetics would require distinguishing between a D,
survivor and a new D( as well as a consideration of selection and assortative
mating. If the original table corresponding to the case without overlapping had
the form DtDj = £ XiJkDk then the new table has the form

Dfij = r £ XiikDk + (1 - r)i(Z>; + Dj)
k

for some fixed r. This may be regarded as a mixture of algebras as discussed in
(4, Section 5) where the first is the original algebra and the second is a gametic
multiple allelic algebra (see 3, Section 2). Now the latter algebra is genetic with
respect to any basis where the first term represents a population and the other
terms have the sum of their coefficients zero. Hence the mixture is a genetic
algebra. Of secondary interest is the remark that if we start with a special train
algebra, then the mixture is also a special train algebra.

5. Miscellaneous remarks
The original proof found for Theorem 3.2 was made with an explicit basis

and was much more computational. It will suffice to indicate the basis and
ordering here. The computation itself is more or less routine.

Suppose A is genetic with respect to the basis a0, au a2, •••, an- We know
that {at xdji i ^ 7}u{aJ is a basis for C.

In the future, for convenience we replace a{ x a} by ati. Note that w{atj) = 0
unless i = j = 0 and w(a00) = 1. We thus can obtain a basis for D by deleting
a00 and av and inserting a00 + a0. It is immediate that this gives us a subspace
of C of deficiency 1 all of whose elements satisfy w(xj) = w(x2). Hence this
subspace is identical to D.

Now aoai has the form Xtai+ £ &oikak- Let nt be a root of the equation
k>i

x2—Xtx—Xt = 0. Note that nt is real if Xt is real and non-negative. We choose
a new basis for D by replacing aoi by bt = aOi—nPi for all z>0. We use the
convention: max (ay) = max (i,j), max at = max bt = /, min (atJ) = min (i,j),
min (bi) = 0, min (a() = — 1 and max (aO0 + ao) = min (aoo + ao) = 0. Then
we define the ordering on the basis as follows:

xt ^ Xj iff max X;>max Xj or max xt = max Xj and min x; ^ min Xj.
(5) which has recently come to our attention introduces the concept of a

dibaric algebra. It is easy to see that a sex-linked duplication algebra is dibaric.
Section 3 of the latter paper introduces partial sex linkage. The corresponding
multiplication table can be defined for a general baric algebra A as follows:

Let the underlying vector space be {A®A)@(A x A) (A® A is the usual tensor
product and A x A is as in Section 2). Then define the product as:

(a® b)(c®d) = (a x b)(c x d) = 0 (10)
(a<8>b)(cx d) = (ex d)(a®b) = i(l-6)[w(b)(ax cd) + w(a)(cd®by]

®a)]. (11)
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It is easy to see that this is well defined and consistent with the definition in
(5). The algebra is clearly dibaric. In this case, M, the ideal of elements of
weight 0, is N®A + A®N+NxA. The following table is easy to obtain:
For r ^ 2

(12)

^; (13)

M[r]c £ JVwxNc'"l]+ £ Nlsl<3>Nlr-s]. (14)
s = 0 s = 0

Again, it follows from the table that the algebra is genetic if A is genetic.
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