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AN INDEX THEORY FOR SEMIGROUPS OF
*ENDOMORPHISMS OF #(#¥) AND TYPE 11,
FACTORS.

ROBERT T. POWERS

Introduction. In this paper we study unit preserving *-endomorphisms
of #(¢) and type 11, factors. A *-endomorphism « which has the property
that the intersection of the ranges of «" for n = 1, 2, ... consists solely
of multiples of the unit are called shifts. In Section 2 it is shown that
shifts of Z(#) can be characterized up to outer conjugacy by an index
n = oo 1, 2,.... In Section 3 shifts of R the hyperfinite 1I, factor are
studied. An outer conjugacy invariant of a shift of R is the Jones index
[R: a(R) ]. In Section 3 a class of shifts of index 2 are studied. These are
called binary shifts. It is shown that there are uncountably many binary
shifts which are pairwise non conjugate and among the binary shifts there
are at least a countable infinity of shifts which are pairwise not outer
conjugate.

In Section 4 continuous one parameter semigroups of *-endomorphisms
of #() are studied. It is shown that one can define a *-representation
associated with each such semigroup. The multiplicity of this representa-
tion is defined as the index of the semigroup. It is shown that the index is
subadditive under taking tensor products. In Section 5 it is shown one can
define such an index for semigroups of *-endomorphisms of type II,
factors.

We would like thank V. Jones and G. Price for useful discussions while
the ideas of this paper were being developed.

1. Shifts.

Definition 1.1. Suppose % is a C*-algebra with unit I. We say a is a shift
of % if a is a *-endomorphism of % so that

a(f) = I and n?j] o) = (A},

Simple examples of shifts are obtained as follows. Let %, be the algebra
of all complex (n X n)-matrices. Let %, be an isomorphic copy of %, and
let Yy be an isomorphism of %, with %’p forp =1,2,.... Let
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®
QY =
m p=14,

and let % be the completion of the inductive limit of the %,. More

compactly we express this by writing
(]
7v- @

p=1%,

This algebra is the well known UHF-algebra of type »® introduced by
Glimm [6]. The linear span of elements of the form

'Yil(Al)Yiz(Az) . Y,‘"(An)
for iy < i, <...<i, A, € %yfork = 1,...,n are dense in % We
define a shift a« of % by the requirement

a(y,(4)) = v,1(4) ford € #yandp = 1,2,....

Definition 1.2. Suppose #is a C*-algebra with identity and «a is a shift of
%. The normalizer of a, denoted A#(«a), consists of those unitary elements
U € % so that

Uk @yU™" = df(@) forallk = 1,2,....

If a is the shift of the UHF-algebra % of type n™ previously discussed
then one can show that a unitary U € A7a) if U is of the form

U = v, Uy (U . .., (Uy)
with0 < i <i <...<i,and U, € %, unitary fork = 1,...,n.

Definition 1.3. We say a shift a of % is regular if the normalizer of «
generates % as a C*-algebra. If % is a von Neumann algebra we say a is
regular if the normalizer of a generates % as a von Neumann algebra (i.e.,
Na)" = XU).

Note the shift « of the UHF-algebra % just described is regular.
Following [3] we define,

Definition 1.4. We say two *-endomorphisms a and B of a C*-algebra %
are conjugate if there is a *-automorphism y of % so that

a(d) = y(B(y " '(4))) forall 4 € %

We say two *-endomorphisms a and B are outer conjugate if there is a
*-automorphism y of % and a unitary U € % so that

(UAU™YY = y(B(y '(4))) forall 4 € %

2. Shifts of Z(5¢). Suppose a is a shift of #(#’) (where #(>¢) denotes
the algebra of all bounded operators on a separable Hilbert space 5#). Let
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N, = a(#F)) the set of operators in Z(¢) which commute with all
operators in the range of a. Then N, is a factor of type I, withn = 2,3, . ..
or n = oo. We will call n the multiplicity of «. In this section we will show
that a shift a« of #(#) i1s determined up to outer conjugacy by its
multiplicity.

Suppose « is a shift of #(#) and w, is a pure normal state of Z(¥’)
which is invariant under « (i.e., wy(a(4) ) = wy(A4) for all 4 € B(F) ). We
will show in Theorem 2.3 that a shift 8 of Z(¢) is conjugate to « if and
only if there is a pure normal S-invariant state of () and « and 8 have
the same multiplicity.

LEMMA 2.1. Suppose « is a shift of B(H). Let
N, = «(BCF))Y N BKF)
and let
Ny =aNy) fork =1,2,....
Then the N, are mutually commuting type 1 factors and
{N. N;,....N,} = of (BH) ).

Proof. Let the N, be as defined in the statement of the lemma. Clearly,
the N, are mutually commuting type I factors. We prove the lemma by
induction. We have N = a(#(¢)) so the lemma is true for p = 1.
Suppose the lemma is true for p. We have

{Ni .. . N Ny = N N Y 0Ny
= o (BOF)) N (N} = a’(BF) N N))
o ((BH))) = o’ (BOF)).

Hence, the lemma is true for p + 1 and so by induction the lemma is true
for all p.

COROLLARY 2.2. Suppose a is a shift of B(¢) and the N,_are as defined in
Lemma 2.1. Then {Ny, Ny, ... }" = BOF).

Proof. From Lemma 2.1 it follows that
2k
{Ni. Ny, ...} = AR (#CF))

and since « is a shift it follows that the intersection of the ak(%‘(ﬁf))
contains only multiples of the identity. Hence, the corollary follows.

THEOREM 2.3. Suppose a and B are shifts of B(3¢) and there is a pure
normal state wy, of B(¥) which is invariant under o (i.e., wp(a(A) ) = wy(A)
Jorall A € B(H#)). Then a and B are conjugate if and only if there is a pure
normal state w, of B(H#’) which is invariant under B and o and B have the
same multiplicity.

https://doi.org/10.4153/CJM-1988-004-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-004-3

INDEX THEORY 89

Proof. 1t follows immediately from the definition of conjugacy that if «
and B are conjugate then they have the same multiplicity and if there is a
pure normal a-invariant state of %(5#°) then there must be a pure normal
B-invariant state of Z(¢). Suppose then that a and B have the same
multiplicity and they each have pure normal invariant states w, and w,
respectively. We complete the proof by showing that « and B are
conjugate.

Let

N, = «(BOF)Y N BOE) and
Nk+1 = (X(NI‘) for k = 1, 2,....

We show wy is a product state with respect to the N,. Suppose 4 € N, and
0=A4=1 Let

p(B) = wy(AB) for all B € a(BK)).
Since
p(B) = wy(4'"?B4!"?) and
wy(B) — p(B) = wy((I — A)'?BU — 4)'%)

for all B € a(ZB(¢)) it follows that 0 = p = wyla(#(F) ). Since w is
pure and e-invariant it follows that wyla(#(¥) ) is pure. Hence, p is a
multiple of wy|a(B(F) ), in fact, we have

p(B) = p(I)wy(B) for B € a(B(X)).

Hence, wy(AB) = wy(A)wy(B) ford € N|,0 =4 =1and B € «(B0F)).
By linearity this relation extends to all of N,. Thus,

wo(AB) = wy(A)wy(B) forall 4 € N, and B € «(#(X) ).
Since wy is a-invariant it follows that

wy(AB) = wy(A)wy(B) for A € N, and B € o*(B(CF)).
Continuing this argument we find if 4, € N, for k = 1,..., n then

WA Ay ... A,) = wolADwy(Ay) . . . wylA,).

Hence, wy, is a pure product state with respect to the N,. Note wy|N, is pure
for each k else a decomposition of wy|N, would yield a decomposition of
the pure state wy,

Let M, = B(B))Y N BF)and My, | = B(M) ) fork =1,2,.... By
the argument just given we have w, is a pure product state of #(¢) with
respect to the M. Let {e;;i,j = 1,...,n}and {f;; i,/ = L.....n}
be families of matrix units of N; and M,, respectively, chosen so that
woley) = 1and w (f})) = 1 (e,
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hn
ey = €, e = 8,ey and 21 e; =1
i=
and the same relations hold for the f;). Let
¢t = a* "V, and £ = o* V(S
for k = 1, 2,... and let % and % be the C*-algebras generated
by the {ef}”} and the { f,(-;")}, respectively. From Corollary 2.2 we have
U = U = BH). Let y be the *-isomorphism of %, onto %, given by the
requirements

y(ff:;"))zeg")fori,j= I,....nand k =1,2,....

We show y extends to a *-automorphism of Z(¢).
Let f, and f| be unit vectors in Jso that

wo(4) = (fo. Afp) and w,(4) = (/. Afy.
A straightforward computation shows that
wy(Y(4)) = wi(4) for A € %,

(one first shows this for polynomials in the fff) and then extends to %
by norm continuity). Then we can define a unitary operator U by the
relation

UAf, = v(A)f, for all 4 € %,.

One checks that this defines a unitary operator with the property that
UAU ' = y(A) for all 4 € %,. Hence, y is weakly continuous and,
therefore, it has a weakly continuous extension to #(¢¥) = the weak
closure of %,. We also denote this extension by y. One checks that by the
construction of y we have & = yBy .

THEOREM 2.4. Suppose a and B are shifts of B(H#). Then a and B are
outer conjugate if and only if they have the same multiplicity.

Proof. One checks from the definition of outer conjugacy that if « and B
are outer conjugate that they must have the same multiplicity. To show the
reverse implication suppose a and f are shifts with the same multiplicity.
Let {e,-j; i,j = 1,2,...} be aset of matrix units for Z(>¢). One sees that
the multiplicity of « is equal to n = dim(a(e;;) ). Since a and B have the
same multiplicity we have

dim(a(e;)) ) = dim(B(e;)) ).
Hence, there is a partial isometry W € #(¥) so that W*W = a(e;,) and
WW* = B(e,,). Let

S = 2 Ble)Waley).

i=1
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A computation shows that S is unitary and
Sa(e)S* = Pley) fori,j = 1,2,....
Hence,
a(SAS*) = v(B(y " '(4))) for all A € B(H)
where y(4) = §*4S.

3. Binary shifts of the hyperfinite 11, factor. Throughout this section R
will denote the unique injective 11, factor ( [4] ), the hyperfinite II; factor.
If a is a shift of R then a(R) is a subfactor of R. An outer conjugacy
invariant of « is the Jones index [R: a(R) ] which measures the relative size
of a(R) in R. In this section we will restrict our attention to the simplest
case where [R: a(R) ] = 2. Such shifts will be called shifts of index 2.

Here are some results of Jones’ index theory we will need (see [7, 8]
for further details). Suppose N is a subfactor of R of index 2 and let ®
be the conditional expectation of R onto N via the trace (i.e., the linear
mapping A — ®(4) from R to N is defined by the requirement that
tr(AB) = tr(®(A4)B) for all B € N where tr is the trace on R). Then
0(A) = 2®(A) — A is an outer *-automorphism of R of period 2 with the
property that an element A € R is contained in N if and only if 8(4) = A.
There is a unitary S € R so that §? = I and 8(S) = —S. (Note that S'is
not unique since if U € N is unitary and §’ = USU ! then §* = I and
0(S’) = —§’.) Given such an element S then every element of R can be
uniquely expressed in the form 4 + SB with 4, B € N.

Definition 3.1. Suppose a is a shift of R of index 2. We define 8, as the
unique *-automorphism of R so that

0,0(4)) =A forall4d € R
and A € a(R) if and only if §,(4) = A.

Some other results of the Jones index theory are the following. If « is
a shift of index 2 then the index of o*T*(R) in &*(R) is 2" (ie.,
[ (R):a*T"(R)] = 2"). If N is a subfactor of R and [R: N] < 4 then the
relative commutant of N in R is trivial, i.e, R N N = {AI}. If [R: N] = 4
and E 1s a projection in N’ N R then tr(E) = 0, 1/2 or 1.

Definition 3.2. A shift a of R is called a binary shift if there is a unitary
U € R satisfying the requirements,

U =1
i) Uk (YU ' = o (U) forallk = 1,2, ....
iii) R = {U, «(U), &*(U),...}".
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The unitary U is called an a-generator of R.

We will show that if a is a binary shift of R and U and V are
a-generators of R then U = V. It will follow that the set

S = {k € N; UdX(U) = —dX(U)U}
is a conjugacy invariant of a.

LeMMA 3.3. Suppose a is a binary shift of R and U € R is an a-generator.
Suppose W is in the normalizer of a (i.e., W € N(a)). Then

W = A (U)X (U) . .. of(U)
with 0 < ky < ky <...<k,

Proof. Suppose a is a binary shift of R with an a-generator U. Suppose
W e A{a). Let

U, = o* DUy fork =1,2,....

For Q a finite subset of positive integers we define

F(Q) = Il 12 i (]is
with O = {i}, i,,..., i} and i} < i, <...<<i. If Qis the empty set we
define I'(Q) = /. From the commutation relations for the U it follows
that

LQDI(Q,) = *£T(Q,A0Q,) and I(Q)I(Q,) = ET(QHT(Q))

for all finite sets Q,, O, where Q,AQ, is the symmetric difference of Q,
and Q,. Since the U, generate R it follows that the linear span of the I'(Q)
is weakly dense in R.

Let tr denote the trace on R. We show that tr(I'(Q) ) = 0 unless Q is the
empty set. Suppose Q is a non-empty finite set of positive integers. We
claim there is an integer k so that

UI(Q)U, ' = —T(Q).

Suppose no such k exists. Then I'(Q) is in the center of R so I'(Q) = Al
Then

UU,...U =AM
and, therefore, U, can be expressed in terms of the U with & < i.
Applying «a to this expression for U, we find U, 4, can be expressed in
terms of the U, with k < i, + 1 and since we already have an expression
for U, we have that U , can be expressed in terms of the U, with k < i
Contmumg by 1nduct10n we find each U can be expressed in terms of the
U, with k < i;. This leads to the conclusmn that R is finite dimensional
which is a contradiction. Hence, there is a positive k so that

U ' = —T(Q).
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Then, it follows that
w((Q)) = (UL QU ) = —t(I(Q)).

Hence, tr(I'(Q) ) = 0 unless Q is the empty set. Hence, we have
tr(I(Q))*I(Qy) ) = 0

unless Q| = Q,.
Let @ be the conditional expectation of R onto a(R) via the trace and let

0(A) = 20(A) — A for A € R. We have

oI'(Q)) = (@ + 1)

where k € Q + lifand onlyif k — 1 € Q. It follows that I'(Q) € «(R) if
and only if 1 & Q. Hence, 8(I'(Q)) = I'(Q) if 1 & Q and 8(I'(Q)) =

- if1 € Q.
In what follows we will need the following. If Q € {1,..., n} and Qs
not empty then

tr(I'(Q)a"(4)) = 0 for all 4 € R.
This may be seen as follows. We have
tr(I(Q)"(I'(Q") ) = 0

for all finite sets Q’. Since each A € R is the strong limit of linear
combinations of I'(Q’) the result follows.

Now consider W € A{(a). Since Wa(R)W_] = a(R) there is a
*.automorphism y of R so that

Wa(AYW ™' = a(y(4)) for all 4 € R.
Applying the automorphism 6 to this equation we find
OW)a(AIW ™) = a(y(4)) for A € R.
Combining these equations we find

W lW)a()OW) ' W = a(A).
Hence,

W lo(w) € a(RY N R.

Since [R: a(R)] = 2 < 4 we have W '9(W) = X and, hence,
(W) = AW. Since 8(6(W)) = W we have (W) = +=W.
We claim we can express W in the form

W= Uha(w)
where

OW) = (— D' W and W, € Ma).
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If (W) = W then W € «(R) and there is a unique W, € a(R) so
that W = a(W)). If (W) = —W then we have (U, W) = UW
so U, W € a(R). Then there is a unique W, € R so that U W = a(W)). In
either case we have

W = Up'a(W,)

and one easily checks that W is in the normalizer of a. Hence, by the same
argument W, can be expressed in the form

Wi = Upa(Wy)
with
oW,) = (— 2w, and W, € H(a).
Then we have
w = UhUbE(w,).
Continuing by induction we have
w=UNUS .. Uk (W)

with W, € A#1(a). We will show that W, = Al for sufficiently large s.
Let m be the supremum of the i so that k; is odd. More precisely

m = sup{s; W = UNU% ... USa® (W) with k, = 1}.

We show m is finite. Suppose m is infinite. Suppose Q is a finite set of
positive integers. Choose g so large that Q < {1,...,4}. Since m is
infinite there is an integer s > ¢ so that

w = UhUS . URe (W) with k, = 1.
Then

D(QY*W = AI(S)Uje (W)
with § © {1,...,s — 1}. Hence,

LO*W = T(Q))a’(4)

with O, € {1,...,s}and Q, not empty and A € R. As we have seen this
implies

tr(D(Q)*W) = 0.

Hence, tr(I'(Q)*W) = 0 for all finite sets Q. But this is impossible since
linear combinations of the I'(Q) are dense in R. Hence, m is finite and we
have

W= UhUS .. Uba"(W,) foralln > m.
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Hence, Ut ... UR UMW € o'(R) for all n > m. But since a is a shift we
have

'E] a'(R) = {A}.

Hence,

Ukn . UNURW = NI
and, thus,

W = \UVUS .. UM

THEOREM 3.4. Suppose a is a binary shift of R and U and V are
a-generators of R. Then U = *V.

Proof. Suppose a is a binary shift of R and U and V are a-generators of
R. Since V € A(a) we have from Lemma 3.3 that

V= \UNa(UF2 ot (U
The same argument shows
U= MVViaV)y?. .. oV

Substituting the first expression for V in the second expression gives us an
equation for U in terms of U and a"'(U) fork = 1,2, ... and this equation
can only be true if U = AV. Since U and V are hermitian unitaries we have
U= =*V.

Definition 3.5. Suppose «a is a binary shift of R with an a-generator U.
The anticommutator set of a, denoted S(«), is the set of positive integers k
so that

Ud"(U) + o"(U)U = 0.

THEOREM 3.6. Two binary shifts a and B are conjugate if and only if their
anticommutator sets coincide.

Proof. It is clear that conjugate binary shifts have equal anticommutator
sets. Conversely, suppose a and B are binary shifts with equal
anticommutator sets. Suppose U is an a-generator of R and V is a
B-generator of R. One easily checks that the linear mapping y defined by
the relations

Y (V)) = " (U) fork = 0, 1,2, ...

extends to a *-automorphism of R such that 8 = yay*'.

Definition 3.7. A subset S of the positive integers is said to be primary if
it 1s the anticommutator set of a binary shift.
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Definition 3.8. Suppose S is a (possibly infinite) subset of the positive
integers. The binary shift algebra #(S) over S is the *-algebra generated by
elements U, for i = 1, 2, ... satisfying the relations,

)y U = U
i U? =1
iii) GU, = oli. HYY,
where o(i,j) = —1if|i —jl € Sando(i,j) = 1if |i — j| &€ S.If Qisa
finite set of positive integers then we define the element I'(Q) € %(S)
as

rQ) = UU,... U

Iy

with O = {i}, ip, ..., }and i) < i, <...<i,

If S is a set of positive integers and P is a finite set of positive integers
then the subalgebra of the binary shift algebra %(S) generated by the U,
with i € P is spanned by the I'(Q) with Q < P. Hence, the algebra
generated by the U with i € P is of dimension 2" where n is the number of
elements of P. It follows that the C*-algebra completion of any binary
shift algebra is an 4 F-algebra (see [1] ) since it is the closure of the union
of an ascending sequence of finite dimensional algebras.

THEOREM 3.9. Suppose Z(S) is the binary shift algebra over S and (S) is
the C*-algebra completion of %(S). Then the following statements are
equivalent.

1) S is primary.
i) B(S) is simple.
i) %(S) is simple.
iv) The center of B(S) consists of multiples of the unit.
v) The center of U(S) consists of multiples of the unit.
vi) Z(S) has a unique trace.
vil) %(S) has a unique trace.
viii) For each non-empty finite set Q of positive integers there is an integer

k so that UT(Q) = —T(Q)U.

Proof. Suppose %(S) is the binary shift algebra over S and Z(S) is the
C*-completion of #(S). Suppose statement viii) is false. Then there is a
non-empty finite set Q of positive integers so that

UT(Q) = T(Q) forall k = 1,2, .. ..

Hence, I'(Q) # Al is in the center of %(S). Hence, statements ii) through
vii) are false. Hence, any of the statements ii) through vii) imply viii).
We prove the reverse implications. Suppose viii) is true. There is a trace
on %(S) given by tr(I'(Q) ) = 0 unless Q is the empty set and tr(/) = 1.
We show this trace is unique. Suppose 7 is a tracial state of %(S). Suppose
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Q is a non-empty finite set of positive integers. Then there is a U, so
that

U, = —T(Q).

Hence,

1(1(Q)) = (GI(Q)U) = —(I(Q) ).
Hence, 7(I'(Q) ) = 0. Hence, the trace is unique so we have viii) = vii) and
viil) = vi).

We continue to assume viii) is true. Suppose 4 is in the center of %(S)
and € > 0. Since the linear span of the I'(Q) is norm dense in %(S) there is
a finite collection {Q,, Q,, ..., Q,} of non-empty finite sets of positive
integers and complex numbers A; so that

HA — A - 2 }\,I‘(Q,)H <e
i=1

There are integers k; so that

UL, = —I(Q) fori = 1,....n
Let

1 1

®(B) = EB + EUKBU/«} for B € %(S).
We have that @, is norm decreasing and since A is in the center of %(S) we
have

DA — NI) = A4 — N\l

Then we have
ofof fof—na - Ear@))) -4

Since the @, are norm decreasing we have
4 — Al < e

Since € is arbitrary we have 4 = Al. Hence, viii) = v) and the same
argument shows viii) = iv).

We continue to assume viii) is true. Suppose %(S) is not simple. Then
there is an A contained in a two sided ideal #so that tr(4*4) = 1. (Note
we have already shown that viii) implies %(S) has a unique faithful trace.)
Arguing as before we can find non-empty sets Q; and complex numbers A,
so that
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H 1
HA*A — Nl — 2 }\,I‘(Q,.)“ <7

i=1

Then arguing as before we define mappings ®; given by
1 1
®,(B) =-B + -U,_BU,
1( ) 2 ) k2 Mk,
so that
<1>1(<1>2(. . .((I)”(A*A — N — 2 A,F(Q,))). . )) = B — )\l
i=1

where
B =®(®y(...(D,(4%4))...)) € £

Since the ®; are norm decreasing and preserve the trace we have
1
1B — Ayl < n and tr(B) = 1.

Then

1
B = N <

] 1
so A, — 1] < T Hence ||B — I|| < B so B is invertible. Hence, ¥ = Z.

Hence, viii) => iii) and the same argument shows viil) = ii).

Thus, we have shown conditions ii) through viii) are equivalent. The
argument in the second paragraph of the proof of Lemma 3.3 shows
1) = viii). To show the reverse implication suppose viii) is true. Let 7
be the cyclic *-representation of %(S) induced by the trace. Since the
trace 1s unique 7(%(S))” is a Il -factor. One checks that the mapping
a(m(U,)) = (U, ,) defines a shift of #(%(S))” with a-generator m(U,)
and the anticommutator set of a is S. Hence, viii) = 1).

Condition viii) of Theorem 3.9 is the most useful for determining
whether a given set S is primary. Here are a few remarks concerning
primary sets. If S is a set of positive integers we define the signature
function o, as a mapping of the integers into the integers { —1, 1} so that
o (i) = —1ifi € Sor —i € S and o,(i) = 1 otherwise. Then

UU = o,i — HUU.
From condition viii) it follows that if S is not primary then there are
integers p and m so that

op + n) =oyn)foralln >m
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(i.e., o, must be periodic beyond a certain point). A closer analysis shows
that if S is not primary then o, must be periodic starting at zero (i.e.,
o(p + n) =o,n)foraln=>0.

Conversely one can show that if o, is periodic for all of Z (ie.,
o (n + p)=o,n)foralln =0, x1, =2, ...) then S is not primary. The
question arises if there are sets S which are not primary such that o, is not
periodic for all of Z. With an IBM PC (made available through the IBM
Threshold program at the University of Pennsylvania) approximately 4000
cases were examined to try and find an example of such a set. None were
found. Recently G. Price has shown that if S is not primary then o, must
be periodic for all of Z (the result will appear elsewhere).

THeorREM 3.10. There are uncountably many non-conjugate binary shifts
of R and there are at least a countable infinity of outer conjugacy classes
among the binary shifts.

Proof. Since there are uncountably many sets S of positive integers and
only countably many of them are not primary it follows that there are
uncountably many non-conjugate binary shifts.

If a is a binary shift let g(a) be the first integer k so that o* (R)’ N R is
not trivial. One easily checks that g(«) is an outer conjugacy invariant (i.e.,
if @ and B are binary shifts which are outer conjugate then g(a) = ¢g(f) ).
A computation shows that if S, = {n} for n = 1, 2,... then the S,
are all primary and if «, is the binary shift associated with S, then
q(a,) = n + 1. Hence, there are at least a countable infinity of outer
conjugacy classes of binary shifts.

Finally, we would like to end this section with some questions about
binary shifts.

Question 3.1. Is the number of outer conjugacy classes of the binary
shifts countable? If « and B are binary shifts so that a/‘(R)’ N R and
B/"(R)’ N R are trivial for all kK = 1, 2, ... are « and B outer conjugate?

Question 3.2. If « and B are binary shifts and ¢g(a) = ¢(B) < co then are
a and B outer conjugate? In approximately one hundred examples an IBM
PC found that when g(a) = ¢(B) then « and 8 were outer conjugate.

4. Continuous semigroups of *-endomorphisms of %(¢).

Definition 4.1. We say {a,; t = 0} is an E,-semigroup of a von Neumann
algebra M if the following conditions are satisfied.
1) «, is a *-endomorphism of M for each t+ = 0.
i) ay is the identity endomorphism and «, o «, = «,,, for all
t,s = 0.
iii) For each f € M, (the predual of M) and 4 € M the function
f(a,(A)) is a continuous function of .
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Definition 4.2. We say {a,; t = 0} is a continuous flow of shifts of a von
Neumann algebra M if {«,} is an Ej-semigroup of M and q, is a shift of M
for each t > 0.

We give an example of a flow of shifts of Z(>#) which we will call the
CAR-flow. Let % be the CAR algebra over L2(— oo, 00). Specifically Zis a
C*-algebra generated by elements a(f), defined for each f € L*(—o00, c0),
and satisfying the CAR relations,

a(ef + g) = aa(f) + a(g)
a(fra(g) + a(g)a(f) =0
a(f)*a(g) + a(@)a(f)* = (f. )1,

for f, g € L*(—oo, co) and where

(/. g) = f_oofmg(X)dx-

Let w, be the Fock state of %. This state is determined by the requirements
that

wola(f)*a(f)) = 0 for all f € L*(—oo, co).

Let (7, 7 Q) be a cyclic *-representation induced by w, with cyclic unit
vector §, € Jso that

m(a(f))Q = 0 for all £ & L*(—oo, co).

Since the Fock state is pure the representation = is irreducible. We define
a one parameter unitary group of translations on L}(— o0, o) given by

S )x) = f(x —t)for f e L*(— o0, co0) and ¢ real.
Let {B,} be the group of *-automorphisms of % determined by the
requirement that

B.(a(f)) = a(S,f) for all f € L*(—o0, c0).
Note the Fock state w, is invariant under S, (i.e., wy(4) = wy(B,(A4) ) for
all 4 € ). Then on the representation space ¥ we can define a strongly
continuous one parameter unitary group { V() } by the relation

V(t)ym(A4)Qy = m(B,(A))Q, for A € .
Let

a,(4) = V(NAV (@) ' for all A € BOF).
Let %, be the C*-subalgebra of % generated by the a(f) with f having
support in [0, co) and let M, = =(%,)". Since B,(%,) C %, fort > 0 it
follows that a,(M ) € M. We show M is a type [ factor.

We begin by determining the commutant of M. Let E, be the
projection of L?(— o0, co) onto L(0, co) given by

https://doi.org/10.4153/CJM-1988-004-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-004-3

INDEX THEORY 101

(E f)x) = f(x) for x = 0 and
(ELf)x) = 0 for x < 0.

Let 6 be the *-automorphism of % determined by the requirement that
0a(f)) = a( — 2E,)f) for all f € L*(—oo0, co).

Since  leaves the Fock state w invariant there is a unitary operator W on
¥ defined by the relation

Wa(A)Qy = m(0(A) ), for all 4 € %

Since 6 is the identity automorphism we have W? = I. We claim
W € M. This may be seen as follows. Let {f; i = 1, 2,...} be an
orthonormal basis for LZ(O, 00) = E+L2(—oo, o). Let

W, = a((I = 2a(f)*a(f))d — 2a(f)*a(fy))
= 2a(f)*alf)).
Let {g; i = 1,2,...} be an orthonormal basis for
LX(~0,0) = (I — E,)LX~00, o).

From the commutation relations one can compute that if p is a polynomial
in the a(f}), a(g;), a(f;)* and a(g,)* then for n sufficiently large

Wm(p)Qy = Wa(p)&.

Since the set of such vectors 7( p )$}, is dense in J#’and the W, are uniformly
bounded it follows that W, — W strongly as n — co. Since W, € M, it
follows that W € M .

For f € L%(0, o) we define A(f) = m(a(f)) and for f € L*(—oo, 0)
we define B(f) = m(a(f))W. Note that A(f) and B(f) each satisfy the
CAR relations and note that the 4(f) and their adjoints commute with
the B(f) and their adjoints. Let M be the von Neumann algebra generated
by the A(f) and B(f). Since W € M, and M, C M we have W € M.
Hence,

m(a(f)) = B(f/YW € M for all f € L*(—co. 0)
and, hence,

m(a(f)) € M for all f € L*(—oco, c0).
Since the representation # is irreducible we have M = %(5¢). Hence, M .
and its commutant generate #(>¢). Hence, M is a factor and since the
vector state (£, A8) restricted to M, is pure it follows that M, is a type
I factor.

Next we show , is a shift of M, for all z > 0. To this end suppose t > 0
and
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[ee]

Z = ”Q] am(M+)

and C € Z. Since the involutive *-automorphism 4 — WAW* maps each
a,,(M ;) onto itself it follows this automorphism maps Z into itself. Let

C, =(C+ WCW*)/2and C, = (C — WCW*)/2.

Then we have C, G, € Z, C = C, + C, and WC,W* = C, and
WC,W* = —(C,. Note that if p is an even polynomial in the a(f)
and a(f)* with f € L%(0, co) then Wa(p)W* = a(p) and if p is an odd
polynomial then Wa(p)W* = —a(p). It follows that for each positive
integer n, C| can be approximated in the strong operator topology by even
polynomials p in the a(f) and a(f)* with f € L*nt, co) and C, can be
similarly approximated by odd polynomials. Hence, it follows that if
f € LX0, nt) then w(a(f)) commutes with C, and anticommutes
with C,. Since this is true for all positive n it follows C; € M’, and,
hence, C; = AI. Note WC, € M, commutes with all the m(a(f)) with
f & L*0, nr) and since n is arbitrary we have WC, € M’,. Hence,
WC, = A so C, = AW but since WC,W* = —(C, we must have A = 0.
Hence C = Al and ¢, is a shift of M, for r > 0.

Thus, we have shown that {a; r = 0} is a continuous flow of
shifts of M and M is isomorphic to #(>¢). Note the state (£, A2) for
A € M, is pure on M, and a,-invariant. To obtain an irreducible
representation of M one need only restrict M to the closed span of
{M,Qy}. In this way we obtain a flow of shifts of #(#) with = the
closure of {M y}. We will call this example the CAR-flow of Z(¥).

We note the CAR-flow «a, of #(5¢’) has the property that there exists a
strongly continuous one parameter semigroup {U(z); 0 = ¢ < oo} of
isometries having the property that

Ut)A = a,(A)U(¢) for all A € BY).

Note the U(r) are just the restrictions of the V'(¢) previously constructed to
the subspace spanned by {M, ,}. If o, is an Ej-semigroup of #(#’) with
a pure normal «, invariant state wy(wy(4) = (fy. Afy)) then such a
strongly continuous semigroup of isometries can be constructed by the
defining relation,
U Afy = a,(A) [,

Question 4.1. If {a,; t = 0} is an Ey-semigroup of #(#°) does there
always exist a strongly continuous one parameter semigroup {U(t); t = 0}
so that

U@t)A = a,(A)U(t) forall 4 € #(F) and t = 0?

If «, is an Ey-semigroup of #(#’) then one can construct for each r > 0 an
isometry U(t) so that
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U(t)A = a,(A)U(t) for all A € BUK).

The question is can one choose the U(f) so as to have a strongly
continuous one parameter semigroup. We remark without giving a proof
that the existence of such a strongly continuous semigroup U(t) is
equivalent to the existence of a rank one projection ¢, having the property
that

—1
r (o (ep)ey — €)
converges in norm to a bounded operator as 1 — 07,

If such a semigroup U(r) exists then one can define an index for «, as
the next theorem will show.

THEOREM 4.2. Suppose {a,; 0 = 1 < 00} is an Ey-semigroup of B(AX) and
there is a strongly continuous one parameter semigroup of isometries U(1) of
Hso that

U(A = a,(A)U(t) for all t = 0.

Let M be the subspace of 5 of vectors f so that U(t)*f = e 'ffort = 0 and
let E be the projection onto M. Let 8 be the *-derivation of B(H’) defined
by

8(A4) = lim (a,(A4) — A)/t
—ot

where the domain 2(8) of 8 is the set of A € B(X) so that the above limit
exists in the sense of norm convergence. Then the mapping

A—T(4) = E(4 + %S(A))E

is a *-representation of 2(8) on M. Furthermore this *-representation has a
unique norm continuous extension to %, the C*-algebra of all A € B so
that :

lla(A4) — Al > 0ast— 0",

Proof. Suppose a, is an Ej-semigroup of #(¢) satisfying the hypothesis
of the theorem. Let —d be the generator of U(t). More specifically we
define

df = lim (f = U1
t—0

where the domain 2(d) of d is the set of all /€ J# so that the limit exists
in the sense of norm convergence. Let d* be the hermitian adjoint of d.
Note that since the U(z) are isometric d is skew-hermitian so —d* is an
extension of d (i.e., —d* D d).

Then it follows from the theory of hermitian operators (see e.g. [5]
Chapter XII Section 4) that each f € 2(d*) can be uniquely expressed in
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the form f = f, + f, + f_ where d*/.. = =*=f., and f;, € 2(d). There
are no solutions to the equation d*f_ = —f_ since this would imply for
g € 9(d) that

I

d . .
;;;(f,, Ung) = —(f-. dU)g) = —(@*/_. U1)g)

I

/=, U(1)g).
Hence,
(f-. U()g) = €'(f-. g) for g € D(d)

and this contradicts the fact that the U(¢) are isometric. Hence, each
J € 2(d*) can be uniquely expressed in the form f = f, + f, with
Jo € 9(d) and [, € 2(d*) with d*f, = f,. Note that the space of such
vectors [, is precisely the space ./ of vectors [ € 5 so that

Uy, = e 'fy fort > 0.

We define a bilinear form ( , ) on Z(d*) as follows:
. 1 |
(fog) = SU. d*0) + 5. o).

A straightforward computation shows that if /' = f, + f, and g =
g + g4 with fo, g € 2(d) and fy, g, € A then (f, g) = (/4. g4)
Hence, the bilinear form ( , ) is positive on Z(d*).

Let 8 and 2(8) be as given in the statement of the theorem. First we will
show that if 4 € 2(8) then

AD(d) © D(d) and dAf = —8(A)[f + Adf.
To this end suppose 4 € 2(8) and [ € 2(d). Then we have
N = Uo)Af = 1 = a (DU f
= 1 (e(4) = HUMDS
+17'4u - U f
— —8(A)f + Adfast— 0",

Hence, Af € D(d) and dAf = —8(A)f + Adf- Now if f € 9(d*),
A € 9(8) and g € 2(8) then we have

(Af, dg) = (f, A*dg) = (f. dA*g) + (/. 8(4%)g)
= ((Ad*/ + &A)[), g).
Hence, we have for 4 € 2(§) that AZ(d*) € 2(d*) and for [ € 2(d*)
(*)  d*Af = Ad*f + 8(A)f.
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Using (*) we will show that the mapping 4 — A4 gives us a
*-representation of 2(8) on Z(d*) with respect to the bilinear form (-, -).
To this end suppose f, g € 9(d*) and 4 € 9(5). Then we have

. 1 1.
(f. Ag) = E(d*f’ Ag) + 5(1, d*Ag)
1 ] 1.
= E(A*d*f» g) + E(f’ Ad*g) + i(f’ 8(A)g)

1 . 1
= E(d*A . 8) + E(A*f’ d*g) = (A*f. g).

If f e 2(d*) and (f, f) = 0 then f € 2(d). Hence, the mapping
A — A gives a *-representation of 2(8) on the quotient space Z(d*)
mod 2(d) with inner product (-, -). Given an f € 2(d*) it has
a unique decomposition f = f, + f, with f, € 2(d), [, € 2(d*) and
d*f, = f.. The vector f, uniquely determines the image of f in the
quotient space 2(d*) mod 2(d). Given f € 9(d*) then f is given by

fio= B+ A,

Since A — A is a *-representation of Z(8) on the quotient space and
f= %E(f + d*f) mod %(d)

we have
A —>%E(1 + d*)AE

i1s a *-representation of Z(8) on #. Hence, from equation (*) we have
A —>%E(l + dNAE = E(A + %6(A))E = 7 (A)

1s a *-representation of 2(8) on ..

Since Z(8) is not norm closed we can not immediately conclude that
7, 18 norm continuous. We show w, is norm continuous. Suppose
A = A* € Z(8) and ||A|| = 2/3. Since f(t) = ¢ + i(1 — )% is twice
differentiable in the interval [—2/3, 2/3] it follows from the functional
calculus of the domain of a *-derivation (see [2] Theorem 3.3.32 page 239)

that
U=4+ i(I — A4H"? € 20).

Since U is unitary and 7, is a *-representation we have
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lm(UY I = lm(U*U) || = llm(1) ]| = 1.

Hence,

_! =Lt
llmo(A) ] 2||7T(J,(U) + 7 (UM || = 53 1.
Hence, |7 (A) || = 3/2 ||A]| for all hermitian 4 € 2(§). Hence, 7, has a
unique norm continuous extension to the norm closure of 2(8). (Note the
existence of this extension shows us ||z (4) || = ||4]| for 4 € 2(5).)
We claim %, is the norm closure of (). Since 2(6) C %, we have that
%, contains the norm closure of 2(8). Conversely, suppose 4 € %,. Let

1/n
An:”/() a,(A)dt forn=12....

We have 4, € 2(8) and 4, — A in norm as n — oo. Hence, %, is the norm
closure of 2(4).

Definition 4.3. Suppose {a; 0 = t < oo} is an Ey-semigroup of
#B(#) and there is a strongly continuous one parameter semigroup
{U(1); 0 = t < oo} of isometries so that

Ut)A = a,(A)U(t) forall 4 € #(F) and ¢t = 0.

Let 7, be the *-representation of %, constructed in Theorem 4.2. The
index i(a,) is defined as the multiplicity of =, (i.e., i(a,) is the maximal
number of non-zero mutually orthogonal projections in the commutant of
T B,) ).

Note the representation 7, is unchanged if the generator § is perturbed
by a bounded derivation, i.e., if B, is a second E,-semigroup of #(*#’) with
generator 8§, and

8,(4) = 8(4) + i[H, A] for A € D(8)
and H is a bounded hermitian operator then 7, and 7 will be unitarily

equivalent.

LEMMA 4.4. Suppose for k = 1, 2 {U(t); 0 = t < oo} are strongly
continuous one parameter semigroups of 4, and U(t) = U,(t) @ Uy(¢) is
the tensor product of these semigroups acting on ) @ 4. Let —d, be the
generator of U,(t) and —d be the generator of U(t). Then

YdF) ® D(d,) © D(d)) @ D(d%)
is a core for d*.
Proof. Suppose the hypothesis and notation of the lemma are satisfied.
Since U, (1) is a strongly continuous one parameter group of isometries the

Hilbert space 5, and the U, (¢) can be decomposed as follows (see e.g. page
328 of [9]):
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@.1) B =) ® 0 ® LX0,00)), Uglt) = V(1) ® S;(1)
where V,(¢) is a unitary group on 9?2 and

(S (D f)x) = f(x — ) forx = tand

(S f)x) = 0forx < ¢

for f(x) an 2 valued function so that

,/0 (f(x), f(x))dx < oo.
We now show
‘@O = Q(dik) ® @(d2) @ ‘@(dl) ® Q(dj)

is a core for d*. Suppose this is not the case. Then there is a point
{F,, d*F,} in the graph of d* which is orthogonal to {G, d*G} for all
G € Z,. Then we have

(42) (Fy, 8 ©g) + (d*F, (dfg;, @ g, + g ®dig)) =0
for g, € D(d}), g, € D(d,) or for g, € D(d)), g, € D(d¥). Since —d* D d
we have
(Fo, 81 © g3) — (d"F, d(g ® g)) = 0
for g, € 9(d)) and g, € %(d,). Since
U(1)2(d)) @ 9(d,) < Dd)) @ Y(d,)

we have 9(d|) ® 9(d,) is a core for d (see e.g. Corollary 3.1.7 page 167 of
[2] ). We have F; € 2(d*) and

(Fo. 81 © &) = (d*d*F), g, @ &)
for all g, € 2(d)) and g, € Y(d,).
Hence, d*d*F, = Fj. Let

1
Fe = J(Fy + d*F).

We have

d*F, = *F_,Fy=F, + F_.
Since the equation d*F = — F has no solution we have F_ = 0. Hence,
d*Fy = K.

We can express Fj, in the form
Fy = Foo + For + Fyp + Fyy
with
Foo € #V @AY, Fyy € A0 @, @ L0, 00),
Fip € X @ #5 @ L*0, o) and
F, € 4 @45 @ LX((0, 00)?).
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Since U(t)*F, = e 'F, for t = 0 we have
Foo = 0, Fyy(x) = e "(Vi(x) © 1)F,(0),
Fio(x) = e (I ® V,(x))F,((0) and
Fip = Fix, p)
with
@3) and Fiyx, y) = e:’V'Fu(X —»,0)forx =y
Fi(x,y) = e "F|;(0,y — x) for x = y.
Suppose G = g, ® g, with
g € X1 N 2d)) and g, € D(dF)

with dig, = g,. Then from equation (4.2) and the facts that d*F; = F,
and dfg, = —d,g, we have

2Fy, g ® %) = (Fy, d\g ® gy).
Let L be the linear functional

L(f) = (Fy. /@ gy)

defined for f & )f(l, By the Riesz representation theorem we have
L(f) = (h, f/)withh € )f(') From the equation for F,, we have

2(h, g1) = (h, d\g)).

This equation implies & € 2(df) and dfh = 2h, but this is only possible if
h = 0 since

D(d¥) N Ay = Dd,) N A,
(i.e., d, restricted to ) is skewadjoint). Hence, h = 0 and
(Fn 8 ®g) =0

for all g, € #Y and g, € 2(d%) with d5g, = g,. As Fy was decomposed
into four vectors Fy,, Fy,, etc., G = g, @ g, can be decomposed into four
vectors G = Gy + Gy + Gy + G, and for the form of G under
consideration we have Gy, = G5 = G;; = 0 and Gy, is of the form

Gy = Goi(x) = e “(k; @ g))
with k; any vector in . Then we have
(Fp. G) = (Fp1> Gop)
= fo e P ((Vy(x) @ NFy(0), k, @ g)dx = 0

for all k, € X and g, € . Since the operator
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foo e V(x)dx = (I + d)) |#))7!

0
maps only the zero vector to zero and since k; and g; can be freely chosen
in their respective spaces it follows that F;; = 0. A similar argument

shows F|, = 0. Hence we have F,, = F;, = F;; = 0.

It remains only to show that F}; = 0. To see this suppose g, € %(d,)
and g, is orthogonal to Jf?. Then in the decomposition (4.1) we can
represent g; = g,(x) where g,(x) € X is a differentiable function of x
(strictly speaking, g, is absolutely continuous and, thus, differentiable
almost everywhere) whose derivative is square integrable and satisfies the
boundary condition g,(0) = 0. Suppose g, € Z(d3) and g, is orthogonal
to )i”g Then g, can be represented in the form g,(x) where g,(x) € H is a
differentiable function whose derivative is square integrable and g, need
not satisfy a boundary condition at x = 0. Then from equation (4.2) and
the fact that 4*F, = F, we have

©0 d
/0 (11 ), (&100) @ g2(y) = —=21(x) @ ()

d
—gx)® d—gz(y))dxdy = 0.
ly

Making a change of variable to new variables § = (x + y)/2, 7= —x +y
and noting that in the new variables

F¢+tn) = eitFn(g, )

we find, integrating by parts, that the above expression becomes

f (F11(x, 0), g1(x) ® £5(0) )dx = 0.

0
Hence, F;;(x, 0) = 0 almost everywhere. Interchanging the roles of g; and
g, we find F;;(0, y) = 0 almost everywhere. The function Fy, is
determined by its values on the boundary lines y = 0 and x = 0. In fact,
one may calculate from the form for F|(x, y) given in equations (4.3)
that

1 [0
IFnIP = 3 fo IFy (s ) I+ 11Fy(0, 1) [
Since F(t, 0) = F},(0, r) = 0 almost everywhere it follows that F;; = 0.
Hence, F; = 0 and, therefore, 9, is a core for d*.

THeEOREM 4.5. Suppose {aﬁk); 0 = t < oo} are Ey-semigroups of B(H)
and suppose there are strongly continuous one parameter semigroups (U, (1);
0 = t < o0} so that

U (DA = a1 for k = 1, 2.
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Then aﬁ” ® a(,z) is an E-semigroup of B @ ) of index i = i) + i,
where iy is the index of ")

Proof. Suppose {afk)} satisfy the hypothesis and notation of the
theorem for k& = 1, 2. One easily checks that a, = aﬁ” ® a‘,z) is an E-
semigroup of Z(# @ ) and U(r) = U,(t) ® U,(t) is a strongly
continuous one parameter semigroup of isometries so that

Ut)A = a(A)U(¢) forall A € B @ ) and t = 0.

Let (-, -) be the bilinear form on %(d*) constructed from d* as in
Theorem 4.2 and let (-, -}, and (-, -), be the bilinear forms constructed
from df and d§ as in Theorem 4.2. Suppose F = f; ® f, € ) @ /4 and
G = g, ®g,with f}, g, € 2(d}) and f,, g, € P(d,). Suppose A € 2D(§))
and B € 9(8,) where 8, and 8, are the generators of a!" and a(,Z), re-
spectively. Then 4 ® B € 9(8) where § is the generator of a, and

S(A @ B) = 8,(4)® B + A ® 8(B).

Then we have
1 .
(F, 4 ® BG) = E(dikfl ® gy, Ag) @ Bg,)

| X
+ 5(]1 ® d5 /5, Ag) @ Bgy)

1
+ E(fl ® g, dfAg, ® Bgy)

|
+ E(fl ® /f,., Ag, ® diBg,).

Note that since f, € 2(d,) the second and fourth terms cancel in the
above equation. Hence, we have

(F, A ® BG) = (f,. Ag\) (/. Bgy).

Similarly, if F = f; ® f, and G = g, ® g, with f|, g, € 2(d,) and
o & € D(d¥) then for A € 2(8)) and B € Z(8,) we have

(F, 4 @ BG) = (/. Ag){f»> Bg>),.

IHF=£©f,and G = g @ g with f; € 9(d)). f, € D(d}). g, € Ud})
and g, € 9(d,) then for 4 € 2(8,) and B € %(5,) we find

(F. A ® BG) = 0.

Similarly, if f; € 2(d}). /, € P(d,), g, € 2(d)) and g, € D(d%) then
again we find (F, 4 ® BG) = 0. Let m, be the *-representation
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constructed from {«,} as in Theorem 4.2 and let %, be the C*-algebra
generated by elements of the form A ® B with 4 € 2(§,) and B € %(3,).
Since the linear span of elements of the form f; ® f; with /|, € 2(df) and
€ Ddy) or f, € D(d)) and f, € D(d}) are dense in the representation
space of 7, by Lemma 4.4 we have that the representation 7, restricted to
%, 1s the direct sum of the representations 7; ® ¢, and ¢; ® 7, where 7, is
the *-representation constructed from {a!’} and ¢, is the identity repre-
sentation of B()) for i = 1, 2. It follows that the multiplicity of 7,|%, is
the sum of the multiplicities of 7, and 7, (i.e., i = i; + i,). Since %, C %,
it follows that the multiplicity of =, is less than or equal to i} + i,.

We believe that 7, (%,) is weakly dense in 7(%,) so the index i of «,
is, in fact, the sum of i; + i,. This would mean that the index of
Ey-semigroups is additive rather than subadditive.

Suppose {a,} is the CAR-flow constructed earlier. One finds that if
F, = m(a(fy) )*Q, with fy(x) = /2 e * then F, € Z(d*) and

(m(a(f))F,, m(a(f))F,) = 0 for all f & L*(0, o)
with f” € LX0, co) and f(0) = 0. Hence, we find
(Fy, AF)) = (2, AQ,) for A € 2(5).

Using the argument of Lemma 4.4 one can show F| is cyclic for the
representation 7,. Hence, for the CAR-flow 7, is unitarily equivalent to
the identity representation of %, so 7, is normal and irreducible. Hence,
the CAR-flow is of index one. If one forms the tensor product of
CAR-flows one finds that the index is additive.

Question 4.2. Suppose {a,} is an Ey-semigroup of #(X#’) and 7, is the
representation constructed from {a,} as in Theorem 4.2. Does 7, always
have a normal extension to Z(¢)?

If the answer to this question is yes it means that Ej-semigroups can be
essentially classified up to outer conjugacy by the index of {«,} and the
CAR-flows are up to outer conjugacy the only examples of Ey-semigroups.
On the other hand if there are Ey-semigroups of #(>¢’) so that 7, has no
normal extension to Z(J¢) it means there are E;-semigroups which are not
outer conjugate to CAR-flows. Note we have not defined outer conjugacy
for E,-semigroups. There are a number of possible definitions and we feel
it would be wise not to choose among them until the theory of
Ey-semigroups is better understood.

5. Semigroups of *-endomorphisms of the hyperfinite 1I; factor. In this
section we consider Ejy-semigroups of the hyperfinite 1I; factor R and
show that one can define an index i for such semigroups. We begin by
giving an example of a flow of shifts of R. Let % be the Clifford algebra
over L0, co). Specifically %, is generated by elements u(f) defined for
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real functions f in L*0, oo). The u(f) satisfy the Clifford algebra
relations,

ulef + g) = au(f) + u(g), u(/)* = u(f)
and
u(fyu(g) + u(@u(f) = 2/, &)I

for a real and fand g real functions in L%(0, o). It is well known that U, is
isomorphic to the CAR algebra % discussed before. Let t be the unique
trace on %, and let (7, §,,, ) be a cyclic *-representation induced by 7 on
a Hilbert space s with cyclic vector £,. We have R = #(%,)” is the
hyperfinite II, factor. We define S, on real functions in L*(0, co) as in
the last section (i.e., (S,f(x) = f(x — t) for x = ¢ and (S,/)(x) = O for
x <1t). If

p = p(f), u(fy). ..., u(f,))

is a polynomial in the u(f) we define

a(m(p)) = m(p(SS), u(Sf). ... u(S,[,))).

One checks that «, is weakly continuous and, therefore, has a weakly
continuous extension to 7(%,) and this extension (which we also denote by
«a,) is a continuous flow of shifts of R. We will call this flow the Clifford
flow of R.

For the case of Ej,-semigroups of type II; factors the existence of a
semigroup {U(¢): t = 0} is assured since the trace is invariant under
endomorphisms. Using the following theorem one can define an index for
Ey-semigroups of type II; factors.

THEOREM 5.1. Suppose {a,; t = 0} is an Ey-semigroup of a type 11, factor
M. Let 7 be the normalized trace on M and 3 = L2(M , T) be the completion
of M with respect to the inner product (A, B) = 1(A*B) coming from the
trace. For F € ¥and A € M we denote the left and right actions of A on F
by AF and FA. Let {U(t); t = 0} be the strongly continuous semigroup of
isometries of S given by

U@)A = a,(A) forall A € Mandt = 0.

Let M be the subspace of vectors F € # so that U(t)*F = e 'F fort = 0
and let E be the projection onto M. Let 8 be the *-derivation of M given by

3(A) = lim (a,(4) — A)/t
t—0

where the domain 2(8) is the set of A € M so that the limit exists in the sense
of norm convergence. For F € M and A € 2(8) let w (A)F and Fu (A) be
given by
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7 (A)F = F( (A + %S(A) )F) and

Fr(A) = E(F(A + %S(A))).

Then A — w (A) gives a right and left *-representation of 2(8) on M.
Furthermore these right and left representations have a unique extension to
B, the C*-subalgebra of M of elements A € M so that

lla,(4) — Al > 0ast— 0.

Proof. The proof for the left action is the same as the proof of Theorem
4.2 and taking adjoints (or just going through the proof again) gives the
proof for the right action.

Definition 5.2. Suppose {a,; t = 0} is an Ej-semigroup of a II; factor M.
Let 7, be the right and left representations of %, as constructed in
Theorem 5.1. Then the index i of {a,} is the multiplicity of 7, as a
birepresentation of %, (i.e., the index i is the maximum number of
mutually orthogonal non-zero projections which commute with both the
right and left action of = ).

Note that as in the last section the representation 7, is unchanged if the
generator 8 of a, is perturbed by an inner derivation.

Following the proof of Theorem 4.5 one obtains the following
theorem.

THEOREM 5.3. Suppose {agk); t = 0) are Ey-semigroups of type 11,
Jactors M of index ix for k = 1,2. Then o, = oV @ o? is an Ey-semi-
group of M, @ M, of index i = i} + i,.

We remark that the Clifford flow discussed at the beginning of this

section has index one. In fact, one has for Fy, = u(fy) with fy = /2¢*
and (-, -) defined from U(¢) as in Theorem 4.2

(5.1) (Fy. AFyBY = tr(A8(B))
where 6 is the *-automorphism of R given by
O(m(u(f))) = —m(u(f)) for all f € L*0, co).

By using Lemma 4.4 recursively one can show that F is cyclic in 2(d*)
mod %(d) with respect to the (-, -} inner product for both the right and
left actions of 2(8).

Note that both the right and left actions of =, are normal. This leads
one to wonder.

Question 5.1. Suppose {a,; t = 0} is an Ey-semigroup of a I, factor. Is
the left representation 7, always normal?
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We remark that for the case of continuous flows of shifts of the
hyperfinite II; factor R of index one there appear to be flows which are
not outer conjugate (given any reasonable definition of outer conjugacy).
This may be seen as follows. Consider the Clifford flow described at
the beginning of this section. Let R, be the subfactor of R generated by
even polynomials in the m(u(f)) for f € L*0, oco). Restricting a, to
R, one obtains a continuous flow of shifts of R; which we will denote
by a,‘. One easily sees that a, and a,' are not conjugate since

Aa}(B) — a}(B)A — 0

strongly as t — oo for all 4, B € R, and for 4 = B = w(u(f)) one sees
the same statement is false for «,, We suspect that &, and «, are not
outer conjugate given any reasonable definition of outer conjugacy.
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