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Abstract

We define a multiple Dirichlet series whose group of functional equations is the Weyl
group of the affine Kac–Moody root system Ãn, generalizing the theory of multiple
Dirichlet series for finite Weyl groups. The construction is over the rational function
field Fq(t), and is based upon four natural axioms from algebraic geometry. We prove
that the four axioms yield a unique series with meromorphic continuation to the largest
possible domain and the desired infinite group of symmetries.

1. Introduction

We will construct a multiple Dirichlet series of the form

Z(x0, x1, . . . , xn)

=
∑

f0,f1,...,fn∈Fq [t] monic

(
f0
f1

)(
f1
f2

)
· · ·
(
fn−1
fn

)(
fn
f0

)
xdeg f00 xdeg f11 · · ·xdeg fnn (1.1)

where n > 2, q is a prime power, and (−) denotes the quadratic residue character in Fq[t]. This is
a new generalization of the Weyl group multiple Dirichlet series developed in papers of Brubaker,
Bump, and Friedberg, of Chinta and Gunnells, and others. The difference is that the product of
characters here is based on the following Dynkin diagram:

which corresponds to the affine Kac–Moody root system Ãn rather than a finite root system.
This gives the series a higher level of complexity: it will extend to a meromorphic function of
n + 1 variables with an infinite group of symmetries, the Weyl group of Ãn. And it will shed
light on the behavior of still-conjectural automorphic forms on the Kac–Moody Lie group.

Multiple Dirichlet series originated as a tool to compute moments in families of L-functions.
Goldfeld and Hoffstein computed the first moment of quadratic Dirichlet L-functions at the
central point using a double Dirichlet series [GH85]; the second [BFH96] and third [DGH03]
moments have been computed using similar methods. An essential step is to replace the sums
of characters like those appearing in (1.1) with weighted sums of characters. This guarantees
that the series will have a group of functional equations. The choice of weights, or correction
polynomials, leads to difficult combinatorial questions, which inspired the development of
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I. Whitehead

Weyl group multiple Dirichlet series [BBF11a, BBF11b, CG07, CG10]. This beautiful theory
constructs, for any integer N and (finite) root system Φ, a multiple Dirichlet series built from Nth
power Gauss sums, whose group of functional equations is the Weyl group of Φ. The series can
be understood in terms of a metaplectic Casselman–Shalika formula, or as a generating function
of combinatorial data on crystals associated with Φ. One of the crowning achievements of this
field is the Eisenstein conjecture, which connects multiple Dirichlet series back to automorphic
forms; it states that each Weyl group multiple Dirichlet series appears as a Whittaker coefficient
of an Eisenstein series on the N -fold metaplectic cover of the algebraic group associated to Φ. It
is proven in types A [BBF11a] and B [FZ15].

To go beyond the first three moments of quadratic L-functions requires multiple Dirichlet
series with infinite Kac–Moody Weyl groups of functional equations. This immediately makes the
series much more intricate: infinitely many symmetries imply infinitely many poles, which will
accumulate at a natural boundary of meromorphic continuation. Furthermore, unlike in the finite
case, the symmetries do not give sufficient information to completely pin down the series; we will
show that there are infinitely many series satisfying the desired functional equations. Lee and
Zhang [LZ15] generalize the averaging construction of Chinta and Gunnells to construct power
series with meromorphic continuation to the boundary, satisfying the functional equations, for
all symmetrizable Kac–Moody groups. However, their construction does not naturally contain
the character sums and L-functions we would like our multiple Dirichlet series to count. Bucur
and Diaconu [BD10], in the special case of D̃4, define a multiple Dirichlet series satisfying the
functional equations by making an assumption about one of its residues. They use this series
to compute the fourth moment of quadratic L-functions over rational function fields. Their
construction is close in spirit to ours, but is slightly different and likely will not satisfy the
Eisenstein conjecture.

The new approach developed in forthcoming work of Diaconu and Pasol [DP], and explored
in the author’s thesis [Whi14], is to construct multiple Dirichlet series axiomatically. There are
four Axioms 3.1–3.4, which arise from the geometry of parameter spaces of hyperelliptic curves.
Sums of characters, in particular of (f0/f1)(f1/f2) · · · (fn−1/fn)(fn/f0) as some of the fi range
over fixed degree ai and others are held constant, can be interpreted as point counts on these
parameter spaces. The weighted sums of characters introduced below are point counts after the
spaces are desingularized and compactified. Axiom 3.2 is a duality statement, and Axiom 3.3 is a
cohomological purity statement. The axiomatic construction matches previous constructions in
the case of finite root systems [Whi14]. The main theorem of this paper is that, in the case of the
affine root system Ãn, the four axioms produce a unique series, with meromorphic continuation
to the boundary and functional equations. We expect the same theorem to hold for all affine
root systems, and, if the axioms are modified as in [DP], for all Kac–Moody root systems.

Because this is a first foray into Kac–Moody multiple Dirichlet series, we have restricted
our attention to type Ã and to quadratic characters. It would certainly be feasible to
replace these characters with Nth power residue symbols or Gauss sums. Another restriction:
our construction is over the rational function field Fq(t) only. Over number fields, proving

meromorphic continuation of the analogous series is extremely difficult; in the case of D̃4 over
Q, it is equivalent to computing the fourth moment of quadratic L-functions over Q. However,
the axioms do resolve all combinatorial problems in the construction over arbitrary global fields.
The p-parts, or local weights, constructed in this paper will still be correct. They only need
to be glued together using a different twisted multiplicativity relation for primes in the field.
This means that Fq(t) plays a privileged role in the theory: it is the only field where Axioms 3.2
and 3.3 hold, where the p-part of the series is reflected in the full series Z.
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Affine Weyl group multiple Dirichlet series: type Ã

The proof has three sections. First we show directly that the four axioms imply the
desired functional equations of the series, and that any multivariable power series satisfying
these functional equations is completely determined by its diagonal coefficients. These diagonal
coefficients relate to imaginary roots in the Ãn root system, which play a subtle but critical
role in the combinatorics. Next, we take a residue of the series, setting the odd-numbered xi to
q−1. We give a formula relating the diagonal residue coefficients to the original diagonal series
coefficients; hence, the residue determines the full series, but unlike the series, the residue admits
an Euler product formula. Balancing the effect of Axiom 3.2 on the residue coefficients against the
effect of Axiom 3.3 on the series coefficients, we prove the existence and uniqueness of the series.
Finally, we combine this result with a close examination of the functional equations to prove an
explicit formula for the residue, as a product of function field zeta functions. The meromorphic
continuation of this product implies the meromorphic continuation of the full series Z. Only this
last section does not generalize easily to other affine types.

We end this introduction with the example of the Ã3 residue formula, and its relevance to
both analytic moment conjectures and the Eisenstein conjecture. We prove

q2 Resx1=x3=q−1Z(x0, x1, x2, x3) =
∞∏
m=0

(1− x2m+2
0 x2m2 )−1(1− qx2m+2

0 x2m2 )−1

× (1− x2m0 x2m+2
2 )−1(1− qx2m0 x2m+2

2 )−1

× (1− x2m+2
0 x2m+2

2 )−2(1− qx2m+2
0 x2m+2

2 )−2

× (1− x2m+1
0 x2m+1

2 )−1(1− qx2m+1
0 x2m+1

2 )−1. (1.2)

We may evaluate the Ã3 multiple Dirichlet series as

Z(q−s0 , x, q−s2 , x) =
∑

f0,f1,f2,f3

(
f1f3
f0f2

)
q−s0 deg f0q−s2 deg f2xdeg f1f3

=
∑
f

L(s0, χf )L(s2, χf )σ0(f)xdeg f , (1.3)

where f = f1f3 and σ0(f) denotes the number of divisors of f . Then this residue, evaluated at
x0 = x2 = q−1/2, gives an asymptotic for the second moment of L(1/2, χf ), weighted by σ0(f),
over the function field Fq(t). It is possible to sieve for squarefree f as well. Along with the fourth
moment of L(1/2, χf ), this is a first application of Kac–Moody root systems to number theory.

It is perhaps too early to precisely formulate an Eisenstein conjecture in the Kac–Moody
setting; metaplectic Kac–Moody Eisenstein series are still conjectural, although recent work of
Braverman, Garland, Kazhdan, Miller, and Patnaik makes progress constructing non-metaplectic
Eisenstein series on affine Kac–Moody groups over function fields [BK11, BGKP14, Gar04,
GMP13]. In particular, a forthcoming paper of Patnaik [Pat14] gives the affine analogue of
the Casselman–Shalika formula for Whittaker coefficients of these series. Crucially, Patnaik’s
formula contains poles corresponding to imaginary roots in the affine root system. We expect
such poles to play an important role in Eisenstein series and their Whittaker coefficients for
all Kac–Moody groups, including metaplectic. However, their presence cannot be detected from
functional equations. The series of Lee and Zhang, constructed by averaging over the Weyl group,
have poles corresponding to real roots only. The D̃4 series of Bucur and Diaconu, constructed to
have a particularly convenient residue, may have certain poles at imaginary roots, but they are
arbitrarily chosen. In our construction, poles corresponding to imaginary roots arise naturally
from the axioms. Of the factors in formula (1.2), the first five correspond to real roots in the Ã3
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root system; the remaining three, however, correspond to imaginary roots. They can be compared
to the factor m and the factors indexed by imaginary roots α∨ in Patnaik’s formula (1.1). This
provides some initial evidence that our series is the correct one for the Eisenstein conjecture.

2. Notation and preliminaries

Let q be a prime power, with q ≡ 1 mod 4, and let Fq be the field with q elements. A polynomial in
Fq[t] is called prime if it is monic and irreducible. For f, g ∈ Fq[t], let (f/g) denote the quadratic
residue symbol, which is multiplicative in both f and g. In this context, we have an extremely
simple quadratic reciprocity law: for f, g monic, (f/g) = (g/f).

We define the function field zeta function,

ζ(x) =
∑

f∈Fq [t] monic

xdeg f =
∏

p∈Fq [t] prime

(1− xdeg p)−1 = (1− qx)−1. (2.1)

We also define the quadratic Dirichlet L-function: for g ∈ Fq[t] monic and squarefree,

L(x, χg) =
∑

f∈Fq [t] monic

(
f

g

)
xdeg f =

∏
p∈Fq [t] prime

(
1−

(
p

g

)
xdeg p

)−1
. (2.2)

Usually, these are written as series in the variable q−s; we have substituted the variable x to
emphasize the fact that these series are polynomials (or, in the case of ζ, a rational function)
in x.

The quadratic L-functions satisfy the following functional equations: if deg g is odd, then

L(x, χg) = (q1/2x)deg g−1L(q−1x−1, χg), (2.3)

and if deg g is even, then

(1− x)−1L(x, χg) = (q1/2x)deg g−2(1− q−1x−1)−1L(q−1x−1, χg). (2.4)

They also satisfy the Riemann hypothesis: all roots have |x| = q−1/2.
The combinatorics of affine root systems play a critical behind-the-scenes role in the proofs

below. However, for the sake of readability, we have suppressed this theory almost entirely in the
exposition. Many of the type Ã results here generalize to all affine types; see [Whi14].

3. Axioms and functional equations

Let q be a prime power, congruent to 1 modulo 4, and let n > 2 be an integer. For f0, f1, . . . ,
fn ∈ Fq[t] monic, we wish to define local weights H(f0, f1, . . . , fn) ∈ C. Informally, H(f0, f1, . . . ,
fn) is a weighted version of (

f0
f1

)(
f1
f2

)
· · ·
(
fn−1
fn

)(
fn
f0

)
(3.1)

where (−) denotes the quadratic residue symbol. The local weights determine global coefficients:
for nonnegative integers a0, a1, . . . , an,

ca0,a1,...,an(q) =
∑

f0,f1,...,fn∈Fq [t] monic
deg fi=ai

H(f0, f1, . . . , fn). (3.2)
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We will give four axioms, originally due to Diaconu and Pasol [DP], which uniquely determine
the local weights and global coefficients. These axioms describe the behavior of c and H as q
varies.

Axiom 3.1 (Twisted multiplicativity). Suppose that gcd(f0f1 · · · fn, g0g1 · · · gn) = 1. Then

H(f0g0, f1g1, . . . , fngn) = H(f0, f1, . . . , fn)H(g0, g1, . . . , gn)
∏

i modn+1

(
fi
gi+1

)(
gi
fi+1

)
. (3.3)

With this axiom in hand, it suffices to describe H(pa0 , pa1 , . . . , pan) for p ∈ Fq[t] prime.

Axiom 3.2 (Local-to-global principle). The global coefficients ca0,a1,...,an(q) and the local weights
H(pa0 , pa1 , . . . , pan) are polynomials in q and |p| := qdeg p respectively, of degrees at most a0 +
a1 + · · ·+ an, and

H(pa0 , pa1 , . . . , pan) = |p|a0+a1+···+anca0,a1,...,an(|p|−1). (3.4)

We can see this principle, in its simplest form, in the symmetry between the global function
field zeta function and its local factors. It can be explained as a consequence of Poincaré duality
or the Riemann–Roch theorem. Diaconu and Pasol [DP] extend the same principle to parameter
spaces of curves whose cohomology contains the character sums which appear in our coefficients.
The use of the rational function field Fq(t) is essential for this axiom to hold.

Axiom 3.3 (Dominance principle). The polynomial H(pa0 , pa1 , . . . , pan) has degree less than
1
2(a0 + a1 + · · · + an − 1) in |p|; equivalently, ca0,a1,...,an(q) has terms in degrees greater than
1
2(a0+a1+ · · ·+an+1). The only exceptions are for H(1, . . . , 1), H(1, . . . , 1, p, 1, . . . , 1), c0,...,0(q),
and c0,...,0,1,0,...,0(q).

Again, this principle is visible in the function field zeta function, and can be interpreted as a
cohomological property. The dominance principle will mean that the local weights are as small
as possible under Axiom 3.2. The final axiom is just a normalization condition.

Axiom 3.4 (Initial conditions). We have

H(1, . . . , 1, fi, 1, . . . , 1) = 1 for all fi and c0,...,0,ai,0,...,0(q) = qai for all ai.

We define the quadratic Ãn multiple Dirichlet series over the rational function field Fq(t) as

Z(x0, x1, . . . , xn) :=
∑

f0,f1,...,fn∈Fq [t] monic

H(f0, f1, . . . , fn)xdeg f00 xdeg f11 · · ·xdeg fnn

=
∑

a0,a1,...,an>0

ca0,a1,...,an(q)xa00 x
a1
1 · · ·x

an
n . (3.5)

The main theorem of this paper is as follows.

Theorem 3.5. There exists a unique choice of local weights H(f0, f1, . . . , fn) and global
coefficients ca0,a1,...,an(q) satisfying the four axioms. These give rise to a multiple Dirichlet series
Z(x0, x1, . . . , xn) with meromorphic continuation to |x0x1 · · ·xn| < q−(n+1)/2, whose group of
functional equations is isomorphic to the affine Weyl group of Ãn.
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We will prove the last statement first; that is, assuming we have chosen weights and
coefficients satisfying the axioms, the resulting series satisfies the functional equations. For now,
these functional equations are identities of formal power series only, but they hold as identities
of functions once Z is meromorphically continued. We will require some additional definitions of
single-variable series contained within Z: let

Λa0,...,âi,...,an(xi) =
∑
ai>0

ca0,...,ai,...,an(q)xaii (3.6)

λpa0 ,..., ˆpai ,...,pan (xi) =
∑
ai>0

H(pa0 , . . . , pai , . . . , pan)xai deg pi (3.7)

Lf0,...,f̂i,...,fn(xi) =
∑

fi∈Fq [t] monic

H(f1, . . . , fi, . . . , fn)xdeg fii , (3.8)

where we use the notation â or f̂ for an omitted index. The local series λ can be obtained from
the global series Λ by substituting q 7→ |p|−1, xi 7→ |p|xdeg pi and multiplying by |p|a0+···+âi+···+an .

Proposition 3.6. Fix all but one ai, for i modulo n + 1. If ai−1 + ai+1 is odd, then
Λa0,...,âi,...,an(xi) and λpa0 ,..., ˆpai ,...,pan (xi) are polynomials of degrees ai−1 +ai+1−1, (ai−1 +ai+1−
1) deg p respectively, satisfying:

(q1/2xi)
ai−1+ai+1−1Λa0,...,âi,...,an(q−1x−1i ) = Λa0,...,âi,...,an(xi), (3.9)

(q1/2xi)
(ai−1+ai+1−1) deg pλpa0 ,..., ˆpai ,...,pan (q−1x−1i ) = λpa0 ,..., ˆpai ,...,pan (xi). (3.10)

If ai−1+ai+1 is even, then these series are rational functions with denominators 1−qxi, 1−xdeg pi ,
and numerators of degrees ai−1 + ai+1, (ai−1 + ai+1) deg p respectively, satisfying:

(q1/2xi)
ai−1+ai+1(1− x−1i )Λa0,...,âi,...,an(q−1x−1i ) = (1− qxi)Λa0,...,âi,...,an(xi), (3.11)

(q1/2xi)
(ai−1+ai+1) deg p(1− q− deg px− deg p

i )λpa0 ,..., ˆpai ,...,pan (q−1x−1i )

= (1− xdeg pi )λpa0 ,..., ˆpai ,...,pan (xi). (3.12)

Proof. Notice that in each case, the functional equations of Λ and λ are equivalent. The proof is by
induction on

∑
j 6=i aj . If

∑
j 6=i aj = 0, the proposition follows from Axiom 3.4. For the inductive

step, fix f0, . . . , f̂i, . . . , fn ∈ Fq[t] monic of degrees a0, . . . , âi, . . . , an. Then, by Axiom 3.1, we
have the following Euler product formula:

Lf1,...,f̂i,...,fn+1
(xi)

=

( ∏
j 6=i,i−1

∏
p|fj

(
pvp(fj)

p−vp(fj+1)fj+1

))

×
∏
p

( ∞∑
ai=0

H(pvp(f0), . . . , pai , . . . , pvp(fn))

(
pai

p−vp(fi−1fi+1)fj−1fj+1

)
xai deg pi

)
, (3.13)

where vp(f) denotes the number of times p divides f . Moreover, if we set g to be the squarefree
part of fi−1fi+1, then all but finitely many of the Euler factors match those of

L(xi, χg) =
∏
p

(
1−

(
p

g

)
xdeg pi

)−1
. (3.14)

2508

https://doi.org/10.1112/S0010437X16007715 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007715


Affine Weyl group multiple Dirichlet series: type Ã

The only primes whose Euler factors do not match are those where p|f0 · · · f̂i · · · fn. At such a
prime, the ratio of the Euler factors is

µp(xi) =



λ
pvp(f0),...,

ˆ
pvp(fi),...,pvp(fn)((p/p

−vp(g)g)xi)

(1− (p/g)xdeg pi )−1

λ
pvp(f0),...,

ˆ
pvp(fi),...,pvp(fn)(±xi) if vp(fi−1fi+1) odd,

(1∓ xdeg pi )λ
pvp(f0),...,

ˆ
pvp(fi),...,pvp(fn)(±xi) if vp(fi−1fi+1) even.

(3.15)

Assuming that the proposition holds for λ
pvp(f0),...,

ˆ
pvp(fi),...,pvp(fn) , then this ratio is a polynomial

of degree dp = (vp(fi−1fi+1)− 1) deg p if vp(fi−1fi+1) is odd, or vp(fi−1fi+1) deg p if vp(fi−1fi+1)
is even, with functional equation

(q1/2xi)
dpµp(q

−1x−1i ) = µp(xi). (3.16)

Combining these local functional equations with the functional equation of L(xi, χg), we obtain,
for ai−1 + ai+1 odd,

(q1/2xi)
ai−1+ai+1−1Lf1,...,f̂i,...,fn+1

(q−1x−1i ) = Lf1,...,f̂i,...,fn+1
(xi), (3.17)

and for ai−1 + ai+1 even,

(q1/2xi)
ai−1+ai+1(1− x−1i )Lf1,...,f̂i,...,fn+1

(q−1x−1i ) = (1− qxi)Lf1,...,f̂i,...,fn+1
(xi). (3.18)

By definition, we have

Λa0,...,âi,...,an(xi) =
∑

f0,...,f̂i,...,fn
deg fj=aj

Lf0,...,f̂i,...,fn+1
(xi) (3.19)

and we may assume inductively that each Lf0,...,f̂i,...,fn+1
(xi) satisfies the desired functional

equations, except for

Lpa0 ,..., ˆpai ,...,pan (xi) =


λpa0 ,..., ˆpai ,...,pan (xi) if ai−1 + ai+1 odd,

1− xi
1− qxi

λpa0 ,..., ˆpai ,...,pan (xi) if ai−1 + ai+1 even,
(3.20)

when p is a prime of degree 1. We conclude, in the case of ai−1 + ai+1 odd,

(q1/2xi)
ai−1+ai+1−1(Λa0,...,âi,...,an(q−1x−1i )− qλpa0 ,..., ˆpai ,...,pan (q−1x−1i ))

= Λa0,...,âi,...,an(xi)− qλpa0 ,..., ˆpai ,...,pan (xi), (3.21)

and in the case of ai−1 + ai+1 even,

(q1/2xi)
ai−1+ai+1 ((1− x−1i )Λa0,...,âi,...,an(q−1x−1i )

− q(1− q−1x−1i )λpa0 ,..., ˆpai ,...,pan (q−1x−1i ))

= (1− qxi)Λa0,...,âi,...,an(xi)− q(1− xi)λpa0 ,..., ˆpai ,...,pan (xi). (3.22)

Finally, we apply Axiom 3.3. Consider the above two functional equations as identities of power
series in xi and q. Comparing the terms whose degree in q exceeds 1

2(a0 + · · ·+ âi+ · · ·+an) plus
half their degree in xi yields the desired functional equation for Λ. Comparing the remaining
terms yields the desired functional equation for λ. 2
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For i modulo n+ 1, let σi : Cn+1
→ Cn+1 be given by

(σi(x0, x1, . . . , xn))j =


q−1x−1i if j ≡ i,
q1/2xixj if j ≡ i± 1,

xj otherwise.

(3.23)

These transformations generate the group

〈σi|σ2i = 1, σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for j 6= i± 1〉, (3.24)

which is the Ãn affine Weyl group. Then Z has functional equations

Zai+1+ai−1 odd(σi(x0, . . . , xn)) = q1/2xiZai+1+ai−1 odd(x0, . . . , xn), (3.25)

(1− x−1i )Zai+1+ai−1 even(σi(x0, . . . , xn)) = (1− qxi)Zai+1+ai−1 even(x0, . . . , xn), (3.26)

where Zai+1+ai−1 odd/even denotes sum of terms ca0,...,an(q)xa00 · · ·xann with ai−1+ai+1 odd or even,
respectively.

We may also define the p-part of Z,

Zp(x0, . . . , xn) =
∑

a0,...,an

H(pa0 , . . . , pan)xa0 deg p0 · · ·xan deg p
n , (3.27)

and obtain similar local functional equations.
The functional equations are identities of formal power series, which may be translated into

linear recurrences on the coefficients. If ai−1 + ai+1 is odd, then we have

c...,ai,...(q) = qai−(ai−1+ai+1−1)/2c...,ai−1+ai+1−1−ai,...(q) (3.28)

and if ai−1 + ai+1 is even, then

c...,ai,...(q)

= qc...,ai−1,...(q) + qai−(ai−1+ai+1)/2(c...,ai−1+ai+1−ai,...(q)− qcai−1+ai+1−ai−1(q)). (3.29)

Note that any coefficient with ai >
1
2(ai−1 +ai+1) can be rewritten in terms of lower coefficients.

The only undetermined coefficients are the diagonals, ca,a,...,a(q).
On the other hand, the transformations σi leave the form x0x1 · · ·xn invariant, so we may

multiply Z by an arbitrary power series in this variable, thereby obtaining an arbitrary family of
diagonal coefficients, without affecting the functional equations. We have proved the following.

Proposition 3.7. A series Z(x0, . . . , xn) =
∑

a0,...,an
ca0,...,an(q)xa00 · · ·xann which satisfies the

functional equations (3.25) and (3.26) is uniquely determined by its diagonal coefficients ca,...,a(q).

In fact, by this proposition, the ratio of two power series satisfying the functional equations
must be a diagonal series. By inspecting the recursive formulas, one also sees that if the ca,...,a(q)
satisfy Axiom 3.3, then so do all the coefficients.

The last result of this section guarantees the existence of a meromorphic power series
satisfying the functional equations. It is proven by a generalization of the averaging procedure
developed by Chinta and Gunnells [CG07]. A proof for the affine root system D̃4 appears in
Bucur and Diaconu [BD10]; Lee and Zhang [LZ15] show that the construction works in all
symmetrizable Kac–Moody root systems. The notation of Lee and Zhang differs somewhat from
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ours; in particular, they construct the p-part Zp of a series; a change of variables is required to
obtain the global series Z. For a proof in the notation of this paper, see [Whi14].

We construct an infinite product which describes all the poles of Z implied by the functional
equations: let

∆(x0, . . . , xn) =
∞∏
m=0

∏
i,j modn+1

i 6≡j+1

(1− q(qx20 · · · qx2n)m(qx2i · · · qx2j )). (3.30)

∆ is best understood as a deformed Weyl denominator, a product over positive real roots in the
Ãn root system. It converges for |x0 · · ·xn| < q−(n+1)/2. Then we have the following proposition.

Proposition 3.8. There exists a power series Zavg(x0, . . . , xn) satisfying the functional
equations (3.25) and (3.26), such that ∆(x0, . . . , xn)Zavg(x0, . . . , xn) has analytic continuation
to |x0 · · ·xn| < q−(n+1)/2.

The series Zavg does not satisfy our axioms, but it will be crucial in proving the meromorphic
continuation of our series Z.

4. Existence and uniqueness

To simplify computations leading to the proof of the main theorem, we restrict our consideration
to a particular residue R of the series Z. Such residues are essential when we apply Tauberian
theorems to Z to obtain analytic results. The series Z can be recovered from the residue R, but
R is simpler than Z because its coefficients are multiplicative, not twisted multiplicative; hence,
R has an Euler product. We will observe a symmetry in the Euler product formula which is
equivalent to the local-to-global axiom. This, together with the dominance axiom, leads to an
explicit formula for R. The meromorphic continuation of R implies that of Z.

We will have two separate cases: n odd and n even. The computation for n odd is more
straightforward; for n even, the analogous results are somewhat more complicated, but not
essentially different.

For n odd, we define

R(x0, x2, . . . , xn−1) = (−q)(n+1)/2 Resx1=x3=···=xn=q−1Z(x0, . . . , xn) (4.1)

and for n even,

R(x0, x2, . . . , xn) = (−q)n/2 Resx1=x3=···=xn−1=q−1Z(q−1/4x0, x1, . . . , xn−1, q
−1/4xn), (4.2)

where the first and last variables are multiplied by q−1/4 to simplify later formulas. At first,
we treat this residue as a formal power series only. Taking a residue may not be a well-defined
operation on arbitrary power series, but in this case it is. We may multiply Z(x0, . . . , xn) by
1− qxi and then evaluate at xi = q−1; by Proposition 3.6 this involves taking only finite sums of
coefficients, so it gives a well-defined series. This is the meaning of −qResxi=q−1Z(x0, . . . , xn).
Once we give an explicit formula forR in the following section, we will see that it is a meromorphic
function, and the residue of a meromorphic function Z, in the desired domain.

If Z and Z ′ are two series satisfying the functional equations (3.25) and (3.26), with residues
R and R′, then by Proposition 3.7,

Z(x0, . . . , xn)

Z ′(x0, . . . , xn)
= Q(x0 · · ·xn), (4.3)
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a diagonal series. Therefore,

R(x0, x2, . . . , x2bn/2c)

R′(x0, x2, . . . , x2bn/2c)
= Q(q−(n+1)/2x0x2 · · ·x2bn/2c). (4.4)

The same holds if we restrict to the diagonal parts of power series: we define Zdiag(x) =∑
a ca,...,a(q)x

a, and similarly Z ′diag(x), Rdiag(x), and R′diag(x). Then

Zdiag(x)

Z ′diag(x)
=
Rdiag(q(n+1)/2x)

R′diag(q(n+1)/2x)
= Q(x). (4.5)

Equivalently, the ratio
Rdiag(x)

Zdiag(q−(n+1)/2x)
=: P (x) (4.6)

is the same for all series satisfying the functional equations (3.25) and (3.26). It does not depend
on the choice of diagonal coefficients ca,...,a(q). P (x) can be thought of as the diagonal part of
the residue if we take c0,...,0(q) = 1 and ca,...,a(q) = 0 for all a > 0.

Thus we can recover a full series Z(x0, . . . , xn) satisfying the functional equations from its
residue R, or even from Rdiag.

Next, we prove two formulas for the coefficients of R in terms of the coefficients of Z.

Proposition 4.1. Suppose the coefficients of Z(x0, . . . , xn) are ca0,...,an(q). Then for n odd, the
coefficient of R(x0, x2, . . . , xn−1) at xa00 x

a2
2 · · ·x

an−1

n−1 is

q−2(a0+a2+···+an−1)ca0,a0+a2,a2,a2+a4,...,an−1,an−1+a0(q). (4.7)

For n even, the coefficient at xa00 x
a2
2 · · ·xann is

q3(a0+an)/4−2(a0+a2+···+an)ca0,a0+a2,a2,a2+a4,...,an−2+an,an(q). (4.8)

In particular, the nonzero coefficients of the residue must have all ai odd or all ai even.

Proof. Fix all indices except for one ai with i odd. Then by Proposition 3.6, we have

Λa0,...,âi,...,an(xi)

=

ai−1+ai+1−1∑
ai=0

c...,ai−1,ai,ai+1,...(q)x
ai
i +

c...,ai−1,ai−1+ai+1,ai+1,...(q)x
ai−1+ai+1

i

1− qxi
(4.9)

and c...,ai−1,ai−1+ai+1,ai+1,...(q) = 0 if ai−1 + ai+1 is odd. If we then take −qResxi=q−1 , we obtain
q−ai−1−ai+1c...,ai−1,ai−1+ai+1,ai+1,...(q). Repeating this process for all i 6 n odd gives the desired
formula. The rearrangements of power series implicit in this computation are only reorderings
of finite sums, by Proposition 3.6. 2

We may apply the functional equations σi for i 6 n odd to the residue. Since only terms
with ai−1 + ai+1 even contribute to the residue, we only need the even part of the functional
equation. Let Zsame denote the part of the power series Z with a0 + a2, a2 + a4, a4 + a6, etc. all
even, that is, where a0, a2, a4, etc. have the same parity. In the case of n odd, we obtain

R(x0, x2, . . . , xn−1) = (−q)(n+1)/2 Resx1=x3=···=xn=q−1Z(x0, . . . , xn)

= (−q)(n+1)/2 Resx1=x3=···=xn=q−1Zsame(x0, . . . , xn)

= (1− q)(n+1)/2Zsame(q
−1x0, 1, q

−1x2, 1, . . . , q
−1xn−1, 1) (4.10)
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and for n even,

R(x0, x2, . . . , xn) = (1− q)n/2Zsame(q
−3/4x0, 1, q

−1x2, 1, . . . , q
−1xn−2, 1, q

−3/4xn). (4.11)

We can now prove a second formula for R in terms of the local coefficients H(f0, . . . , fn) rather
than the global coefficients ca0,...,an(q).

Proposition 4.2. If Z is a series defined by local weights H as

Z(x0, . . . , xn) =
∑

f0,...,fn

H(f0, . . . , fn)xdeg f00 · · ·xdeg fnn (4.12)

then, for n odd, we have

R(x0, x2, . . . , xn−1)

=
∑

f0,f2,...,fn−1

H(f0, f0f2, f2, f2f4, . . . , fn−1, fn−1f0)

qdeg f0+deg f2+···+deg fn−1
xdeg f00 xdeg f22 · · ·xdeg fn−1

n−1 (4.13)

and for n even,

R(x0, x2, . . . , xn)

=
∑

f0,f2,...,fn

H(f0, f0f2, f2, f2f4, . . . , fn−2fn, fn)

q(3/4) deg f0+deg f2+···+deg fn−2+(3/4) deg fn
xdeg f00 xdeg f22 · · ·xdeg fnn . (4.14)

In particular, only tuples of polynomials f0, f2, f4, . . . with fifi+2 a perfect square for all i, that
is, tuples of polynomials with the same squarefree part, contribute to the residue.

Proof. First note that H(f0, f0f2, f2, f2f4, . . .) indeed vanishes if any fifi+2 is not a perfect
square. If a prime p divides fifi+2 an odd number of times, then H(pvp(f0), pvp(f0f2), pvp(f2),
pvp(f2f4), . . .) must vanish by the local functional equations. Then, by Axiom 3.1, H(f0, f0f2, f2,
f2f4, . . .) = 0.

Now we use equations (4.10) and (4.11) as a starting point. Fix all but one fi and assume
deg fi−1fi+1 is even. Then, as in the proof of Proposition 3.6, the series

∑
fi
H(f0, . . . , fn)xdeg fii

matches the L-function L(xi, χfi−1fi+1
) up to multiplication by correction polynomials. Unless

fi−1fi+1 is a perfect square, this L-function has a trivial zero at xi = 1. If fi−1fi+1 is a perfect
square, then this series matches the zeta function (1− qxi)−1 up to multiplication by correction
polynomials of the form

(1− xdeg pi )

(vp(fi−1fi+1)−1∑
ai=0

H(. . . , pvp(fi−1), pai , pvp(fi+1), . . .)xai deg pi

)
+H(. . . , pvp(fi−1), pvp(fi−1fi+1), pvp(fi+1), . . .)x

vp(fi−1fi+1) deg p
i (4.15)

for each prime p dividing fi−1fi+1. Thus, evaluating the series
∑

fi
H(f0, . . . , fn)xdeg fii at xi = 1

and multiplying by 1−q gives H(. . . , fi−1, fi−1fi+1, fi+1, . . .). Repeating this process for all i 6 n
odd and using equations (4.10) and (4.11) gives the desired result. Again by Proposition 3.6, the
rearrangements of power series implicit in this proof are only reorderings of finite sums. 2

Notice that the terms H(f0, f0f2, f2, f2f4, . . .) appearing in the residue are multiplicative,
not twisted multiplicative. That is, if gcd(f0f2 · · · f2bn/2c, g0g2 · · · g2bn/2c) = 1, then

H(f0g0, f0f2g0g2, f2g2, f2f4g2g4, . . .) = H(f0, f0f2, f2, f2f4, . . .)H(g0, g0g2, g2, g2g4, . . .). (4.16)
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Indeed, since all the fifi+2 and gigi+2 terms are square, they do not contribute to the twists in
Axiom 3.1. The only possible factor of −1 comes from (f0/gn)(fn/g0) in the case when n is even,
but since f0 and fn must have the same squarefree part, and so must g0 and gn, this product of
residues is 1.

Therefore, we may write an Euler product expression for R:

R(x0, x2, . . . , x2bn/2c) =
∏

p prime

Rp(x0, x2, . . . , x2bn/2c), (4.17)

where if n is odd,

Rp(x0, x2, . . . , xn−1)

×
∑

a0,a2,...,an−1

H(pa0 , pa0+a2 , pa2 , pa2+a4 , . . . , pan−1 , pan−1+a0)

q(a0+a2+···+an−1) deg p
xa0 deg p0 xa2 deg p2 · · ·xan−1 deg p

n−1 ,

(4.18)

and if n is even,

Rp(x0, x2, . . . , xn)

=
∑

a0,a2,...,an

H(pa0 , pa0+a2 , pa2 , pa2+a4 , . . . , pan−2+an , pan)

q((3/4)a0+a2+···+an−2+(3/4)an) deg p
xa0 deg p0 xa2 deg p2 · · ·xan deg p

n . (4.19)

Let us compare these equations to Proposition 4.1, and apply Axiom 3.2. We see that Rp may

be obtained from R by substituting q 7→ q− deg p and xi 7→ xdeg pi .
We may write R(x0, x2, . . .) as a product of terms (1 − qβxα0

0 xα2
2 · · ·)−γ , where αi ∈ Z, and

β ∈ Z for n odd, or 1
2Z for n even (not 1

4Z because α0, αn must have the same parity). Any
formal power series in can be expressed uniquely in this way. Then comparing to the Euler
product formula for the function field zeta function, we conclude that such factors come in pairs.

Property 4.3. If (1− qβxα0
0 xα2

2 · · ·)−γ is a factor of R, then so is (1− q1−βxα0
0 xα2

2 · · ·)−γ .

This symmetry is equivalent to Axiom 3.2 for the full series Z: it implies the local-to-global
property for coefficients ca0,a0+a2,a2,a2+a4,...(q) and local weights H(f0, f0f2, f2, f2f4, . . .), and all
other coefficients can be obtained from these via compatible global and local functional equations.

We are now ready to prove the existence and uniqueness statements of the main theorem.
We first introduce some new notation based on the expression of R as a product of terms
(1 − qβxα0

0 xα2
2 · · ·)−γ . We let R[ denote the product of terms with β 6 0 and R] denote the

product of terms with β > 1. If n is even, we also have R\ with β = 1
2 . We let R1 denote

the product of diagonal factors (with α0 = α2 = α4 = · · · ), and let R0 denote the product of
off-diagonal factors. In the following chapter, we will explicitly compute R0, and show that it
satisfies Property 4.3. For now, we assume this. We also have R[0, R

\
0, R

]
0, R

[
1, R

\
1, R

]
1, and the

diagonal parts of each of these.
Recall that

P (x)Zdiag(q−(n+1)/2x) = Rdiag(x) = R0, diag(x)R1(x) (4.20)

for any series Z satisfying the functional equations with residue R. We must show that there
exists a unique choice of Zdiag satisfying Axiom 3.3 and R1 satisfying Property 4.3 which make
this equation true. The resulting series Z with residue R will satisfy the four axioms.
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For Zdiag(q−(n+1)/2x) to satisfy the dominance axiom, its coefficients (other than the constant
coefficient 1) must be polynomials divisible by q. If it is written as a product of terms (1−qβxα)−γ ,
then all these terms will have β > 1. Thus, when n is odd,

R[1(x) = (P (x)Zdiag(q−(n+1)/2x)R0, diag(x)−1)[

= (P (x)R0, diag(x)−1)[ (4.21)

and both P (x) and R0, diag(x)−1 are fixed. Hence, R[1 is uniquely determined. Then we must

choose R]1 to satisfy Property 4.3, and Zdiag to satisfy equation (4.20). In the case of n even,

R[1R
\
1 is uniquely determined, and the conclusion is the same as before.

5. Computing the residue

In this chapter, we prove explicit formulas for the residue.

Proposition 5.1. If the series Z(x0, . . . , xn) satisfies Axioms 3.1–3.4, and n is odd, then the
residue R(x0, x2, xn−1) is as follows:

R(x0, x2, . . . , xn−1) := (−q)(n+1)/2 Resx1=x3=···=xn=q−1Z(x0, . . . , xn)

=
∞∏
m=0

(1− (x0x2 · · ·xn−1)2m+1)−1(1− q(x0x2 · · ·xn−1)2m+1)−1

×
∏

i,j mod n+1
even

(1− (x0x2 · · ·xn−1)2m(xixi+2 · · ·xj)2)−1

× (1− q(x0x2 · · ·xn−1)2m(xixi+2 · · ·xj)2)−1 (5.1)

and if n is even, then

R(x0, x2, . . . , xn) := (−q)(n+1)/2 Resx1=x3=···=xn−1=q−1Z(q−1/4x0, x1, . . . , xn−1, q
−1/4xn)

=

∞∏
m=0

(1− (x0x2 · · ·xn)2m+2)−n/2(1− q(x0x2 · · ·xn)2m+2)−n/2

×
∏

06i<n
even

(1− q1/2(x0x2 · · ·xn)2m(x0x2 · · ·xi)2)−1

× (1− q1/2(x0x2 · · ·xn)2m(xi+2xi+4 · · ·xn)2)−1

×
∏

0<i6j<n
even

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1

× (1− q(x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1

× (1− (x0x2 · · ·xn)2m(x0x2 · · ·xi−2xj+2xj+4 · · ·xn)2)−1

× (1− q(x0x2 · · ·xn)2m(x0x2 · · ·xi−2xj+2xj+4 · · ·xn)2)−1. (5.2)

These products define a meromorphic functions in the domain |x0x2 · · ·x2bn/2c| < 1. By
Proposition 3.8 we have a series Zavg, satisfying the same functional equations as Z, with
meromorphic continuation to |x0x1 · · ·xn| < q−(n+1)/2. Its residue Ravg is meromorphic in the
same domain as R. The ratio

R(x0, x2, . . . , x2bn/2c)

Ravg(x0, x2, . . . , x2bn/2c)
= Q(q−(n+1)/2x0x2 · · ·x2bn/2c) (5.3)
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is a power series in one variable x0x2 · · ·x2bn/2c, and Q(x) is meromorphic for |x| < q−(n+1)/2.

Thus

Z(x0, . . . , xn) = Zavg(x0, . . . , xn)Q(x0 · · ·xn) (5.4)

is meromorphic for |x0x1 · · ·xn| < q−(n+1)/2. Hence, if we can prove Proposition 5.1 we will

complete the proof of Theorem 3.5.
First we compute the residue up to a diagonal factor, using functional equations. Let i be

even, and, if n is even, 0 < i < n. The functional equations σiσi−1σi+1σi yield

Z(. . . , xi−2, xi−1, xi, xi+1, xi+2, . . .)

=
1

16

∑
ε1,ε2,ε3,ε4=±1

ε2ε3q
−2x−2i−1x

−4
i x−2i+1

(
ε4q
−1/2 − 1− ε2ε3qxi−1xixi+1

1− ε2ε3q2xi−1xixi+1

)

×
(
ε3q
−1/2 − 1− ε1q1/2xixi+1

1− ε1q3/2xixi+1

)(
ε2q
−1/2 − 1− ε1q1/2xi−1xi

1− ε1q3/2xi−1xi

)(
ε1q
−1/2 − 1− xi

1− qxi

)
×Z

(
. . . , ε2qxi−2xi−1xi, ε1ε2ε3ε4xi−1,

ε2ε3
q2xi−1xixi+1

, ε1ε2ε3ε4xi+1, ε3qxixi+1xi+2, . . .

)
. (5.5)

If we take the residue, only the terms with ε1ε2ε3ε4 = 1 will contribute, and, by Proposition (4.1),

only even powers of ε2 and ε3 will appear. Thus the residue in fact has functional equations with

scalar cocycle:

R(. . . , xi−2, xi, xi+2, . . .) = (∗)R
(
. . . , xi−2xi,

1

xi
, xixi+2, . . .

)
(5.6)

where

(∗) =
1

16

∑
ε1,ε2,ε3,=±1

ε2ε3q
2x−4i

(
ε1ε2ε3q

−1/2 − 1− ε2ε3q−1xi
1− ε2ε3xi

)

×
(
ε3q
−1/2 − 1− ε1q−1/2xi

1− ε1q1/2xi

)(
ε2q
−1/2 − 1− ε1q−1/2xi

1− ε1q1/2xi

)(
ε1q
−1/2 − 1− xi

1− qxi

)
=

(1− x−2i )(1− qx−2i )

(1− x2i )(1− qx2i )
. (5.7)

Applying the transformation (. . . , xi−2, xi, xi+2, . . .) 7→ (. . . , xi−2xi, 1/xi, xixi+2, . . .) to (5.1)

or (5.2) just permutes the factors, except for the two factors (1 − x2i )
−1(1 − qx2i )

−1, which

are replaced by (1 − x−2i )−1(1 − qx−2i )−1. Therefore the formulas of Proposition 5.1 satisfy the

functional equations (5.6).

Let R and R′ be two power series satisfying the functional equations (5.6). Then the ratio

R/R′ is invariant under (. . . , xi−2, xi, xi+2, . . .) 7→ (. . . , xi−2xi, 1/xi, xixi+2, . . .) for i even and,

if n is even, 0 < i < n. In the case of n odd, this immediately implies that R/R′ is a diagonal

power series, so the formula (5.1) is correct up to diagonal factors.
If n is even, we require additional functional equations. There are two functional equations

corresponding to the transformations (σ0σ1 · · ·σn)2 and (σnσn−1 · · ·σ0)2. We will describe the
(σ0σ1 · · ·σn)2 functional equation; the other one is similar. We have

R(x0, x2, x4, . . . , xn−4, xn−2, xn)

= (∗)R(x30x
3
2x

2
4 · · ·x2n, x4, x6, . . . , xn−2, x0xn, x−30 x−22 · · ·x

−2
n ), (5.8)
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where

(∗) =
1− q1/2(x0x2 · · ·xn)−4x−20

1− q1/2(x0x2 · · ·xn)4x20

1∏
m=0

∏
06i<n
even

(1− q1/2(x0x2 · · ·xn)−2m(x0x2 · · ·xi)−2)
(1− q1/2(x0x2 · · ·xn)2m(x0x2 · · ·xi)2)

(5.9)

(the transformation is slightly different when n = 2).
Finally, suppose n is even and n > 2. Consider the transformation σ0σ1σnσn−1σ0σnσ1σ0.

This leads to a functional equation

R(x0, x2, x4, . . . , xn−4, xn−2, xn)

= (∗)R(x−1n , x0x2xn, x4, . . . , xn−4, x0xn−2xn, x
−1
0 ), (5.10)

where

(∗) =
(1− q1/2x−20 )(1− q1/2x−2n )(1− x−20 x−2n )(1− qx−20 x−2n )

(1− q1/2x20)(1− q1/2x2n)(1− x20x2n)(1− qx20x2n)
(5.11)

(the functional equation is slightly different when n = 4).
It is straightforward to show that the formula (5.2) satisfies these additional functional

equations, and that they determine it up to diagonal factors. This completes the computation
of R up to diagonal factors. Note that the off-diagonal part R0 satisfies Property 4.3.

With the off-diagonal factors in hand, we can compute all of R. In fact, by Property 4.3 we
need only compute R[ and R\. For n odd, we must show that

R[(x0x2 · · ·xn−1)

=

∞∏
m=0

(1− (x0x2 · · ·xn−1)2m+1)−1
∏

i,j mod n+1
even

(1− (x0x2 · · ·xn−1)2m(xixi+2 · · ·xj)2)−1, (5.12)

where only the first factor and the factors with j ≡ i− 2 are not yet determined. For n even, we
must show that

R[(x0, x2, . . . , xn) =

∞∏
m=0

∏
i,j mod n+2

even
i 6=0, j 6=n

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1, (5.13)

where only the factors with j ≡ i−2 are not yet determined. Further, R\ has no diagonal factors.
Before starting the computation, we state a useful lemma on the combinatorics of the

partition function.

Lemma 5.2. The generating function which counts integer partitions δ(0) > δ(1) > δ(2) > · · ·
such that

∑
j≡k modn δ

(j) = ak is

∞∏
m=0

n∏
j=1

(1− (x1x2 · · ·xj)(x1x2 · · ·xn)m)−1. (5.14)

As a consequence, the generating function of n-tuples of integer partitions δ
(j)
1 , δ

(j)
2 , . . . , δ

(j)
n

such that
∑

i+j≡k modn δ
(j)
i = ak is

∞∏
m=0

∏
i,j mod n

(1− (xixi+1 · · ·xj)(x1x2 · · ·xn)m)−1. (5.15)
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The next proposition establishes, in the case of n odd, that the diagonal part of R[ matches
the diagonal part of (5.12). Recall that

P (x)Zdiag(q−(n+1)/2x) = Rdiag(x) (5.16)

and Zdiag(q−(n+1)/2x) = 1 +O(q). In this formula, P (x) =
∑

a pa(q)x
a, and pa(q) is the value of

q−a(n+1)ca,2a,...,a,2a(q) in a series satisfying the functional equations whose diagonal coefficients
are c0,0,...,0 = 1, ca,a,...,a = 0 for all a > 0. We explicitly compute the part of P (x) which has
degree 0 in the variable q.

Proposition 5.3. Let n be odd. Then

P (x0x2 · · ·xn−1) =

( ∞∏
m=0

(1− (x0x2 · · ·xn−1)2m+1)−1

×
∏

i,jmodn+1
even

(1− (x0x2 · · ·xn−1)2m(xixi+2 · · ·xj)2)−1
)

diag

+O(q). (5.17)

This implies that

R[diag(x0x2 · · ·xn−1) =

( ∞∏
m=0

(1− (x0x2 · · ·xn−1)2m+1)−1

×
∏

i,j mod n+1
even

(1− (x0x2 · · ·xn−1)2m(xixi+2 · · ·xj)2)−1
)

diag

. (5.18)

Proof. The proof requires closely examining the combinatorics of the recurrences on coefficients
of Z. Recall the statement of the recurrence associated to functional equation σi: for ai−1 + ai+1

odd,
c...,ai,... = qai−(ai−1+ai+1−1)/2c...,ai−1+ai+1−1−ai,..., (5.19)

and for ai−1 + ai+1 even, applying equation (3.29) repeatedly gives

c...,ai,... = qai−(ai−1+ai+1)/2

(
c...,(ai−1+ai+1)/2,... +

(ai−1+ai+1)/2−1∑
a′i=ai−1+ai+1−ai

(c...,a′i,... − qc...,a′i−1,...)
)
. (5.20)

Starting with ca0,...,an we will apply the recurrences in the following order: first, reduce as
far as possible with the odd σi, then reduce the result as far as possible with the even σi, then
reduce that result as far as possible with the odd σi, and so on. Any coefficient will eventually
be reduced to a linear combination of diagonal coefficients in this way. The lowest term in pa(q)
represents the number of paths from ca,2a,a,2a,...,a,2a to c0,0,...,0 via these recurrences, gaining as
small a power of q as possible.

Given any ca0,...,an , assuming without loss of generality that
∑

i odd ai >
∑

i even ai, we apply
the recurrences σi for i odd to reduce as far as possible. Any coefficient ca0,a′1,...,an−1,a′n

in the
resulting expression now has

∑
i odd a

′
i 6

∑
i even ai. Furthermore, it is multiplied by a factor of

at least q
∑

i odd ai−
∑

i even ai , and more than this if any of the ai for i odd could not be reduced. If
we continue reducing this way until we reach c0,0,...,0, it will be multiplied by a factor of at least
qMax(

∑
i odd ai,

∑
i even ai). In particular, reducing ca,2a,a,2a,...,a,2a to c0,0,...,0 involves multiplying by

at least qa(n+1). This is the correct order since one possible path is

ca,2a,a,2a,...,a,2a → qa(n+1)/2ca,0,a,0,...,a,0 → qa(n+1)c0,0,...,0. (5.21)

Therefore pa(q) is a polynomial in q with nonzero constant term.
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Because we are only considering the lowest term in pa(q), we can discard all terms in

the σi recurrence with a factor greater than qai−(ai−1+ai+1)/2. This leads to greatly simplified

recurrences: if ai−1 + ai+1 is even, then

c...,ai,... = qai−(ai−1+ai+1)/2

(ai−1+ai+1)/2∑
a′i=ai−1+ai+1−ai

c...,a′i,..., (5.22)

and if ai−1 + ai+1 is odd, then

c...,ai,... = 0. (5.23)

We have now reduced the problem of computing the constant coefficient in pa(q) to counting
chains of nonnegative integer indices:

a0, a1, a2, a3, . . . an−1, an
a′0, a′1, a′2, a′3, . . . a′n−1, a′n
a′′0, a′′1, a′′2, a′′3, . . . a′′n−1, a′′n
· · · · · · · · · · · · · · · · · · · · ·
a
(`)
0 , a

(`)
1 , a

(`)
2 , a

(`)
3 , . . . a

(`)
n−1, a

(`)
n

such that the following conditions hold.

Condition 5.4. We have the two boundary conditions (a0, a1, . . . , an−1, an) = (a, 2a, . . . , a, 2a)

and (a
(`)
0 , a

(`)
1 , . . . , a

(`)
n−1, a

(`)
n ) = (0, 0 . . . , 0, 0).

Condition 5.5. a
(j)
i = a

(j+1)
i if i is even and j is even, or if i is odd and j is odd.

Condition 5.6. a
(j)
i + a

(j)
i+2 is even for all i, j.

Condition 5.7. For i even and j odd, or i odd and j even,

aji >
1
2(a

(j)
i−1 + a

(j)
i+1) > a

(j+1)
i > a

(j)
i−1 + a

(j)
i+1 − a

(j)
i . (5.24)

Note that the indices i are still numbered modulo n+ 1 here.

We will rephrase this counting problem once before solving it. For i modulo n+ 1 even, and

1 6 j 6 `, let δ
(j)
i = a

(j−1)
i+j−1 − a

(j)
i+j−2. The last inequality of condition (5.7) implies that

δ
(1)
i > δ

(2)
i > δ

(3)
i > · · · > δ

(`)
i > 0. (5.25)

Thus a chain of indices as above gives rise to an (n + 1)/2-tuple of integer partitions δ
(j)
0 , δ

(j)
2 ,

. . . , δ
(j)
n−1 satisfying the following two conditions, which correspond to Conditions 5.6 and 5.4.

Condition 5.8. For fixed j, the δ
(j)
i are either all even or all odd.

2519

https://doi.org/10.1112/S0010437X16007715 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007715


I. Whitehead

Condition 5.9.
∑

j δ
(j)
i−2j = a for all i.

We can reconstruct the chain of indices a
(j)
i from the partitions δ

(j)
i : for i, j both odd or both

even,

a
(j)
i =

∑̀
k=j+1

δ
(k)
i+j+2−2k. (5.26)

By comparing such expressions, we find that for any i, j both odd or both even, a
(j)
i > a

(j+1)
i−1

and a
(j)
i > a

(j+1)
i+1 . This appears to be a stronger condition than Condition 5.7; in fact, it must

be equivalent.

To count the δ
(j)
i , first note that there exists a unique strictly decreasing partition γ such

that for all i, there exists a partition δ̃i with even entries such that δi = δ̃i + γ∗. Here ∗ denotes

the conjugate partition. We may take γ to be the set {j : d
(j)
i odd}, in decreasing order. If γ1 and

γ2 have this same property, then γ∗1 + γ∗2 has all even entries, and, since γ1 and γ2 are strictly
decreasing, this implies that they are equal.

Since the generating function of strictly decreasing partitions is the same as the generating
function of odd partitions,

∏∞
k=0(1−x2k+1)−1, the first factor of (5.12) will account for the choice

of γ.

Now it suffices to count (n+1)/2-tuples of even partitions δ̃
(j)
i satisfying condition (5.9). But

by the logic of (5.15), this is precisely the diagonal part of the second factor of (5.12). 2

This completes the computation, and the proof of the main theorem, in the case of n odd.
In the case of n even, the proof is similar, supplemented by a lemma which does not hold in the
odd case.

Lemma 5.10. Suppose n is even. Then P (x) is an even power series in x.

Proof. A list of indices a0, a1, . . . , an can be broken into blocks of consecutive even or odd indices.
The list a, 2a, a, 2a, . . . , a for a odd has a single even-length block of odd indices: the first and
last a. Since the recurrences can only change the parity of an index if the sum of its neighbors is
even, they preserve the property of having an odd number of even-length blocks of odd indices.
In particular, there is no path from a, 2a, a, 2a, . . . , a to 0, 0, . . . , 0 via the recurrences. 2

Since the off-diagonal factors of R are all even in x0, x2, . . . , xn and P (x) is even, the diagonal
factors of R[R\ must be even as well. Thus R is an even power series, which is not obvious
a priori. In particular, R\ cannot contain diagonal factors, so it suffices to describe the diagonal
part of R[. The following proposition is the analogue of Proposition 5.3. The proof is parallel,
so many details are omitted.

Proposition 5.11. Let n be even. Then

P (x0x2 · · ·xn)

=

( ∞∏
m=0

∏
i,j mod n+2

even
i 6=0, j 6=n

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1
)

diag

+O(q1/2). (5.27)
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This implies that

R[diag(x0x2 · · ·xn)

=

( ∞∏
m=0

∏
i,j mod n+2

even
i 6=0, j 6=n

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1
)

diag

(5.28)

which completely determines R.

Proof. We apply the σi recurrences to ca,2a,a,2a,...,a(q) in the following order: first, apply
σ1σ3 · · ·σn−1, then σ2σ4 · · ·σn, then σ3σ5 · · ·σn+1 (recall that σn+1 = σ0), etc. Eventually, every
index will be reduced to zero by these recurrences.

If we apply the recurrences σ1σ3 · · ·σn−1 to an arbitrary ca0,a1,...,an , we obtain a linear
combination of lower coefficients ca0,a′1,a2,a′3,...,an , each of which is multiplied by q to the power of

at least a1 +a3 + · · ·+an−1− (a2 +a4 + · · ·+an−2)− 1
2(a0 +an), and more than this if any of the

a1, a3, . . . , an−1 could not be reduced. Repeating this process with σ2σ4 · · ·σn and so on until we
reach c0,0,...,0, we gain a factor of at least qa1+a3+···+an−1+an/2. This lower bound is actually the
correct order for the coefficient ca,2a,a,2a,...,a with a even, since one possible path is

ca,2a,a,2a,...,a → qa(n−1)/2ca,0,a,0,...,a → qan−3a/2ca,0,...,0 → qan−a/2c0,...,0. (5.29)

Hence pa(q) is a polynomial in q1/2 with nonzero constant coefficient.
Once again, any term in the σi recurrence which carries a power of q greater than ai −

1
2(ai−1 + ai+1) can be ignored, and we have the simplified recurrences (5.22) and (5.23).

We must count chains of nonnegative indices:

a0, a1, a2, a3, . . . an−1, an
a′0, a′1, a′2, a′3, . . . a′n−1, a′n
a′′0, a′′1, a′′2, a′′3, . . . a′′n−1, an
· · · · · · · · · · · · · · · · · · · · ·
a
(`)
0 , a

(`)
1 , a

(`)
2 , a

(`)
3 , . . . a

(`)
n−1, a

(`)
n

such that the following conditions hold.

Condition 5.12. We have boundary conditions (a0, a1, a2, a3, . . . , an−1, an) = (a, 2a, a, 2a, . . . ,

2a, a) and (a
(`)
0 , a

(`)
1 , a

(`)
2 , a

(`)
3 , . . . , a

(`)
n−1, a

(`)
n ) = (0, 0, 0, 0, . . . , 0, 0).

Condition 5.13. All a
(j)
i are even. (This is the analogue of Condition 5.6 when n is even.)

Condition 5.14. If i ∈ {j, j + 2, j + 4, . . . , j + n}, then a
(j)
i = a

(j+1)
i .

Condition 5.15. If i ∈ {j + 1, j + 3, j + 5, . . . , j + n− 1}, then

a
(j)
i > 1

2(a
(j)
i−1 + a

(j)
i+1) > a

(j+1)
i > a

(j)
i−1 + a

(j)
i+1 − a

(j)
i . (5.30)

To further simplify, for i ∈ {2, 4, 6, . . . , n} and 1 6 j 6 `, let δ
(j)
i = a

(j−1)
i+j−1 − a

(j)
i+j−2. Then

by Condition 5.15 above, we have δ
(1)
i > δ

(2)
i > δ

(3)
i > · · · > δ

(`)
i > 0. To simplify notation, we

also set δ
(j)
0 = 0 for all j, and we take the lower index i of δi modulo n + 2 instead of n + 1.

We are now counting n/2 + 1-tuples of integer partitions δ0, δ2, δ4, . . . , δn such that the following
conditions hold.
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Condition 5.16. All δ
(j)
i are even.

Condition 5.17. δ
(j)
0 = 0.

Condition 5.18.
∑`

j=1 δ
(j)
i−2j = a for all i.

The indices a
(j)
i can all be recovered from the partitions δi satisfying these conditions.

By the logic of (5.15), the generating function of such sets of partitions is the diagonal part
of the series:

∞∏
m=0

∏
i,j mod n+2

even
i 6=0

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1, (5.31)

which is the same as the diagonal part of

∞∏
m=0

∏
i,j mod n+2

even
i 6=0, j 6=n

(1− (x0x2 · · ·xn)2m(xixi+2 · · ·xj)2)−1. (5.32)

2

This completes the proof of the main theorem in the case of n even.
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