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The wake flow past an axisymmetric body of revolution at a diameter-based Reynolds
number Re = u∞D/ν = 5000 is investigated via a direct numerical simulation. The study
is focused on identification of coherent vortical motions and the dominant frequencies
in this flow. Three dominant coherent motions are identified in the wake: the vortex
shedding motion with the frequency of St = fD/u∞ = 0.27, the bubble pumping motion
with St = 0.02, and the very-low-frequency (VLF) motion originated in the very near
wake of the body with the frequency St = 0.002–0.005. The vortex shedding pattern is
demonstrated to follow a reflectional symmetry breaking mode, whereas the vortex loops
are shed alternatingly from each side of the vortex shedding plane, but are subsequently
twisted and tangled, giving the resulting wake structure a helical spiraling pattern. The
bubble pumping motion is confined to the recirculation region and is a result of a Görtler
instability. The VLF motion is related to a stochastic destabilisation of a steady symmetric
mode in the near wake and manifests itself as a slow, precessional motion of the wake
barycentre. The VLF mode with St = 0.005 is also detectable in the intermediate wake
and may be associated with a low-frequency radial flapping of the shear layer.

Key words: wakes, vortex dynamics, separated flows

1. Introduction

Coherent motions in turbulent flows, which refer to the motions of organised, statistically
significant eddy structures, persistent for relatively long time periods (Hussain 1986;
Robinson 1991; Adrian, Sakievich & Peet 2017), are of critical importance due to a
high amount of momentum and energy that they carry (Balakumar & Adrian 2007;
Vanierschot & Van Den Bulck 2011; Gayme & Minnick 2019), and their strong influence
on forces and moments acting on a body submerged in a turbulent flow (Pier 2008;
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Grandemange et al. 2012; Pavia et al. 2019), as well as noise production (Morrison 1982;
Guitton et al. 2008). Massively separated flows and bluff body wakes are some examples
of the systems, where strong coherent structures develop and significantly influence the
flow dynamics (Berger, Scholz & Schumm 1990; Rigas et al. 2014; Wu, Meneveau &
Mittal 2020). Bluff body wakes are important to understand due to their significance in
transportation industry, wind-energy capture, particle–flow interactions and geophysical
flows.

Axisymmetric bluff body wakes, i.e. the wakes behind the spheres, disks and bodies
of revolution (the last is the subject of the current paper), remain axisymmetric and
steady only at very low Reynolds numbers. For example, for a case of a sphere, the
first bifurcation at Re ≈ 210 (Magarvey & Bishop 1961; Wu & Faeth 1993) results in
a loss of axisymmetry and yields a steady planar symmetric structure with two vortex
lobes developed on each side of a reflectional symmetry plane (a reflectional symmetric
steady state or SS), see figure 1(a). The second bifurcation (Hopf bifurcation), renders
the flow unsteady and leads to a periodic shedding of vortices (Natarajan & Acrivos
1993; Pier 2008). In the case of a sphere, the resulting unsteady wake preserves a planar
symmetry, with the vortex loops of opposite signs shedding alternatingly from each side of
a plane (a reflectional symmetry preserving state or RSP). As Reynolds number increases
further, the appearance of additional frequencies in the temporal spectra is reported
(Sakamoto & Haniu 1990; Tomboulides & Orszag 2000), until, eventually, the wake
transitions to a turbulent state at around Re ≈ 900. In turbulent flows, the symmetries
detected in a laminar regime reemerge as coherent structures (Grandemange, Gohlke
& Cadot 2014; Rigas et al. 2014; Pavia et al. 2019). Consequently, vortex shedding in
a form of alternating vortex loops (RSP state) has been reported for sphere wakes for
a variety of Reynolds numbers (Mittal, Wilson & Najjar 2002; Rodriguez et al. 2011;
Vilaplana et al. 2013). A distinct peak corresponding to the vortex shedding frequency,
typically in the range of St ∼ 0.1–0.2, is detected in a turbulent spectra of bluff body
wakes (Achenbach 1974; Taneda 1978; Kim & Durbin 1988). Provided the Reynolds
number is sufficiently high, a statistical axisymmetry in the wake is recovered through a
random reorientation of the vortex shedding plane, which eventually explores all possible
azimuthal positions with equal probability (Achenbach 1974; Rodriguez et al. 2011;
Grandemange et al. 2014).

Although the RSP vortex shedding mode is prevalent in flows past a sphere, wakes
past blunt-edged bodies may follow a different route. Bury & Jardin (2012), through
direct numerical simulations (DNS) of transitional axisymmetric bluff body wakes,
demonstrated that the RSP state was relatively short-lived as Reynolds number was
increased, giving rise to a reflectional symmetry breaking (RSB) state prior to transition to
chaos. Fabre, Auguste & Magnaudet (2008) and Meliga, Chomaz & Sipp (2009) identified
the RSB mode as the first stable mode after the Hopf bifurcation from the corresponding
steady (SS) mode for the flow past a circular disk. In fact, they presented a bifurcation
diagram for the disk flow (figure 1b) showing that the RSB mode represents a stable
branch for the disk flow, whereas the RSP mode represents an unstable branch, which
is opposite to that of a sphere (figure 1a). RSB mode is characterised by twisting of
two opposite-sign vortex loops around each other, thus resulting in a loss of a planar
symmetry (Fabre et al. 2008; Bury & Jardin 2012). RSB mode was numerically detected
in a flow past a circular disk at a Reynolds number of 104 (Yang et al. 2014), and
experimentally in a flow past an axisymmetric bluff body at Re = 3.2 × 105 (Pavia et al.
2019). In both these occurrences, a random reorientation of the vortex shedding plane was
still observed.
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Figure 1. Theoretical bifurcation diagrams for (a) a sphere and (b) a flat circular disk. Solid (dashed) lines
denote stable (unstable) branches. Horizontal axis represents Reynolds number. Reprinted with permission
from D. Fabre, F. Auguste & J. Magnaudet, ‘Bifurcations and symmetry breaking in the wake of axisymmetric
bodies’, Phys. Fluids, vol. 20, issue 5, 2008, 051702. Copyright 2008 AIP Publishing.

Rigas et al. (2014) related the reorientation of a vortex shedding plane to a
low-frequency stochastic motion that occurs in the near wake of the axisymmetric body
and experimentally measured the associated frequency as St ∼ 0.002. The existence
of this, what we call a very-low-frequency (VLF) motion, was further confirmed in
experiments of Gentile et al. (2016) and Pavia et al. (2019) for axisymmetric bluff bodies,
with a similar frequency of 0.001–0.002. In these studies, the VLF motion was attributed
to a destabilisation of a steady symmetric (SS) mode by stochastic fluctuations. Rigas
et al. (2015) presented a stochastic diffusion model to describe the dynamics of the VLF
processes in the axisymmetric wakes, similar to the models that were previously developed
to explain the low-frequency motions in Rayleigh–Bénard convection (Brown & Ahlers
2008) and a swirling flow (de la Torre & Burguete 2007). As the VLF motion seems to be
originated from the SS mode, it can technically occur with both the RSP and RSB vortex
shedding scenarios. In fact, the flow past a body of revolution was documented to be in the
RSP mode in Gentile et al. (2016) and Zhu & Morrison (2021), whereas the co-existence
of the RSP and RSB states was reported in Pavia et al. (2019).

The current paper focuses on identification and characterisation of coherent motions
in the wake of an axisymmetric body of revolution with a blunt trailing edge at Re =
5000. Although coherent structures in the wake of a sphere are a subject of many previous
investigations (Achenbach 1974; Taneda 1978; Yun, Kim & Choi 2006; Rodriguez et al.
2011) and wakes behind the disks also received some attention (Carmody 1964; Berger
et al. 1990; Yang et al. 2014), there are, however, significantly fewer studies concerning
the wakes of axisymmetric bodies. Previously mentioned investigations (Rigas et al. 2014;
Gentile et al. 2016; Pavia et al. 2019; Zhu & Morrison 2021) concentrated mostly on the
near wake of the flow (x/D ≤ 2), whereas studies at higher Reynolds numbers (Jiménez,
Hultmark & Smits 2010; Ashok, Buren & Smits 2015; Posa & Balaras 2016; Kumar &
Mahesh 2018) did not investigate coherent structures. The intended contribution of the
present paper is to draw a connection between coherent motions in the near wake of the
body and the manifestation of these motions, or a lack of thereof, in the intermediate wake.
To this end, we conduct DNS of the flow, extending the simulation time to over 1000 vortex
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shedding cycles, in order to detect theVLF motions. In particular, with the current DNS
investigation we aim to answer the following questions.

(1) What are the dominant frequencies and the associated coherent motions in the near
wake and in the intermediate wake of the body at this Reynolds number?

(2) How do these motions develop and evolve: e.g. can the VLF motions originating
upstream of a vortex shedding location be felt in the intermediate wake?

(3) What spatial structures are associated with different coherent motions?

The paper is organised as follows. In § 2, we introduce the problem set-up, including the
description of the numerical methodology, geometry and the computational grid. In § 3,
we present the results of the study, focusing on the global mode analysis and discussion of
coherent motions. Conclusions are given in § 4.

2. Problem set-up

2.1. Equations and numerical method
In this study, we solve incompressible Navier–Stokes equations

∂u
∂ t

+ u · ∇u = −∇p + ν∇2u,

∇ · u = 0

⎫⎬
⎭ (2.1)

for a flow over a body of revolution using a DNS technique. In (2.1), u is the velocity,
p is the pressure and ν is the kinematic viscosity. Governing equations are solved with
an open-source spectral-element solver Nek5000 (Fischer et al. 2015). For the spatial
discretisation, it utilises a spectral element method (SEM) that possesses advantages
of the geometric flexibility of finite volume methods and the spectral convergence of
global spectral methods (Patera 1984; Deville, Fischer & Mund 2002). SEM is based
on a weak formulation of governing equations. The solutions are sought for velocity
and pressure approximated by high-order polynomials. For example, for velocity in an
elementΩe, we have the approximation u(x)|Ωe = ∑N

i,j,k=1 ue
ijkhi(r)hj(s)hk(ζ ), where the

basis functions hi(r), i = 0, . . . ,N, are Lagrange interpolating polynomials of degree N
defined on Gauss–Legendre–Lobatto (GLL) quadrature points, ξj, such that hi(ξj) = δij
(Deville et al. 2002). In order to avoid the spurious pressure modes, the pressure field
is approximated with a lower polynomial order of N − 2 (Fischer 1997; Deville et al.
2002). For the temporal discretisation, a second-order backward differentiation scheme
is employed for the diffusion terms and a second-order explicit extrapolation scheme
is used for the convection terms. To eliminate the aliasing error, 3(N + 1)/2 nodes are
used when applying the quadrature rule to nonlinear terms (Mengaldo et al. 2015). The
primitive variables are filtered using a polynomial filter with a low weight of α = 0.01 for
stabilisation (Fischer & Mullen 2001). SEMs provide minimal numerical dispersion and
dissipation errors and are advantageous for DNS of turbulent flows (Kreiss & Oliger 1972;
El Khoury et al. 2013; Wang et al. 2013).

2.2. Geometry and computation grid
The geometry of the body of revolution is modelled after Gentile et al. (2016) and
consists of a cylinder with a spherically blunted ogive nose and a blunt trailing edge
schematically illustrated in figure 2. All geometrical variables are normalised with the
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Figure 2. Geometry of the body of revolution in the current DNS consists of an ogive spherically blunted body
of the length 2D followed by a circular cylinder of the length 3D, where D is the cylinder diameter. The model
features zero pitch and yaw.

cylinder diameter D, and velocity variables are normalised with the free-stream velocity
u∞. The direction that coincides with the body axis of rotation is denoted as the x
axis, whereas a vertical-spanwise cross-sectional plane contains y and z axes. As in
the experiments of Gentile et al. (2016), the body axis of rotation is aligned with the
free-stream, and there is no pitch or yaw on the model. In contrast to the experiments, the
boundary layer on the model surface is not tripped, resulting in a laminar boundary layer
through the entire length of the body. The model support present in the experiments is not
included in the DNS. Finally, the Reynolds number of the flow is Re = 5000 in the current
DNS, whereas it is Re = 6.7 × 104 in the experiments. Boundary conditions are set as the
no-slip on the model surface, uniform free-stream velocity u∞ is specified at the inflow
and the stabilised boundary conditions (Dong, Karniadakis & Chrissostomidis 2014) are
used at the outflow. Initial conditions in the current DNS correspond to an unperturbed
free-stream.

The computational domain is cylindrical, with the radius of 7.5D and the length of 32D,
as can be viewed in figure 3, which shows a slice of the domain in a streamwise-radial
plane. The trailing edge of the body is located at x = 0. For constructing the mesh, an
O-grid meshing strategy is employed. A partial view of the computational mesh utilised
in this study can be seen in figure 4, where only the element boundaries are shown. As
Nek5000 requires hexahedral meshes, the generated mesh has all hexahedral elements.
The mesh is generated in Ansys Icem and converted to the format that can be read by
Nek5000 using the open-source exo2nek converter (Fischer et al. 2015). During the mesh
generation procedure, the mesh constructed by Ansys Icem is enhanced from Hex8 to
Hex27 elements for a more accurate resolution of the curvilinear geometry. The current
simulation employs seventh-order polynomials in each coordinate direction resulting in a
83 nodal stencil within each element (for velocity; fifth-order polynomials and 63 stencil
for pressure). The time step in the current simulations is equal to 	tu∞/D = 4 × 10−4

in non-dimensional units. The total simulation time corresponds to tmax = 4160D/u∞,
or approximately 1123 vortex shedding cycles. Statistics are being collected after tmin =
1260D/u∞ (340 vortex shedding cycles), leading to the total time of the statistical
averaging as tstat = tmax − tmin = 2900D/u∞ (783 vortex shedding cycles). Snapshots for
statistical analysis are collected every 1500 time steps, leading to 	tsnap = 0.6D/u∞ as
the temporal separation between snapshots. Appendix A compares the grid resolution and
the statistical averaging time for the current DNS with the other DNS studies of wake
flows at comparable Reynolds numbers, whereas Appendix B presents the validation of
the numerical methodology.
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Figure 3. Slice of the computational domain in a streamwise-radial plane. The domain is cylindrical with a
radius 7.5D and a total streamwise length of 32D. The upstream portion in front of the body is 7D, the body
length is 5D and the downstream portion is 20D. The trailing edge of the body is at x = 0.
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Figure 4. A partial view of the computational mesh. Only element boundaries are shown. (a)
Streamwise-vertical cross-sectional view. Refinement around the leading and trailing edges of the body is
visible. (b) Spanwise-vertical cross-sectional view showing a slice of the mesh behind the body trailing edge.

2.3. Post-processing and notation
As the model geometry and the computational domain are both axisymmetric, it is
convenient for analysis to define the radial velocity, ur, and the azimuthal velocity, uθ ,
on the cross-sectional planes (see figure 2). To compute statistically averaged quantities,
we introduce the averaging operator 〈·〉, where the subscript after the operator denotes
the variable with respect to which the averaging is performed, e.g. 〈·〉θ and 〈·〉t give the
averages over the azimuthal direction and over time, respectively, as

〈φ〉θ = 1
2π

∫ 2π

0
φ(θ, arg) dθ, (2.2)

〈φ〉t = 1
tstat

∫ tmax

tmin

φ(t, arg) dt, (2.3)

with tstat = tmax − tmin, tmin = 1260D/u∞, tmax = 4160D/u∞, corresponding to the start
and the end of collecting statistics, as defined previously. The argument ‘arg’ in the
brackets of the function φ in (2.2), (2.3) refers to the remaining arguments of the function
that is being averaged, depending on the context. Unless otherwise noted, the definition of
the averaging operator 〈·〉t in the current paper follows the convention of (2.3), with the
limits tmin, tmax as specified.

A fluctuation of the instantaneous quantity φ(x, y, z, t) is defined as

φ′(x, y, z, t) = φ(x, y, z, t)− 〈φ(x, y, z, t)〉t. (2.4)
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Furthermore, for any given temporally dependent signal φ(t), its power spectral density
(PSD) is defined as

PSD(St) =
∣∣∣∣
∫ tmax

tmin

φ(t) exp
(

− i 2π(St)u∞t
D

)
dt

∣∣∣∣
2

, (2.5)

where i is the imaginary unit and St = fD/u∞. We also define the normalised PSD as

Normalised PSD(St) = PSD(St)
maxSt PSD(St)

. (2.6)

For the modal analysis, uniformly spaced data from the wake region (x, y, z) ∈
[0, 20D] × [−2D, 2D] × [−2D, 2D] is collected during the interval t ∈ [tmin, tmax], with
a temporal separation of 	tsnap = 0.6D/u∞, leading to the total of P = 4836 snapshots.
The spatiotemporal data for u′, u′

r and u′
θ is arranged into the matrix X = [Xnp] of the

size N × P, with N = 3S, and S being the number of gridpoints in the post-processing
grid (Taira et al. 2017). For the proper orthogonal decomposition (POD), a singular
value decomposition of the matrix X is performed as X = USV ∗, with U ∈ CN×N

corresponding to the spatial POD modes, S ∈ RN×P = diag{σp} storing the energy of
the modes, and V ∈ CP×P containing the temporal coefficients of the modes. For the
dynamic mode decomposition (DMD), the snapshots in the matrix X are arranged into two
matrices Y = [

X 1 X 2 . . . X P−1
]

and Y ′ = [
X 2 X 3 . . . X P

]
, where X i denotes

the ith column of X . Relating the two matrices as Y ′ = AY , DMD modes (ψψψk) and their
frequencies (ωk) are associated with the eigenvectors (wk) and eigenvalues (λk) of the
reduced matrix Ã obtained from A via its projection onto a truncated set of POD modes
of Y (Taira et al. 2017; Wu et al. 2020). Each temporally growing or decaying mode can
then be reconstructed as X DMD,k(t) = bkψψψk exp(ωkt), with ωk = ln(λk)/	tsnap being the
complex frequency, and bbb = ΨΨΨ−1X 1 being the vector containing the amplitudes of the
modes (matrix ΨΨΨ is constructed from the DMD modes ψψψk as its columns). Finally, the
frequency of each mode fk is related to its complex frequency as fk = 2π Im(ωk). Owing
to azimuthal periodicity of the data, the azimuthal modes can be extracted as (Rigas et al.
2014; Sakievich, Peet & Adrian 2020)

φ̂m(r, x, t) = 1
2π

∫ 2π

0
φ(θ, r, x, t)e−imθ dθ. (2.7)

3. Results

3.1. Global description of the wake flow

3.1.1. Schematic view of coherent motions
The dominant coherent structure systems developing in the wake of an axisymmetric body
with the blunt trailing edge, as detected in the current study, are schematically illustrated in
figure 5. They consist of the VLF motions originating behind the trailing edge, potentially
associated with the barycentre precession (with the frequencies fp), the bubble pumping
(shrinkage and enlargement) motions of a recirculation bubble (with the frequencies fb)
and the vortex shedding motions in the shear layer (with the frequencies fv). These modes,
as well as their associated normalised frequencies (St = fD/u∞), as detected in the current
study, are summarised in table 1. To better illustrate the global structure of the wake, we
also present the mean streamwise velocity and the instantaneous spanwise vorticity across
the plane of symmetry at z = 0 in figure 6.
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D

Model trailing edge Recirculation bubble

Helical structure

fp

fb

fv

Figure 5. A schematic representation of coherent structures behind the axisymmetric body with a blunt trailing
edge detected in the current study. Here fv denotes vortex shedding frequencies, fb denotes bubble pumping
frequencies and fp denotes precession frequencies.

Coherent motion Place of origin Strouhal Azimuthal mode POD mode

VLF Very near wake 0.001–0.005 |m| = 1 → |m| = 2 6, 7
Bubble pumping Separation bubble 0.02 |m| = 0 5–7
Vortex shedding Shear layer 0.27, 0.55 |m| = 1, 2 1–4

Table 1. Dominant coherent motions, their frequencies and the mode identification results.

4
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0.5–1.2 × 10–1 1.0 × 100
u/u∞

0–5 × 100 5 × 100

ωzD/u∞

(a) (b)

Figure 6. Visualisations of the wake flow across a symmetry plane, z = 0: (a) mean streamwise velocity;
(b) instantaneous spanwise vorticity.

3.1.2. Global modes
In order to understand the low-dimensional structure of the wake, we conduct the
three-dimensional POD analysis. Figure 7(a) illustrates the energy content of the POD
modes of a decreasing order, and figure 8 shows the spatial structure of the first seven
POD modes of u′ fluctuations projected onto a z = 0 slice, as well as the normalised PSD
of the time-dependent mode coefficients, computed using (2.5) and (2.6).

The first two most energetic POD modes are dominated by the vortex shedding motions
with the frequency of St = 0.27, whereas the second two modes correspond to the double
vortex shedding motions with St = 0.55. The fifth mode captures the bubble pumping
motion with St = 0.02 and is locally confined to the recirculation region behind the model
trailing edge. The modes 6 and 7 carry the imprints of the VLF motions, which originate
in the near wake of the body but propagate into the intermediate wake.

POD, by construction, identifies the most energetic modes of the flow, which can
however represent a combination of different frequencies. To isolate the motions of specific
frequencies, three-dimensional DMD decomposition is performed. Figure 7(b) presents
the spectrum of the three-dimensionalDMD modes. As in Wu et al. (2020), the spectrum of
the flow is quiet broadband, indicating a significance of multiple frequency contributions
in a turbulent wake dynamics. However, a distinct peak at St = 0.27 (vortex shedding
frequency) can be appreciated, followed by several high-amplitude modes around the
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Figure 7. (a) Turbulent energy content, σ 2
p , of the first 30 POD modes; σ 2

p correspond to the cumulative energy
over all three velocity components. (b) Spectrum of three-dimensional DMD modes. Red circles correspond to
the first four modes with the highest amplitude (St = 0.27, 0.56, 0.53, 0.58), blue circles are the modes with
the frequencies closest to St = 0.55, 0.02, 0.005, whereas the magenta circle represents the strongest stationary
mode.

double vortex shedding frequency of St = 0.55. A relative significance of a VLF mode
(with St = 0.005) is also notable. Of interest is also an existence of several stationary
modes (St = 0) in the spectrum. The bubble pumping frequency (St = 0.02) is not strongly
pronounced in the global spectrum, because it is highly localised in the recirculation
region of the flow (x/D ≤ 1.6). However, as we show later, it shows dominance in the
near-wake dynamics. Figure 9 visualises the global structure of the modes corresponding
to particular frequencies of interest: the top row of the figure plots the first four modes
with the highest amplitude (St = 0.27, 0.56, 0.53 and 0.58), whereas the bottom row plots
additional modes of interest, with the frequencies closest to those revealed from the POD
analysis (St = 0.55, 0.02, 0.005) and the strongest stationary mode (with St = 0). We
remark that the frequencies fk of the DMD modes are related to the matrix eigenvalues
λk and thus are the output of the DMD analysis. The exact values corresponding to the
mode frequencies are rounded up for conciseness. The first highest-amplitude DMD mode
corresponds to the pure vortex shedding mode. The vortex shedding mode is followed by
the three modes close to the double vortex shedding frequency. Interesting to note is a
distortion of these modes by small-scale turbulence, showing the significance of multiple
scales and their interactions in the dynamics of turbulent separated flows, also noted in Wu
et al. (2020). Although these distorted modes contribute to the DMD spectrum, they do
not carry as much energy as the pure double vortex shedding mode with St = 0.55. This
is evident from the 3D POD analysis, where the modes with St = 0.55 are detected as the
most energetic modes followed by the vortex shedding modes (modes 3 and 4 in figure 8).
A pure double vortex shedding mode, corresponding to the frequency of St = 0.55, is
shown in figure 9(e). Pure vortex shedding and double vortex shedding modes represent a
perfect helix and a double helix, respectively. The subsequent analysis in this article reveals
the dominant physical mechanisms that give rise to this pattern. The bubble pumping mode
(figure 9f ) is indeed highly localised and confined to the near-wake region of the flow. The
VLF mode (St = 0.005), on the other hand, bears a global presence in the wake. Of note
is also an existence of a strong stationary mode (St = 0), closely resembling the structure
of the VLF St = 0.005 mode. A notable feature is a transition of these two modes from a
two-lobe structure (corresponding to the first azimuthal mode |m| = 1) in the near wake, to
a four-lobe structure (commensurate with |m| = 2 mode) shortly after the vortex shedding
processes begin (x ≈ 1.6D). This transition is further revealed by the projection of the
three-dimensional DMD modes onto cross-sectional slices along different streamwise
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(a,c,e,g,i,k,m), and the corresponding normalised PSD of the temporal coefficient of each mode (b,d, f,h,j,l,n).

locations in the wake, shown for St = 0.005, 0.02, 0.27 and 0.55 in figure 10. Although
the azimuthal mode structure is discernible from the DMD projections, a formal azimuthal
decomposition via (2.7) was also performed in this study, to corroborate these findings and
the data in table 1 (not presented for brevity). Note that St = 0.27 and St = 0.55 modes are
weak in the near wake, but pick up shortly after the vortex shedding begins. On the other
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Figure 9. Three-dimensional DMD modes for different St numbers plotted using the isosurfaces of ψψψk(u′)
[thresholded on 2 × 10−4 for all the modes except for 5 × 10−3 for ( f )]: (a) St = 0.27, (b) St = 0.57,
(c) St = 0.53, (d) St = 0.58, (e) St = 0.55, ( f ) St = 0.02, (g) St = 0.005 and (h) St = 0.

hand, the St = 0.02 mode is exceptionally strong at x/D ≤ 1.6, but it weakens, diffuses
and mingles with the VLF mode further downstream, losing its perfectly axisymmetric
shape.

3.1.3. Barycentre dynamics
To relate the global structure of the modes identified in the previous section to the
dynamic processes occurring in the wake, we look at the dynamics of the wake barycentre.
The barycentre in this work is defined based on the momentum deficit formulation
(Grandemange et al. 2012; Yang et al. 2014; Gentile et al. 2016) as

yb(x, t) =

∫∫
A
(u∞ − u(x, y, z, t)) y dz dy

∫∫
A
(u∞ − u(x, y, z, t)) dz dy

,

zb(x, t) =

∫∫
A
(u∞ − u(x, y, z, t)) z dz dy

∫∫
A
(u∞ − u(x, y, z, t)) dz dy

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where A = {r ∈ [0, 3D], θ ∈ [0, 2π]}.
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Figure 10. Three-dimensional DMD results on the cross-sectional slices at different streamwise locations for
(a) St = 0.005, (b) St = 0.02, (c) St = 0.27 and (d) St = 0.55 using the field of u′. Values are multiplied by
104 for plotting.

The dynamics of the wake barycentre is investigated through the history and the
corresponding power spectral analysis of the barycentre positions at selected streamwise
locations. The corresponding results are shown in figure 11 for the intermediate wake
and in figure 12 for the very-near wake. From figure 11, we observe that the wake
barycentre rotates around the centreline and is more likely to locate off the centreline
than at the centreline. The PSD results show that the radial motion of the barycentre in
the intermediate wake is linked to the bubble pumping (St = 0.02), whereas the azimuthal
motion is associated with the vortex shedding (St = 0.27). The super-harmonic of the
vortex shedding frequency (St = 0.55) is also detected in the PSD at x = 9.8D. From the
results, we can conclude that the wake barycentre at the cross-sectional planes is rotating
about the geometric centreline with the vortex shedding frequency, which is consistent
with the observed helical pattern of the corresponding global modes.

In the very near wake (x < 1.6D) the barycentre has more complicated dynamics. As
illustrated in figure 12(a), on the one hand, the barycentre is rotating about an axis with
approximately the vortex shedding frequency (as deduced by the fact that a full circle
is completed in approximately 7 snapshots separated by 0.6D/u∞). On the other hand,
the axis of rotation is also moving. The motion of the axis does not show any particular
well-defined pattern (figure 12b), but it also does not seem to be entirely random (cf.
figure 12a). From the PSD of the barycentre position plotted in figure 12(c), vortex
shedding frequency is captured, which is consistent with the inner circle trajectories
observed in figure 12(a). However, two distinct peaks (one for radial position and one
for azimuthal position) at very low frequencies are also detected for the barycentre motion
in the very near wake, unlike at the other axial locations (figure 11). The lowest frequency
of St = 0.001 is captured by an azimuthal motion of the barycentre, whereas a St = 0.005
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peak is detected in its radial motion. Low-frequency azimuthal motions were associated
with reorientations of the vortex shedding plane in the studies of Rigas et al. (2014) and
Gentile et al. (2016). Low-frequency radial motions of the near-wake barycentre were
discussed in Gentile et al. (2016) and might be related to a flapping mode of the shear
layer (Wolf et al. 2012; Schrijer, Sciacchitano & Scarano 2014).

3.2. Details of coherent motion systems
In this section, we turn our attention to the three identified dominant coherent motions,
VLF motion, bubble pumping and vortex shedding, and analyse their detailed dynamics.
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Figure 13. Normalised PSD of u′(x, y, z, t) at the three probes: (a) probe 1, (0.2D, 0D, 0D); (b) probe 2,
(1.6D, 0D, 0D); (c) probe 3, (1.4D,−0.5D, 0D).

3.2.1. Time history probes
To confirm that the VLF, bubble pumping and vortex shedding motions are dominant
in the very near wake, inside the recirculation zone and within the vortex shedding
location, respectively, and to verify their frequencies, we place three probes in the
wake, as illustrated in figure 6. Probe 1 is set immediately behind the trailing edge at
(x, y, z) = (0.2D, 0D, 0D) to capture the VLF motions. Probe 2 is placed near the end
of the recirculation region at (x, y, z) = (1.6D, 0D, 0D) to capture the bubble pumping.
Probe 3 is located in the shear layer at (x, y, z) = (1.4D,−0.5D, 0D) to capture the vortex
shedding. To relate the probe locations to the dynamic processes in the wake, the reader
is referred to figure 6(b), which plots the instantaneous contours of spanwise vorticity
ωzu∞/D across a symmetry plane at z = 0. Normalised PSD is plotted in figure 13 for
the three probes. It can be seen that, indeed, the VLF (and the bubble pumping) motions
are captured in the very near wake, the bubble pumping is the dominant process in the
recirculation region, and the vortex shedding motions with St = 0.27 are prevalent in the
shear layer. We now proceed with discussing each of these dominant motions in detail.

3.2.2. VLF motion
The existence of VLF motions with St ∼ 0.001 − 0.002 was reported in previous studies
for a wake flow past a body of revolution (Rigas et al. 2014; Gentile et al. 2016) and for
an annular jet (Vanierschot & Van Den Bulck 2011). Recent contributions have associated
the VLF motions with an azimuthal instability of the SS (steady symmetric) mode in
the very near wake behind a bluff body. To detect whether SS mode is present in the
current flow, we conduct a base pressure analysis similar to that reported by Rigas et al.
(2014). Figure 14 plots the instantaneous snapshots of the pressure at the trailing edge of
the axisymmetric body model. A clear antisymmetric pattern indicative of an existence of
|m| = 1 mode in the instantaneous fields is visible, commensurate with the observations
of Rigas et al. (2014) and Gentile et al. (2016). The two-dimensional POD analysis of
base pressure (see figure 15) reveals the axisymmetric m = 0 mode with the dominant
frequency of St = 0.02 as the first mode (consistent with figure 13a), and the two |m| = 1
asymmetric modes with the dominant frequencies in both the VLF and the vortex shedding
regions as the second and the third modes. These results point towards the existence of the
SS mode in the very-near-wake region in the current flow, as in the studies of Rigas et al.
(2014) and Gentile et al. (2016), and are consistent with the hypothesis that VLF motions
may be associated with the stochastic perturbations of the SS mode. A close resemblance
of the VLF mode to a stationary mode in figure 9 further corroborates this hypothesis.
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Figure 14. Instantaneous pressure distribution at the trailing edge of the body at two different time instances:
(a) t = 1920D/u∞; (b) t = 3540D/u∞.
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Figure 15. POD modes and their spectra for the base pressure: (a,f ) mode 1, (b,g) mode 2, (c,h) mode 3,
(d,i) mode 4 and (e,j) mode 5.

Although the origin of the VLF motion may be associated with the instabilities of the
SS mode, the manifestation of this motion was found to be related to a slow azimuthal
rotation of the vortex shedding symmetry plane past an axisymmetric body in Rigas et al.
(2014) and Gentile et al. (2016), and to a precessional motion of the toroidal vortex around
the central axis in the annular jet flow in Vanierschot & Van Den Bulck (2011). Similar
precessional motions are also detected for the barycentre in the very near wake in this
study (see figure 12). The precession dynamics of the barycentre is further studied in
figure 16, where an azimuthal angle of the barycentre position is plotted versus time for
x = 0.2D and x = 1.6D. For x = 0.2D, we observe a chaotic dynamics similar to that
reported in Gentile et al. (2016) for the VLF precessional motion. Small-scale fluctuations
of the trajectory corresponding to the inner barycentre rotations with the vortex shedding
frequency are clearly seen in figure 16(b), as well as the signature of the slower, VLF
modulation. This is contrasted with the x = 1.6D signal in figure 16(c) (and subsequent
downstream locations, not shown here), where a pure rotational motion with a nearly
constant rate of rotation (θb ≈ θb0 + 2πfvt) is observed. For the precessional motion in
figure 16(a,b), we do not detect any statistically significant reversals on the computed flow
time scale. We see some partial reversals at tu∞/D ≈ 2470, 3300, however the direction
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Figure 16. Barycentre azimuthal position θb versus time for (a) x = 0.2D, tu∞/D ∈ [tmin, tmax], (b) x = 0.2D,
tu∞/D ∈ [2300, 2700] and (c) x = 1.6D, tu∞/D ∈ [2400, 2500]. In (a), the full history for the statistics
collecting time is shown; for (b,c), a partial history is shown, commensurate with the time in brackets in the
subcaptions. In (b,c), circles represent the snapshots, separated by 	tsnap u∞/D = 0.6 (there are 7 snapshots
in a vortex shedding cycle).

of rotation quickly switches back to its original, counterclockwise orientation (increasing
θ ). This is in contrast to Yang et al. (2015), where full reversals in the direction of rotation
were detected in the wake behind the circular disk at Re ∼ 300–10 000 with large eddy
simulations, on much shorter time scales, St ∼ 0.02, comparable with the bubble pumping
time scales. We note that previous studies that analysed the VLF motions of the barycentre
in the near wake behind a body of revolution (Rigas et al. 2014; Gentile et al. 2016) did not
comment on reversals in the precession direction. A rotational bias (commensurate with
a lack of reversals) in the near wake results in a mean flow asymmetry over the full DNS
averaging time in the current study, which can be appreciated from a non-zero mean value
of the cross-sectional moment about the geometric centreline in the near wake,

〈M〉t =
∫ tmax

tmin

∫∫
A

uθ (x, r, θ, t)r2 dr dθ dt, (3.2)

depicted in figure 17(a). Rotational motion in the near wake can be further visualised by the
instantaneous streamlines in figure 17(b) that show the swirling paths in a narrow region
behind the body, confined to a recirculation zone, suggesting an existence of a rotation
within the recirculation region.
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Figure 17. Manifestation of the rotational processes in the near-wake region. (a) Time-averaged cross-sectional
moment. (b) Three-dimensional streamlines coloured by streamwise velocity. Swirling in the recirculation
region immediately behind the bluff body trailing edge reflected by the coloured streamlines is visible.
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Figure 18. Instantaneous snapshots of azimuthally averaged streamwise velocity: (a) short bubble; (b) long
bubble. White dashed lines correspond to isolines of 〈u〉θ = 0.

3.2.3. Bubble pumping motion
Bubble pumping motion, corresponding to St = 0.02 in the current study, refers to a
periodic shrinkage and elongation of the recirculation region. It is visualised in figure 18,
where two representative snapshots of an azimuthally averaged instantaneous streamwise
velocity are plotted in the recirculation region at two different time instances. A shorter
length of the bubble in the left image as compared with the right image is clearly
pronounced. Bubble pumping is a robust feature of the separated flows for a range of
surface geometries and Reynolds number regimes (Berger et al. 1990; Rodriguez et al.
2011; Rigas et al. 2014; Wu et al. 2020).

It has been proposed that the Görtler instability induced by a streamwise curvature of
the separation bubble may be a possible origin of its low-frequency unsteadiness (Wu et al.
2020; Hu, Hickel & Van Oudheusden 2021). Following the analysis in Wu et al. (2020)
and Hu et al. (2021), we compute the curvature and the Görtler number distribution along
the selected streamlines shown in figure 19. Curvature is computed as δ0/R, where δ0 is
the boundary layer thickness at the trailing edge of the body (x = 0) and R is the local
radius of curvature. The Görtler number in the original studies of the instabilities over the
concave walls (Görtler 1954; Smith 1955) is defined as

GT = ueΘ

ν

√
Θ

R
, (3.3)

where ue andΘ are the free-stream velocity at the edge of the boundary layer and the local
momentum thickness, respectively, with GT > 0.3 being a criterion for the instability.
However, this criterion is for laminar flows. Tani (1964) and Wu et al. (2020) has
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Figure 19. Analysis of Görtler instabilities. (a) Selected streamlines for analysis. Black, isoline of 〈u〉t = 0
followed by the centreline; blue, streamline 1, originated at (−2D, 0.52D, 0); red, streamline 2, originated at
(−2D, 0.54D, 0). (b) Curvature along the streamline 1 (blue) and streamline 2 (red). (c,d) Görtler number
calculated using the criterion of (c) (3.3) and (d) (3.5) for the streamline 1 (blue) and streamline 2 (red).

substituted the kinematic viscosity ν with the total viscosity νtot = ν + νt,eff to estimate
the Görtler number in (3.3), where νt,eff is the effective turbulent eddy viscosity calculated
as (Spalart & Strelets 2000)

νt,eff = −
〈u′

iu
′
j〉θ,t

2SijSij
, (3.4)

where Sij is the temporally and azimuthally averaged strain rate tensor. They suggested
that the same criterion GT > 0.3, with GT number based on the total viscosity, could be
applied to turbulent flows. However, these studies have been focused on boundary layers,
whereas in the current configuration, the flow separation occurs due to a blunt body located
upstream. Hu et al. (2021) applied the Görtler instability criterion to a flow separation
behind a backward facing step. They calculated Görtler number based on the following
equation

GT = Θ

0.18δ∗

√
Θ

R
, (3.5)

where δ∗ is the local displacement thickness, and used the criterion GT > 0.6 for
instability. Görtler number calculated based on both the definitions of (3.3) and (3.5) is
plotted in figure 19 along the two selected streamlines. It can be seen that GT estimations
based on both criteria are close to their computed values in Wu et al. (2020) and Hu et al.
(2021), respectively, and both satisfy the instability criterion. This suggests that Görtler
instability, indeed, may play a role in a low-frequency bubble unsteadiness observed here
(Wu et al. 2020; Hu et al. 2021).

3.2.4. Vortex shedding motion
Vortex shedding motion is captured in the previous analysis with the frequency of St =
0.27. In Gentile et al. (2016), the vortex shedding frequency of St = 0.2 was reported.
The difference is attributed to a state of the boundary layer on the bluff body surface.
In Gentile et al. (2016), the boundary layer is tripped along the body, which causes its
transition to a turbulent state. The boundary layer in the current study has been confirmed
as laminar by matching the boundary layer profile with the Blasius solution (not shown
here). The boundary layer thickness at the trailing edge of the body in the current study
is δ/D = 0.11, Θ/D = 0.013, resulting in a Reynolds number based on the distance from
the leading edge as Rex = 2.5 × 104, and based on the momentum thickness as ReΘ = 65.
It was reported in Sieverding & Heinemann (1990) that a change from a laminar to
a turbulent boundary layer, either by tripping the boundary layer or by increasing the
Reynolds number, decreases the Strouhal number drastically, by as much as 30–80 %,
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Figure 20. Helical structure in the wake visualised by λci = 5(u∞/D)2. The cross-sectional slices are
coloured by streamwise velocity. The first slice is at x = 1.6D, the separation between slices is 1.4D.

depending on the geometry. The dependence of the Strouhal number on the boundary
layer thickness was examined in Rowe, Fry & Motallebi (2001) and Mariotti & Buresti
(2013) for a similar geometry of an axisymmetric blunt body. For a thinner boundary
layer (smooth case) in the experiments of Mariotti & Buresti (2013), with the thickness of
δ/D = 0.107, similar to that in the current study, a very close Strouhal number St ≈ 0.262
was reported. In general, the vortex shedding frequency scales with the inverse of the
shear-layer thickness (Weiss, Mohammed-Taifour & Schwaab 2015), which is typically
correlated with the boundary layer thickness (Sieverding & Heinemann 1990; Zhang, Lee
& Ligrani 2004; Mariotti & Buresti 2013).

To visualise the vortex shedding structure, in figure 20 we plot the isosurfaces of the λci
(swirling strength) criterion in the wake (Chakraborty, Balachandar & Adrian 2005). From
figure 20, it can be seen that the vortical motions self-organise into a helical structure,
with the packets of high swirling strength passing through the regions of low streamwise
velocity, as can be seen from the cross-sectional slices in figure 20.

To understand the motion of the helical structure in time, following Achenbach (1974)
and Tomboulides & Orszag (2000), we calculate the correlations of fluctuating streamwise
velocity among the points on a cross-sectional plane that are located at the same radial
distance from the centreline and are separated by a fixed angle of π/2 in the azimuthal
direction. The cross-correlation function is defined as

Rij(x, r, τ ) = 〈u′(x, r, θi, t)u′(x, r, θj, t + τ)〉t, (3.6)

where θi, θj, i, j = 1, 2, 3, 4, are the phase angles corresponding to the four chosen probes
(see figure 21 for the precise location of the probes). The auto-correlation function is
obtained if j = i. The normalised correlation function is further defined as

ρij(x, r, τ ) = Rij(x, r, τ )(
Rii(x, r, 0)Rjj(x, r, 0)

)1/2 . (3.7)

Here the time series of fluctuating velocity at probe i is called event i for brevity. If we
look at ρ12 and ρ14 plots in figure 21(a) for (x, r) = (1.4D, 0.5D), we observe the phase
angle for the events 2 and 4 being ±π/2 (the time series are shifted by ±π/2 from the
event 1), coinciding with their azimuthal separation from the event 1. For ρ13, the phase
angle between events 1 and 3 is correspondingly π, being equal to the angular difference as
well. A conclusion can be drawn that there is a rotating signal on this cross-sectional plane.

962 A19-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.231


F. Zhang and Y.T. Peet

1

2

3

4

y

1.0
0.5

0.5

–0.5

0
0.2

–0.2
0

0.2

–0.2
0

0.2

–0.2
0

0.5

–0.5

0

0.5

–0.5

0

0

1.0

0.5

0

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

ρ11

ρ12

ρ13

ρ14

τ

τp τp

τ

(a) (b)

(c)

Figure 21. Normalised auto- and cross-correlation functions among the four probes at (a) (x, r) =
(1.4D, 0.5D) and (b) (x, r) = (9.8D, 0.5D). Location of the four probes is shown in (c). Images in (a,b)
correspond to (from top to bottom): ρ11, ρ12, ρ13, ρ14. Here τp denotes the time period between the neighbouring
peaks.

Similar rotating signal is also captured in the intermediate wake at (x, r) = (9.8D, 0.5D)
(figure 21b). As shown in figure 17(a), the non-zero cross-sectional moment indicative of
the actual rotation of the turbulent structure occurs only in the recirculation region. This
rotating process in the near wake leads to a formation of the corkscrew-shaped helical
structure. Upon exiting the recirculation region, the helical structure translates to the
downstream area without rotation. The rotating signal on a cross-sectional plane is simply
a manifestation of this translational motion of the structure, which attains a spiraling shape
(see also the corresponding DMD mode in figure 9). The passing frequency of the events
based on the temporal separation of the neighbouring peaks, τp (figure 21), results in
St = D/(τpu∞) = 0.278, which confirms the connection of this rotational signal to the
vortex shedding.

We now look at the temporal evolution of the vorticity magnitude on the slices with
different azimuthal angles, as illustrated in figure 22 (please, also refer to Movie 1 in
the online supplementary material available at https://doi.org/10.1017/jfm.2023.231). We
can see that in each plane, the vortex packets detach from the upper and lower shear
layers alternatingly. These ‘upper’ and ‘lower’ vortices form the peaks and the troughs,
respectively, of the wavy structure, as seen in the streamwise-radial slices; or a skeleton
of the helical structure in three dimensions. However, the same alternating pattern exists
at any plane of symmetry, characterised by an arbitrary azimuthal angle, at any given
time. This conclusion is corroborated by figure 22, which suggests that the same vortical
structure can be tracked at equally separated azimuthal slices with a constant time delay
(alternatively, constant streamwise separation at a fixed time instance).

3.2.5. Discussion of the vortex shedding mode
As discussed in the introduction, the vortex shedding in the RSP mode was predominantly
observed for spherical wakes (Sakamoto & Haniu 1990; Mittal et al. 2002; Rodriguez
et al. 2011), and also in some cases of axisymmetric wakes (Gentile et al. 2016;
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Figure 22. Analysis of instantaneous vorticity magnitude |ω| D/u∞ on selected slices. (a) A
three-dimensional position of the slices. Slice 2 is at z = 0. (b) Temporal evolution of the vorticity
magnitude on the three selected slices in approximately one vortex shedding cycle. The snapshots between
any adjacent columns are 	tsnap u∞/D = 0.6 apart. The white and yellow arrows are pointing to the peak and
trough of the wavy structure (projection of the helical structure), respectively. The blue dashed line connects
the peaks in the same temporal positions.

Pavia et al. 2019), although the domain of interrogation in the above two studies was too
short to demonstrate the wake development downstream of the vortex shedding location
(x/D ≤ 1.6). In the current study, due to a lack of a planar symmetry in the vortex shedding
modes (figure 9) and in the near-wake region (figure 10), it can be concluded that the
vortex shedding occurs in the RSB mode. This is not surprising, because the RSB mode is
the primary stable mode after the Hopf bifurcation (figure 1) for the blunt-edged bodies,
in contrast to the RSP mode for spheres (Fabre et al. 2008; Meliga et al. 2009). Vortex
shedding in the RSB mode in turbulent wakes has been documented previously for disks
(Yang et al. 2014) and for axisymmetric bodies (Pavia et al. 2019). The distinguishing
feature of the RSB mode is the twisting of the vortex loops in the near wake of the
body (Fabre et al. 2008; Bury & Jardin 2012), termed as the ‘Yin-Yang’ pattern in Yang
et al. (2014). This twisting, or the ‘Yin-Yang’ pattern, is clearly pronounced in the DMD
cross-sectional slices in figure 10, and gives the vortex shedding mode its spiraling shape,
observed in figure 9.

Analysis of the base pressure on the body trailing edge reveals a strong antisymmetric
mode (figures 14 and 15), as in Rigas et al. (2014), Gentile et al. (2016) and Zhu &
Morrison (2021), suggesting of a presence of the SS mode in the very near wake in
this flow. Given that both the RSP and RSB are the bifurcations from the SS mode, and
that both RSP and RSB can be constructed as a superposition of the SS mode and the
two least-stable m = ±1 unsteady modes (Fabre et al. 2008; Meliga et al. 2009), it is
reasonable to conjecture that vortex shedding for both modes may originate as the shedding
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of the vortex loops on each side of the symmetry plane. For the RSB mode, however, the
vortex loops do not stay symmetric: either during their formation or the early stages of
shedding, they may experience an azimuthal shear that breaks their planar symmetry and
gives them their twisted shapes. The signs of the rotational motion are indeed detected
in the near wake in the current study (in the flow streamlines in figure 17(b) and in the
negative mean cross-sectional moment in figure 17a). They may be an indication of the
processes that are potentially triggered by an uneven pressure distribution on the base of
the body (Yun et al. 2006; Rigas et al. 2014) due to a symmetry breaking. We remark
that these rotational processes only occur in the recirculation bubble in the current work.
This is in remarkable agreement with the analytical study by Meliga et al. (2009) who
showed that the nonlinear interactions between the modes only occur in the recirculation
bubble and named this region the ‘effective wavemaker’. In this sense, the near-wake
processes shape the coherent structures, which subsequently shed and translate into the
intermediate wake, producing the rotating signals in the cross-sectional planes without
an actual rotation. Rotating signals on the cross-sectional planes have also been recorded
for spheres (Achenbach 1974; Tomboulides & Orszag 2000; Yun et al. 2006), and similar
mechanisms may be at play in these cases (Yun et al. 2006).

The VLF motions are related to a destabilisation of the SS mode by turbulent
fluctuations. This is supported by previous studies that demonstrated a good agreement
between stochastic diffusive models as applied to a steady bifurcated mode and
experimental data of the VLF dynamics in bluff-body wakes (Rigas et al. 2015) and
Rayleigh–Bénard convection (Brown & Ahlers 2008). The presented data supports this
hypothesis. As the VLF dynamics is related to the SS mode, it can occur with both the RSP
shedding as documented previously (Rigas et al. 2014; Gentile et al. 2016), and with the
RSB shedding. In the RSB mode, it is responsible for a stochastic azimuthal meandering of
the vortex shedding plane with respect to an initial orientation of the Yin-Yang structure,
as seen from the near-wake barycentre dynamics (figure 11). Another aspect of the VLF
motion is the radial ‘breathing’, or flapping of the shear layer (Wolf et al. 2012; Gentile
et al. 2016), which may be related to a destabilisation of the |m| = 2 mode (see modes
4 and 5 of the base pressure in figure 15). This is suggested by the shape of the VLF
mode in the intermediate wake, after the rotational effects of the recirculation region are
diminished, which has a clear |m| = 2 shape (figures 9 and 10). Future studies are needed
to further clarify the mechanisms of azimuthal versus radial VLF motions in bluff-body
wakes.

4. Conclusions

The current paper presents the results of a DNS of a turbulent wake past a body of
revolution with a blunt trailing edge at Reynolds number Re = 5000. The simulations are
run for over 1000 vortex shedding cycles, and the statistics is collected for approximately
800 shedding cycles in order to capture the VLF motions.

Three systems of coherent motions are detected and investigated for the current wake
flow: VLF motions with St ∼ 0.002 − 0.005 originating in the near wake, the bubble
pumping motion with St = 0.02 in the recirculation region and the vortex shedding motion
with St = 0.27 associated with the shedding of large-scale vortex structures in the shear
layer and into the wake. The VLF motion is potentially associated with a stochastic
destabilisation of the SS mode (Rigas et al. 2015) and displays both azimuthal (St ∼
0.002) and radial (St ∼ 0.005) dynamics. The bubble pumping motion was found to be
localised primarily in the recirculation region and was attributed to the Görtler instability
of the curved streamlines in the separation bubble (Wu et al. 2020; Hu et al. 2021).
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Vortex shedding mode is the strongest mode felt both in the near and in the intermediate
wake of the flow. Vortex shedding in the RSB mode (Fabre et al. 2008; Bury & Jardin
2012; Yang et al. 2014) was observed in the current flow, which resulted in a twisting of
the detaching vortex loops in the backflow region and their subsequent convection into
the intermediate wake, giving the vortex shedding mode a characteristic spiraling shape.
A double vortex shedding mode, with St = 0.55, in the form of a double helix, was also
detected, potentially emerging as a structure that reflects the passing of both positively and
negatively oriented vortex loops.

It was found that the critical processes that shape the wake structure occur in the
recirculation region, including a low-frequency reorientation of the vortex shedding plane,
low-frequency meandering of a radial barycentre position and twisting of the vortex loops.
These processes form the vortex shedding structure, which subsequently convects to the
intermediate wake and radially diffuses outwards. In this sense, there is a strong connection
between the near- and the intermediate-wake motions. Vortex shedding frequency is
detectable in the base pressure spectrum and downstream in the near and the intermediate
wake, suggesting that the vortex shedding processes start forming upstream of the actual
shedding location. VLF motions, although forming in the very near wake, are felt in the
intermediate wake as well, as manifested by a persistent VLF mode in a global structure
of the flow. It is however noted that only the radial VLF processes may be present in
the intermediate wake, whereas the azimuthal VLF processes, associated with the lowest
detected frequency of St = 0.002, are localised in the near-wake region. In addition, the
bubble pumping motion, manifesting as an axisymmetric m = 0 mode, was found to be
primarily confined to the recirculation region of the flow.

The presented information of the low-dimensional structure of the turbulent wake
behind an axisymmetric bluff body can be useful for developing low-order models of the
wake dynamics. It can also help design control interventions to reduce the undesirable
effects of the flow separation and the associated unsteady motions, such as a high drag on
the body (Beaudoin et al. 2006; Pastoor et al. 2008), an increased acoustic noise (Cattafesta
et al. 2008; Das Gupta & Roy 2015) and aero-optical distortions (Fitzgerald & Jumper
2004; Smith, Gordeyev & Jumper 2011).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.231.
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Appendix A. Grid resolution comparison

In table 2, we compare the grid resolution and the statistical averaging time with the other
DNS studies of wake flows at comparable Reynolds numbers. In this table, Nptv is the
number of points in the viscous sublayer, averaged along the surface of the body. We
also compute the averaged grid-point distances h̄nw/D, h̄iw/D, respectively, in the near
wake (0 ≤ x ≤ 1.6D) and the intermediate wake (x ≥ 1.6D) of the model, where x = 0
corresponds to the trailing edge of the body. More precisely, h̄nw, h̄iw are defined as
the averaged grid-point distances over all the elements residing in a cylindrical volume
around the grid centreline with a radius of D/2 and a streamwise length corresponding to
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Rodriguez et al. (2011) Dong & Karniadakis (2005) Pal et al. (2017) Current DNS

Geometry Sphere Cylinder Sphere Ogive + Cylinder
Re 3700 10 000 3700 5000
Nptv 12 12 20 20
h̄nw/D 0.008 — — 0.008
h̄iw/D 0.014 — < 0.0134 0.010
tstatu∞/D 350 1020 80 2900
(in vs) (75 vs) (210 vs) (16 vs) (783 vs)

Table 2. Grid resolution and time-averaging parameters in comparison with other DNS of wake flows. Dashes
indicate that the data are not available. The last line in the table corresponds to a statistical averaging time in
terms of vortex shedding cycles.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

DOF 2.8 million 9.8 million 20.0 million 36.7 million
Nptv 6 12 18 18
h̄nw/D 0.026 0.017 0.012 0.008
h̄iw/D 0.034 0.021 0.016 0.010
tstat u∞/D 880 880 880 880
(in vs) (194 vs) (194 vs) (194 vs) (194 vs)

Table 3. Grid resolution and time-averaging parameters for a DNS validation case for a flow over a sphere
at Re = 3700 with Nek5000 (Zhang & Peet 2022). Near wake for a sphere is defined as 0 ≤ x ≤ 3D and
intermediate wake is at 3D ≤ x ≤ 5D. DOF denotes the total number of degrees of freedom.

St Lsep/D Cd ϕsep (deg.)

Nek5000 Mesh 1 0.229 2.51 0.381 90.2
Nek5000 Mesh 2 0.219 2.67 0.377 89.9
Nek5000 Mesh 3 0.220 2.69 0.375 89.8
Nek5000 Mesh 4 0.220 2.70 0.375 89.8
Kim & Durbin (1988) (exp) 0.225 — — —
Yun et al. (2006) (LES) 0.21 2.62 0.355 90.0
Rodriguez et al. (2011) (DNS) 0.215 2.28 0.394 89.4
Bazilevs et al. (2014) (DNS) 0.221 2.28 0.392 89.4
Dorschner et al. (2016) (DNS-LBM) — 2.51 0.383 90.0
Seidl, Muzaferija & Perić (1997) (DNSa) — 2.1 0.38 89.5

Table 4. Comparison of St, Lsep/D, Cd and ϕsep for a flow over a sphere at Re = 3700 between Nek5000 and
other available data. LBM denotes lattice Boltzmann method. Dashes indicate that the data are not available.

aDNS of Seidl et al. (1997) is performed with Re = 5000. All other data is for Re = 3700.

a particular region in the wake, such as

h̄nw =

( ∑
e

Ve

)1/3

Nenw N

∣∣{e : [min x(e),max x(e)] ⊂ [0, 1.6D],max r(e) ≤ D/2},

h̄iw =

( ∑
e

Ve

)1/3

Neiw N

∣∣{e : [min x(e),max x(e)] ⊂ [1.6D, 20D],max r(e) ≤ D/2},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)
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Figure 23. Validation of DNS with Nek5000 for a flow over a sphere at Re = 3700: (a) pressure coefficient,
Cp, along the sphere surface; (b) skin-friction coefficient, τw/(ρu2∞Re−0.5), along the sphere surface. Angle ϕ
is along the circumference of the sphere, counted from the stagnation point, in degrees.
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Figure 24. Validation of DNS with Nek5000 for a flow over a sphere at Re = 3700. Time-averaged
streamwise velocity profiles at (a) x/D = 0.2, (b) x/D = 1.6 and (c) x/D = 3. The centre of the sphere is at
(0,0,0).

where Nenw, Ninw are the corresponding number of elements within the cylindrical volume
defined for the near- and intermediate-wake regions, respectively, Ve is the element
volume. Grid-point distances h̄nw, h̄iw are evaluated based on the velocity grid, so that N =
7 is taken in (A1). While comparing h̄nw/D, h̄iw/D with the finite-grid or finite-volume
approaches in table 2, the definition (A1) is adjusted to correspond to the cell volumes
instead of the element volumes, and division by N is omitted. We should also note that
the definitions of the near-wake and the intermediate-wake regions are based on the length
of the separation bubble, which is case-dependent. From table 2, the current DNS grid is
as fine as or finer than the grids employed in previously published computations, and the
current DNS simulation runs for a significantly longer time.
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Appendix B. Validation of the numerical methodology

To validate our numerical set-up and the solver capabilities in application to flows over
bluff bodies, we performed an auxiliary DNS for a flow over a sphere at Re = 3700,
which was investigated previously via DNS (Rodriguez et al. 2011; Bazilevs et al. 2014;
Dorschner et al. 2016; Pal et al. 2017) and via experiments (Kim & Durbin 1988). Note
that we are unable to perform a validation in the context of the original geometry of a
cylindrical body of revolution, because all the previous studies [experiments (Jiménez
et al. 2010; Rigas et al. 2014; Ashok et al. 2015; Gentile et al. 2016; Pavia et al. 2019) or
large eddy simulations (Posa & Balaras 2016; Kumar & Mahesh 2018; Zhu & Morrison
2021)] were performed with significantly higher Reynolds numbers unaccessible by DNS.
For a flow over a sphere, a series of four meshes and their resolution parameters used for
the validation studies are listed in table 3. The numerical method, initial and boundary
conditions remain the same as for the body of revolution. A comparison of the vortex
shedding Strouhal number (St), the length of the separation bubble (Lsep/D), the drag
coefficient on the body surface (Cd) and the separation angle (ϕsep) with the available
data from the literature can be found in table 4. A comparison of the pressure coefficient,
Cp, and skin friction coefficient, τw/(ρu2∞Re−0.5), ρ is the fluid density, over the sphere
surface is illustrated in figure 23. Mean streamwise velocity profiles at several axial
locations along the wake are compared in figure 24. The presented data demonstrates that
grid convergence is achieved at a resolution level comparable to that of the mesh employed
for the DNS of the ogive cylinder, and shows a good agreement with the previously
published data.
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SEIDL, V., MUZAFERIJA, S. & PERIĆ, M. 1997 Parallel DNS with local grid refinement. Appl. Sci. Res. 59

(4), 379–394.
SIEVERDING, C.H. & HEINEMANN, H. 1990 The influence of boundary layer state on vortex shedding from

flat plates and turbine cascades. ASME J. Turbomach. 112, 181–187.
SMITH, A.E., GORDEYEV, S. & JUMPER, E. 2011 Aero optics of subsonic boundary layers over

backwards steps. In 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, HI. AIAA Paper
2011-3277.

SMITH, A.M.O. 1955 On the growth of Taylor–Görtler vortices along highly concave walls. Q. Appl. Maths
13 (3), 233–262.

SPALART, P.R. & STRELETS, M.K. 2000 Mechanisms of transition and heat transfer in a separation bubble.
J. Fluid Mech. 403, 329–349.

TAIRA, K., BRUNTON, S.L., DAWSON, S.T.M., ROWLEY, C.W., COLONIUS, T., MCKEON, B.J.,
SCHMIDT, O.T., GORDEYEV, S., THEOFILIS, V. & UKEILEY, L.S. 2017 Modal analysis of fluid flows:
an overview. AIAA J. 55, N12.

TANEDA, S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106.
J. Fluid Mech. 85 (1), 187–192.

TANI, I. 1964 Low-speed flows involving bubble separations. Prog. Aerosp. Sci. 5, 70–103.
TOMBOULIDES, A.G. & ORSZAG, S.A. 2000 Numerical investigation of transitional and weak turbulent flow

past a sphere. J. Fluid Mech. 416, 45–73.
DE LA TORRE, A. & BURGUETE, J. 2007 Slow dynamics in a turbulent von Kármán swirling flow. Phys. Rev.

Lett. 99 (5), 054101.
VANIERSCHOT, M. & VAN DEN BULCK, E. 2011 Experimental study of low precessing frequencies in the

wake of a turbulent annular jet. Exp. Fluids 50 (1), 189–200.
VILAPLANA, G., GRANDEMANGE, M., GOHLKE, M. & CADOT, O. 2013 Global model of a sphere

controlled by a small sphere. J. Fluids Struct. 41, 119–126.
WANG, Z.J., et al. 2013 High-order CFD methods: current status and perspective. Intl J. Numer. Meth. Fluids

72, 811.
WEISS, J., MOHAMMED-TAIFOUR, A. & SCHWAAB, Q. 2015 Unsteady behavior of a pressure-induced

turbulent separation bubble. AIAA J. 53 (9), 2634–2645.
WOLF, C.C., KLEI, C.E., BUFFO, R.M., HÖRNSCHEMEYER, R. & STUMPF, E. 2012 Comparison of rocket

near-wakes with and without nozzle simulation in subsonic freestream conditions. In 42nd AIAA Fluid
Dynamics Conference and Exhibit, New Orleans, LA. AIAA Paper 2012-3019.

962 A19-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.231


Coherent motions in a turbulent wake of an axisymmetric body

WU, J.-S. & FAETH, G.M. 1993 Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA
J. 31 (8), 1448–1455.

WU, W., MENEVEAU, C. & MITTAL, R. 2020 Spatio-temporal dynamics of turbulent separation bubbles.
J. Fluid Mech. 883, A45.

YANG, J., LIU, M., WU, G., LIU, Q. & ZHANG, X. 2015 Low-frequency characteristics in the wake of a
circular disk. Phys. Fluids 27 (6), 064101.

YANG, J., LIU, M., WU, G., ZHONG, W. & ZHANG, X. 2014 Numerical study on coherent structure behind
a circular disk. J. Fluids Struct. 51, 172–188.

YUN, G., KIM, D. & CHOI, H. 2006 Vortical structures behind a sphere at subcritical Reynolds numbers.
Phys. Fluids 18, 015102.

ZHANG, F. & PEET, Y.T. 2022 The dynamics of coherent structures in a turbulent wake past a sphere at
Re = 3700. In Proceedings of 12th Int. Symp. on Turbulence and Shear Flow Phenomena, Osaka, Japan.

ZHANG, Q., LEE, S.W. & LIGRANI, P.M. 2004 Effects of surface roughness and freestream turbulence on
the wake turbulence structure of a symmetric airfoil. Phys. Fluids 16, 2044–2053.

ZHU, T. & MORRISON, F. 2021 Simulation of the turbulent axisymmetric bluff body wake with pulsed jet
forcing. Phys. Rev. Fluids 6, 124604.

962 A19-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.231

	1 Introduction
	2 Problem set-up
	2.1 Equations and numerical method
	2.2 Geometry and computation grid
	2.3 Post-processing and notation

	3 Results
	3.1 Global description of the wake flow
	3.1.1 Schematic view of coherent motions
	3.1.2 Global modes
	3.1.3 Barycentre dynamics

	3.2 Details of coherent motion systems
	3.2.1 Time history probes
	3.2.2 VLF motion
	3.2.3 Bubble pumping motion
	3.2.4 Vortex shedding motion
	3.2.5 Discussion of the vortex shedding mode


	4 Conclusions
	Appendix A. Grid resolution comparison
	Appendix B. Validation of the numerical methodology
	References

