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Abstract
Sequences of non-decreasing (non-increasing) lower (upper) bounds for the renewal-type equation as well as for the
renewal function which are improvements of the famous corresponding bounds of Marshal [(1973). Linear bounds
on the renewal function. SIAM Journal on Applied Mathematics 24(2): 245–250] are given. Also, sequences such
bounds converging to the ordinary renewal function are obtained for several reliability classes of the lifetime
distributions of the inter-arrival times, which are refinements of all of the existing known corresponding bounds.
For the first time, a lower bound for the renewal function with DMRL lifetimes is given. Finally, sequences of such
improved bounds are given for the ordinary renewal density as well as for the right-tail of the distribution of the
forward recurrence time.

1. Introduction

Consider the renewal-type equation

𝑍 (𝑡) = 𝑟 (𝑡) +
∫ 𝑡

0
𝑍 (𝑡 − 𝑦) 𝑑𝐹 (𝑦), 𝑡 ≥ 0, (1.1)

where 𝑍 (𝑡) is the unknown function, 𝑟 (𝑡) is a real-valued measurable function which is bounded on
finite intervals with 𝑟 (𝑡) = 0 for 𝑡 < 0 and 𝐹 is a distribution function (df) of a non-negative random
variable with 𝐹 (0) = 0.

Let {𝑋1, 𝑋2, . . .} be a sequence of independent and identically distributed random variables having
common df 𝐹. Let also 𝑋 represents a generic random variable of 𝑋𝑖’ s. In the rest of the paper, we
assume that the random variable 𝑋 has at least the first two moments to be finite, that is, 𝜇 = 𝐸 (𝑋) < ∞
and 𝜇2 = 𝐸 (𝑋2) < ∞.

The Stieltjes-type convolution of functions 𝑔 : [0,∞) → R and 𝐹 will be denoted by 𝑔 ∗ 𝐹 and is
defined as (𝑔 ∗ 𝐹)(𝑡) =

∫ 𝑡
0 𝑔(𝑡 − 𝑦) 𝑑𝐹 (𝑦). Also let 𝐹∗𝑛 (𝑥) = 1 − �̄�∗𝑛 (𝑥), 𝑛 ≥ 1, 𝑥 ≥ 0, the 𝑛-fold

convolution of the df 𝐹 with itself, with 𝐹∗1(𝑥) = 𝐹 (𝑥), 𝐹∗0(𝑥) = 0, for 𝑥 < 0 and 𝐹∗0(𝑥) = 1, for 𝑥 ≥ 1.
Define for 𝑡 > 0, the renewal process 𝑁 (𝑡) = sup{𝑛 ∈ 𝑁 : 𝑆𝑛 ≤ 𝑡, }, if 𝑋1 ≤ 𝑡, to be the number of

renewals in [0, 𝑡] with 𝑁 (𝑡) = 0, if 𝑋1 > 𝑡, where 𝑆𝑛 are the partial sum 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛, 𝑛 ≥ 1, with
𝑃𝑟 (𝑆𝑛 ≤ 𝑡) = 𝐹∗𝑛 (𝑡). The renewal function which is of primary interest in renewal theory is defined as
𝑀 (𝑡) = 𝐸 [𝑁 (𝑡)] and is given by 𝑀 (𝑡) = ∑∞

𝑛=1 𝐹∗𝑛 (𝑡). It is well-known that 𝑀 (𝑡) is the solution of the
renewal-type equation

𝑀 (𝑡) = 𝐹 (𝑡) +
∫ 𝑡

0
𝑀 (𝑡 − 𝑦) 𝑑𝐹 (𝑦) = 𝐹 (𝑡) +

∫ 𝑡

0
𝐹 (𝑡 − 𝑦) 𝑑𝑀 (𝑦), (1.2)
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that is, 𝑀 (𝑡) satisfies an equation of the form (1.1) with 𝑟 (𝑡) = 𝐹 (𝑡). Also many authors consider as a
renewal function, the function 𝑈 (𝑡) = 𝐸 [𝜈(𝑡)], where 𝜈(𝑡) = inf{𝑛 ∈ 𝑁 : 𝑆𝑛 ≥ 𝑡} = 𝑁 (𝑡) + 1, 𝑡 ≥ 0
is the level 𝑡 first-passage time. Hence, 𝑈 (𝑡) is given by 𝑈 (𝑡) = ∑∞

𝑛=0 𝐹∗𝑛 (𝑡) = 1 + 𝑀 (𝑡), implying that
𝑈 (𝑡) is the solution of the following renewal equation

𝑈 (𝑡) = 1 +
∫ 𝑡

0
𝑈 (𝑡 − 𝑦) 𝑑𝐹 (𝑦). (1.3)

Therefore, 𝑈 (𝑡) also satisfies an equation of the form (1.1) with 𝑟 (𝑡) = 1.
Renewal-type equations which are Volterra-type integral equations are frequently encountered in sev-

eral applications (such as in reliability analysis, queueing theory, renewal theory and ruin theory) when
regenerative arguments are used in modeling. Especially, the renewal function 𝑀 (𝑡) and/or 𝑈 (𝑡) has a
wide variety of applications in several areas, such as in queueing theory and its applications, including
the design and performance evaluation of service systems as well as computer and telecommunication
networks, maintenance policy analysis and optimization, product warranty policy analysis, supply chain
planning, production and inventory control, inventory policy analysis, inventory system optimization,
spare part demand forecasting, reliability modeling and availability analysis, and reliability modeling
for a system that is subject to shocks (see, e.g., [15,16] and the references therein).

For the most of the distributions of the inter-arrival times, since renewal equations on the one hand
usually do not have analytical solutions and, on the other hand, it is very difficult and complicated to
obtain such solutions, as stated by Ran et al. [23], the development of alternate approaches (such as
bounds, numerical and approximation methods) usually have to be used. Realizing the importance of the
renewal function, researchers have developed several simple and accurate approximations to the renewal
function. For more details, we refer to Xie et al. [29], Kambo et al. [17] and the references therein. The
other approach, that is, to obtain bounds, has also a great practical importance. For example, as stated by
Mitra and Basu [21], if 𝐹 is the life distribution of a device and repairs or replacements are instantaneous,
𝑁 (𝑡) would represent the number of failures/repairs in [0, 𝑡) under a perfect repair (replacement on
failure) strategy. Hence, the bounds can be very useful since they provide, in a sense, benchmark figures
for the number of failures/repairs in the interval [0, 𝑡). Bounds for the renewal function are obtained by
several researchers. Some references are Barlow and Proschan [1,2], Lorden [18], Stone [25], Erikson
[12], Marshall [20], Deley [11], Waldmann [26], Brown [6,7], Xie [28], Bhattacharjee [4,5], Ran et al.
[23], Politis and Koutras [22] and Losidis and Politis [19]. For a survey of some bounds for the renewal
function, see Beichelt and Fatti [3].

If the df 𝐹 is absolutely continuous having a probability density function (pdf) 𝑓 , then there exists
the renewal density 𝑢(𝑡) = 𝑑𝑈 (𝑡)/𝑑𝑡 which of course is equal to the renewal density 𝑚(𝑡) = 𝑑𝑀 (𝑡)/𝑑𝑡.
Since 𝑢(𝑡) = ∑∞

𝑛=1 𝑓 ∗𝑛 (𝑡), where 𝑓 ∗𝑛 (𝑡) = 𝑑𝐹∗𝑛 (𝑡)/𝑑𝑡 is the 𝑛-fold convolution of the pdf 𝑓 , then 𝑢(𝑡)
is the solution of

𝑢(𝑡) = 𝑓 (𝑡) +
∫ 𝑡

0
𝑢(𝑡 − 𝑦) 𝑑𝐹 (𝑦), (1.4)

and thus, 𝑢(𝑡) = 𝑚(𝑡) satisfies the renewal-type equation (1.1) with 𝑟 (𝑡) = 𝑓 (𝑡).
Bounds for the renewal density are obtained, for example, by Xie [28] and Losidis and Politis [19].
The forward recurrence time is a very important concept in renewal processes. It is the time between

any given time 𝑡 and the next epoch of the renewal process under consideration, denoted by the random
variable 𝛾(𝑡). It is also called residual lifetime, residual waiting time or excess lifetime at time 𝑡 ≥ 0
and is given by 𝛾(𝑡) = 𝑆𝑁 (𝑡)+1 − 𝑡. If 𝑉𝑦 (𝑡) is the df of 𝛾(𝑡), that is, 𝑉𝑦 (𝑡) = Pr[𝛾(𝑡) ≤ 𝑦], then 𝑉𝑦 (𝑡)
satisfies the renewal-type equation

𝑉𝑦 (𝑡) = 𝐹 (𝑡 + 𝑦) − 𝐹 (𝑡) +
∫ 𝑡

0
𝑉𝑦 (𝑡 − 𝑥) 𝑑𝐹 (𝑥). (1.5)
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Therefore, 𝑉𝑦 (𝑡) is of the form of (1.1) with 𝑟 (𝑡) = 𝐹 (𝑡 + 𝑦) − 𝐹 (𝑡). It is well known that if 𝑋𝑖 has an
exponential distribution with rate 𝜆 > 0, then by memoryless property of the exponential distribution, it
holds 𝛾(𝑡) ∼ Exp(𝜆). However, for the general renewal process, the distribution of 𝛾(𝑡) is complicated
and depends on time 𝑡. Therefore, it is very useful to find bounds and asymptotic results for the
distribution of 𝛾(𝑡). Some upper bounds for the tail �̄�𝑦 (𝑡) are obtained by Lorden [18, Thm. 4] and
Chang [9, Prop. 4.1 and 4.2] who improved the Lorden’s upper bound. Also, simple two-sided bounds
for the tail �̄�𝑦 (𝑡) are obtained by Chen [10, Thm. 1] under the assumption that 𝛾(𝑡) is stochastically
decreasing and/or increasing in 𝑡 ≥ 0.

The paper is organized as follows: In Section 2, we give sequences of increasing (decreasing) lower
(upper) bounds, of 𝑍 (𝑡). Some of these are given in terms of the renewal function 𝑀 (𝑡). In Section 3, by
applying the results of Section 2, we give increasing (decreasing) lower (upper) bounds for the renewal
function 𝑈 (𝑡), which are improvements of the corresponding Marshall’s [20] and Waldmann’s [26]
bounds. In Section 4, we give several lower and upper bounds based on reliability properties (bounded
mean residual life time, NWUE, NBUE, bounded failure rate, IMRL, DMRL, DFR, IFR reliability
classes) of the distribution function 𝐹 of the inter-arrival times, which are either new or improvements
of corresponding existing bounds. Particularly, a lower bound for the renewal function with DMRL
lifetimes is given for first time. In Section 5, we give two-sided bounds for the renewal density, whereas
in Section 6, we give sequences of increasing (decreasing) lower (upper) bounds for the right-tail of the
forward recurrence time. Several numerical examples are also given to illustrate the effectiveness of our
new bounds.

2. Some bounds for the renewal-type function 𝒁(𝒕)
2.1. Bounds for 𝒁(𝒕) in terms of 𝑴 (𝒕)
Using Laplace transforms, it is well-known that we can obtain the solution 𝑍 (𝑡) of (1.1) in terms of the
renewal function 𝑀 (𝑡) and/or 𝑈 (𝑡), since it holds

𝑍 (𝑡) = 𝑟 (𝑡) +
∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝑀 (𝑦) = 𝑟 (𝑡) +

∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝑈 (𝑦). (2.1)

Since the solution of 𝑍 (𝑡) ig given from the above equation, bounds for the renewal function 𝑀 (𝑡) and/or
𝑈 (𝑡) are also useful to obtain bounds for 𝑍 (𝑡). So, we shall give some bounds for 𝑍 (𝑡) in terms of 𝑀 (𝑡).
In order to do this, we need the following proposition (for the proof, see Appendix). By convention,∑𝑏
𝑎 (·) = 0, if 𝑏 < 𝑎.

Proposition 2.1. If 𝑍 (𝑡) satisfies (1.1) and 𝑀 (𝑡) satisfies (1.2), then for every 𝑛 = 1, 2, 3, . . .

(𝑖) 𝑍 (𝑡) =
𝑛∑
𝑚=1

(𝑟 ∗ 𝐹∗(𝑚−1) ) (𝑡) +
∫ 𝑡

0
𝑍 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦) (2.2)

(𝑖𝑖) 𝑀 (𝑡) =
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) +
∫ 𝑡

0
𝑀 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦). (2.3)

Now, using the above proposition, we get a lower and an upper bound for 𝑍 (𝑡) by comparing 𝑟 (𝑡)
and 𝐹 (𝑡). Thus, we have the following (for the proof, see Appendix).

Theorem 2.2. Let 𝑤(𝑡) = 𝑟 (𝑡) − 𝐹 (𝑡). If 𝑤(𝑡) ≥ (≤) 0, then for every 𝑛 = 1, 2, 3, . . .

𝑍 (𝑡) ≥ (≤)𝑀 (𝑡) +
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡). (2.4)
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Note that the bound in (2.4) is exact at 𝑡 = 0, since it is equal to 𝑟 (0) = 𝑍 (0). Also, both the lower
and the upper bound in (2.4) are getting tighter as 𝑛 increases since 𝑤(𝑡) ≥ 0 for the lower bound and
𝑤(𝑡) ≤ 0 for the upper bound.

Further bounds for 𝑍 (𝑡) which are given at the next Theorem 2.3 can be obtained by examining
except the sign, an additional property for the function 𝑤(𝑡) = 𝑟 (𝑡) − 𝐹 (𝑡) concerning its monotonicity.

Theorem 2.3. (i) If 𝑤(𝑡) = 𝑟 (𝑡) − 𝐹 (𝑡) is differentiable with 𝑤′(𝑡) ≤ (≥)0, then for every
𝑛 = 0, 1, 2, . . ., it holds

𝑍 (𝑡) ≥ (≤)𝑀 (𝑡) + 𝑤(𝑡) [1 + 𝑀 (𝑡)] + 𝜀𝑛 (𝑡), 𝑡 ≥ 0, (2.5)

where 𝜀𝑛 (𝑡) =
∑𝑛
𝑚=1{(𝑤 ∗ 𝐹∗𝑚)(𝑡) − 𝑤(𝑡)𝐹∗𝑚 (𝑡)} ≥ (≤)0.

(ii) If 𝑤′(𝑡) ≤ (≥)0 and 𝑤(𝑡) ≥ (≤)0, then for every 𝑛 = 0, 1, 2, . . ., the bound (2.5) is a refinement of
the bound (2.4).

The bound in (2.5) is exact at 𝑡 = 0. Since 𝜀𝑛 (𝑡) ≥ 0 (𝜀𝑛 (𝑡) ≥ 0) for the lower (upper) bound,
increasing 𝑛 in (2.5) yields a tighter and tighter bound. Therefore, the bound in (2.5) for every 𝑛 =
1, 2, 3, . . . is a refinement of the bound given in (A.5).

The bounds of Theorems 2.2 and 2.3 are very useful to obtain bounds for delayed renewal processes
by comparing the df of the first renewal time in the delayed renewal process with the df 𝐹 (𝑡) of the
inter-arrival times of the ordinary renewal process.

2.2. A sequence of two-sided bounds for 𝒁(𝒕)
In this subsection, we shall give general two-sided bounds for 𝑍 (𝑡), in the sense that they do not depend
on the renewal function 𝑀 (𝑡). Thus, we have the following.

Theorem 2.4. Let

𝜎𝑈 (𝑡) = sup
0≤𝑧≤𝑡
�̄� (𝑧)>0

{
𝑟 (𝑧)
�̄� (𝑧)

}
, 𝜎𝐿 (𝑡) = inf

0≤𝑧≤𝑡
�̄� (𝑧)>0

{
𝑟 (𝑧)
�̄� (𝑧)

}
, (2.6)

and

𝜓𝐿 (𝑡) = 𝑟 (𝑡) − 𝜎𝐿 (𝑡)�̄� (𝑡) ≥ 0, 𝜓𝑈 (𝑡) = 𝜎𝑈 (𝑡)�̄� (𝑡) − 𝑟 (𝑡) ≥ 0. (2.7)

Then, for every 𝑛 = 1, 2, 3, . . ., it holds:

(𝑖) 𝑍 (𝑡) ≤ 𝑟 (𝑡) + (𝜎𝑈 ∗ 𝐹)(𝑡) −
𝑛∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗𝑚)(𝑡) (2.8)

≤ 𝜎𝑈 (𝑡) −
𝑛∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡). (2.9)

(𝑖𝑖) 𝑍 (𝑡) ≥ 𝑟 (𝑡) + (𝜎𝐿 ∗ 𝐹)(𝑡) +
𝑛∑
𝑚=1

(𝜓𝐿 ∗ 𝐹∗𝑚)(𝑡) (2.10)

≥ 𝜎𝐿 (𝑡) +
𝑛∑
𝑚=1

(𝜓𝐿 ∗ 𝐹∗(𝑚−1) ) (𝑡). (2.11)

Proof. (i) At first, we shall prove (2.9) by mathematical induction on 𝑛 = 1, 2, 3, . . . Since 𝜎𝑈 (𝑡) is a
non-decreasing function, then for 0 ≤ 𝑦 ≤ 𝑡, it holds 𝜎𝑈 (𝑡 − 𝑦) ≤ 𝜎𝑈 (𝑡), and since 𝑟 (𝑡) ≤ 𝜎𝑈 (𝑡)�̄� (𝑡),
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from (2.1) we obtain

𝑍 (𝑡) = 𝑟 (𝑡) +
∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝑈 (𝑦)

≤ 𝑟 (𝑡) +
∫ 𝑡

0
𝜎𝑈 (𝑡 − 𝑦)�̄� (𝑡 − 𝑦) 𝑑𝑈 (𝑦)

≤ 𝑟 (𝑡) + 𝜎𝑈 (𝑡)
∫ 𝑡

0
�̄� (𝑡 − 𝑦) 𝑑𝑈 (𝑦). (2.12)

Integrating by parts, from (1.3) we get

𝑈 (𝑡) = 1 −
∫ 𝑡

0
𝑈 (𝑡 − 𝑦)�̄� ′(𝑦)

= 1 −
{
𝑈 (0)�̄� (𝑡) −𝑈 (𝑡)�̄� (0) +

∫ 𝑡

0
𝑈 ′(𝑡 − 𝑦)�̄� (𝑦) 𝑑𝑦

}
= 𝐹 (𝑡) +𝑈 (𝑡) −

∫ 𝑡

0
�̄� (𝑡 − 𝑦) 𝑑𝑈 (𝑦),

and thus, it holds

𝑖𝑛𝑡𝑡0�̄� (𝑡 − 𝑦) 𝑑𝑈 (𝑦) = 𝐹 (𝑡). (2.13)

Then, (2.12) yields

𝑍 (𝑡) ≤ 𝑟 (𝑡) + 𝜎𝑈 (𝑡)𝐹 (𝑡) = 𝜎𝑈 (𝑡) − 𝜓𝑈 (𝑡),

which proves that the upper bound in (2.9) holds for 𝑛 = 1. If we assume that the upper bound in (2.9)
holds true for some 𝑛 = 1, 2, 3, . . ., then by inserting the upper bound in (2.9) into the integral of the
right-hand side of (1.1), we get

𝑍 (𝑡) ≤ 𝑟 (𝑡) +
∫ 𝑡

0

{
𝜎𝑈 (𝑡 − 𝑦) −

𝑛∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡 − 𝑦)
}

𝑑𝐹 (𝑦)

≤ 𝑟 (𝑡) + 𝜎𝑈 (𝑡)
∫ 𝑡

0
𝑑𝐹 (𝑦) −

𝑛∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗𝑚)(𝑡)

= 𝑟 (𝑡) + 𝜎𝑈 (𝑡) − 𝜎𝑈 (𝑡)�̄� (𝑡) −
𝑛+1∑
𝑚=2

(𝜓𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡)

= 𝑟𝜎𝑈 (𝑡) −
𝑛+1∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡).

Therefore, the upper bound in (2.9) holds also true for 𝑛 + 1, and hence the upper bound in (2.9) holds
for all 𝑛 = 1, 2, 3, . . .

By inserting the upper bound in (2.9) into the integral of the right-hand side of (1.1) we immediately
obtain (2.8). Let 𝐵1(𝑡) and 𝐵2(𝑡) denote the upper bounds in (2.9) and (2.8), respectively. In order to
show that the bound in (2.8) is a refinement of the upper bound given in (2.9), it suffices to show that
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𝐵2(𝑡) ≤ 𝐵1(𝑡). Indeed, since 𝜎𝑈 (𝑡) is a non-decreasing function in 𝑡 ≥ 0, it holds

𝐵2(𝑡) = 𝑟 (𝑡) +
∫ 𝑡

0
𝜎𝑈 (𝑡 − 𝑦) 𝑑𝐹 (𝑦) −

𝑛−1∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗𝑚)(𝑡) − (𝜓𝑈 ∗ 𝐹∗𝑛)(𝑡)

≤ 𝑟 (𝑡) + 𝜎𝑈 (𝑡)𝐹 (𝑡) −
𝑛−1∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗𝑚)(𝑡)

= 𝜎𝑈 (𝑡) − 𝜓𝑈 (𝑡) −
𝑛−1∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗𝑚)(𝑡)

= 𝜎𝑈 (𝑡) −
𝑛∑
𝑚=1

(𝜓𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡)

= 𝐵1(𝑡).

(ii) The lower bound in (2.11) follows in a similar way, by observing that 𝑟 (𝑡) ≥ 𝜎𝐿 (𝑡)�̄� (𝑡) and 𝜎𝐿 (𝑡)
is a non-increasing function in 𝑡. The rest of the proof is similar as in (i). Note, that all the upper and
the lower bounds in (2.8)–(2.11) are getting tighter as 𝑛 increases since 𝜓𝐿 (𝑡) ≥ 0 for the lower bound
and 𝜓𝑈 (𝑡) ≤ 0 for the upper bound.

Also, all the bounds are exact at 𝑥 = 0. Indeed, for 𝑥 = 0, the upper bound in (2.9) is equal to 𝑟 (0),
and the upper bound in (2.8) is equal to

𝜎𝑈 (0) − 𝜓(0) = 𝜎𝑈 (0) − {𝜎𝑈 (0)�̄� (0) − 𝑟 (0)} = 𝑟 (0) = 𝑍 (0).

Similarly, the lower bounds in (2.10) and (2.11) are also equal to 𝑟 (0). �

Remark 1. (i) Note, that Theorem 2.4 is still holds if we replace 𝜎𝑈 (𝑡) and 𝜎𝐿 (𝑡) with the weaker
functions 𝜎𝑢 and 𝜎𝑙 , where

𝜎𝑢 = sup
𝑧≥0

�̄� (𝑧)>0

{
𝑟 (𝑧)
�̄� (𝑧)

}
, 𝜎𝑙 = inf

𝑧≥0
�̄� (𝑧)>0

{
𝑟 (𝑧)
�̄� (𝑧)

}
.

Then, (2.8) and (2.10) are reduced to

𝑅𝑛 (𝜎ℓ , 𝑡) ≤ 𝑍 (𝑡) ≤ 𝑅𝑛 (𝜎𝑢 , 𝑡), 𝑛 = 1, 2, 3 . . .

where

𝑅𝑛 (𝜎, 𝑡) =
𝑚∑
𝑚=0

(𝑟 ★ 𝐹∗𝑚) + 𝜎𝐹 (𝑡) − 𝜎
𝑛∑
𝑚=1

(�̄� ★ 𝐹∗𝑚)(𝑡). (2.14)

It can be easily proved, for example, by mathematical induction, that

�̄�∗𝑛 (𝑡) =
𝑛−1∑
𝑚=0

(�̄� ★ 𝐹∗𝑚)(𝑡), 𝑛 = 1, 2, 3 . . .

Also from Resnick [24, Sect. 3.5], it follows that the general solution to (1.1) is

𝑍 (𝑡) = 𝑟 (𝑡) +
∞∑
𝑚=0

∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝐹∗𝑚 (𝑦)

=
∞∑
𝑚=0

(𝑟 ★ 𝐹∗𝑚)(𝑡).
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Then,

lim
𝑛→∞

𝑅𝑛 (𝜎, 𝑡) =
∞∑
𝑚=0

(𝑟 ★ 𝐹∗𝑚)(𝑡) + 𝜎𝐹 (𝑡) − 𝜎

[ ∞∑
𝑚=0

(�̄� ★ 𝐹∗𝑚)(𝑡) − �̄� (𝑡)
]

= 𝑍 (𝑡) + 𝜎𝐹 (𝑡) − 𝜎
[

lim
𝑛→∞

�̄�∗𝑛 − �̄� (𝑡)
]

= 𝑍 (𝑡),

since lim𝑛→∞ �̄�∗𝑛 = 1.
Therefore, both the upper and lower bound 𝑅𝑛 (𝜎𝑢 , 𝑡) and 𝑅𝑛 (𝜎ℓ , 𝑡) converge to 𝑍 (𝑡).
(ii) Let 𝐼𝑛 (𝜓𝑈 (𝑡)) be the upper bound in (2.8) and 𝐼𝑛 (𝜓𝐿 (𝑡)) (2.10). For simplicity, let us examine

the case 𝑛 = 1. Since, 𝜎𝑈 (𝑡) ≤ 𝜎𝑢 for any 𝑡 ≥ 0, we get that

𝐼1(𝜓𝑈 (𝑡)) = 𝑟 (𝑡) + (𝜎𝑈 ★ 𝐹)(𝑡) − (𝜓𝑈 ★ 𝐹)(𝑡)
= 𝑟 (𝑡) + (𝜎𝑈 ★ 𝐹)(𝑡) − (𝜎𝑈 �̄� ★ 𝐹)(𝑡) + (𝑟 ★ 𝐹)(𝑡)
= 𝑟 (𝑡) + (𝜎𝑈𝐹 ★ 𝐹)(𝑡) + (𝑟 ★ 𝐹)(𝑡)
≤ 𝑟 (𝑡) + 𝜎𝑢 (𝐹 ★ 𝐹)(𝑡) + (𝑟 ★ 𝐹)(𝑡)
= 𝑟 (𝑡) + 𝜎𝑢𝐹

∗2(𝑡) + (𝑟 ★ 𝐹)(𝑡).

Also, it is

𝑅1(𝜎𝑢 , 𝑡) = 𝑟 (𝑡) + (𝑟 ★ 𝐹)(𝑡) + 𝜎𝑢𝐹 (𝑡) − 𝜎𝑢 (�̄� ★ 𝐹)(𝑡)
= 𝑟 (𝑡) + (𝑟 ★ 𝐹)(𝑡) + 𝜎𝑢𝐹 (𝑡) − 𝜎𝑢 (𝐹 (𝑡) − 𝐹∗2 (𝑡))
= 𝑟 (𝑡) + (𝑟 ★ 𝐹)(𝑡) + 𝜎𝑢𝐹

∗2(𝑡),

and hence, it holds that 𝐼1(𝜓𝑈 (𝑡)) ≤ 𝑅1(𝜎𝑢 , 𝑡). Similarly, since 𝜎𝐿 (𝑡) ≥ 𝜎ℓ for any 𝑡 ≥ 0, we can prove
that 𝐼1(𝜓𝐿 (𝑡)) ≥ 𝑅1(𝜎ℓ , 𝑡). Therefore, the two-sided bound for 𝑍 (𝑡) given by (2.8) and (2.10) is tighter
than that given by (2.14) for 𝑛 = 1.

3. Improvements of Marshall’s and Waldmann’s bounds for the renewal function

The linear bounds of Marshal [20] are recognized to be the “best” linear bounds for the renewal function.
Let,

𝛼𝑙 = inf
𝑡 ∈𝐴

{
�̄�𝑒 (𝑡)
�̄� (𝑡)

}
, 𝛼𝑢 = sup

𝑡 ∈𝐴

{
�̄�𝑒 (𝑡)
�̄� (𝑡)

}
, (3.1)

where 𝐴 = {𝑡 ≥ 0; �̄� (𝑡) > 0}. Then, Marshall [20] proved the following two-sided linear bound for the
renewal function 𝑈 (𝑡),

𝑡

𝜇
+ 𝛼𝑙 ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ 𝛼𝑢 , (3.2)

as well as that
𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑙𝐹 (𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑢𝐹 (𝑡), (3.3)

where 𝐹𝑒 (𝑡) = 1 − �̄�𝑒 (𝑡) = (
∫ 𝑡

0 �̄� (𝑦) 𝑑𝑦)/𝜇 is the equilibrium df of 𝐹.
Note that since �̄�𝑒 (𝑡) ≤ 𝛼𝑢 �̄� (𝑡) and �̄�𝑒 (𝑡) ≥ 𝛼𝑙 �̄� (𝑡) the upper (lower) bound in (3.3) is a refinement

of the upper (lower) bound given in (3.2).
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Let 𝐴𝑡 = {0 ≤ 𝑧 ≤ 𝑡; �̄� (𝑧) > 0} and

𝛼𝑈 (𝑡) = sup
𝑧∈𝐴𝑡

{�̄�𝑒 (𝑧)/�̄� (𝑧)}, 𝛼𝐿 (𝑡) = inf
𝑧∈𝐴𝑡

{�̄�𝑒 (𝑧)/�̄� (𝑧)}. (3.4)

Waldmann [26, Cor. 2] by applying a monotonicity argument to obtain upper and lower bounds for 𝑍 (𝑡),
proved the following two-sided bound for 𝑈 (𝑡),

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝐿 (𝑡)𝐹 (𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑈 (𝑡)𝐹 (𝑡). (3.5)

Of course, Waldmann’s two-sided bound is an improvement of the aforementioned Marshall’ s two-sided
bounds, since 𝛼𝑈 (𝑡) ≤ 𝛼𝑢 and 𝛼𝐿 (𝑡) ≥ 𝛼𝑙 .

In the following Proposition 3.1, we shall give a two-sided bound which is tighter than that given in
(3.5) and thus it is tighter than that given in (3.3) and (3.4). The proof is motivated by Feller [14] and is
much simpler than that given by Waldmann [26].

Proposition 3.1. If 𝛼𝑈 (𝑡) and 𝛼𝐿 (𝑡) are given by (3.4), then it holds the following two-sided bound for
𝑈 (𝑡)

𝑡

𝜇
+ �̄�𝑒 (𝑡) + (𝛼𝐿 ∗ 𝐹)(𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡). (3.6)

Proof. Let 𝑍 (𝑡) = 𝑡/𝜇 + 𝛼𝑈 (𝑡) − 1. Since 𝛼𝑈 (𝑡) is a non-decreasing function, then for 0 ≤ 𝑦 ≤ 𝑡, it
holds 𝛼𝑈 (𝑡 − 𝑦) ≤ 𝛼𝑈 (𝑡), and thus from (1.1), we get

𝑡

𝜇
+ 𝛼𝑈 (𝑡) − 1 = 𝑟 (𝑡) +

∫ 𝑡

0

(
𝑡 − 𝑦

𝜇
+ 𝛼𝑈 (𝑡 − 𝑦) − 1

)
𝑑𝐹 (𝑦)

≤ 𝑟 (𝑡) +
∫ 𝑡

0

𝑡 − 𝑦

𝜇
𝑑𝐹 (𝑦) + [𝛼𝑈 (𝑡) − 1]

∫ 𝑡

0
𝑑𝐹 (𝑦)

= 𝑟 (𝑡) + 𝑡

𝜇
− 𝐹𝑒 (𝑡) + [𝛼𝑈 (𝑡) − 1]𝐹 (𝑡),

implying that

𝑟 (𝑡) ≥ [𝛼𝑈 (𝑡) − 1]�̄� (𝑡) + 𝐹𝑒 (𝑡).

Since, 𝛼𝑈 (𝑡) ≥ �̄�𝑒 (𝑡)/�̄� (𝑡), from the above relation, we get that 𝑟 (𝑡) ≥ 𝐹 (𝑡). Inserting this bound for
𝑟 (𝑡) into the right-hand side of (2.1) and taking into account (1.2), we get

𝑍 (𝑡) ≥ 𝐹 (𝑡) +
∫ 𝑡

0
𝐹 (𝑡 − 𝑦) 𝑑𝑀 (𝑦),

that is, it holds 𝑀 (𝑡) ≤ 𝑍 (𝑡), or equivalently

𝑈 (𝑡) ≤ 𝑡

𝜇
+ 𝛼𝑈 (𝑡). (3.7)

Now, inserting the upper bound in (3.7) into the right-hand side of (1.3), we obtain

𝑈 (𝑡) ≤ 1 +
∫ 𝑡

0

(
𝑡 − 𝑦

𝜇
+ 𝛼𝑈 (𝑡 − 𝑦)

)
𝑑𝐹 (𝑦)

= 1 + 𝑡

𝜇
− 𝐹𝑒 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡),
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which yields the upper bound in (3.6). The proof for the lower bound is similar, if we take 𝑍 (𝑡) =
𝑡/𝜇 + 𝛼𝐿 (𝑡) − 1 and using that 𝛼𝐿 (𝑡) is a non-increasing function, we obtain

𝑈 (𝑡) ≥ 𝑡

𝜇
+ 𝛼𝐿 (𝑡). (3.8)

Inserting the lower bound in (3.8) into the right-hand side of (1.3), we obtain the lower bound in (3.6). �

The upper bound in (3.7) and the lower bound in (3.8) are improvements of the linear two-sided
bound in (3.3) obtained by [20]. Also, since

(𝛼𝑈 ∗ 𝐹)(𝑡) ≤ 𝛼𝑈 (𝑡)𝐹 (𝑡), (𝛼𝐿 ∗ 𝐹)(𝑡) ≥ 𝛼𝐿 (𝑡)𝐹 (𝑡),

it follows that the two-sided bound in (3.6) is a refinement of the two-sided bound in (3.5) obtained by
Marshall [20] and thus is also a refinement of the two-sided bound in (3.6) obtained by [20].

Example 1. Consider a distribution for the r.v. given in Marshall [20], having df

𝐹 (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

5
7
𝑡, 0 ≤ 𝑡 < 1,

1 − 2
7
𝑒−(𝑡−1) , 𝑡 ≥ 1,

with 𝜇 = 𝐸 (𝑋) = 13/14 and 𝜇2 = 𝐸 (𝑋2) = 5/3.
Marshall [20] obtained the following general two-sided linear bounds given by (3.2)

1.076𝑡 − 0.86 ≤ 𝑈 (𝑡) ≤ 1.076𝑡 + 1.08, 𝑡 ≥ 0.

Let 𝐿𝑀 (𝑡)(𝑈𝑀 (𝑡)) denotes the lower (upper) bound for 𝑈 (𝑡) obtained by Marshall [20] and given
by (3.3), 𝐿𝑊 (𝑡)(𝑈𝑊 (𝑡)) denotes the lower (upper) bound obtained by Waldmann [26] and given by
(3.4) and 𝐿𝐶𝑇 (𝑡)(𝑈𝐶𝑇 (𝑡)) denotes our new lower (upper) bound given by (3.6). Obviously, the bound
𝐿𝑀 (𝑡)(𝑈𝑀 (𝑡)) is a refirement of the aforementioned Marshall’s [20] lower (upper) bound.

Note that a general lower bound for 𝑈 (𝑡) was given by Barlow and Proschan [1] who poved that

𝑈 (𝑡) ≥ 𝑡

𝜇𝐹𝑒 (𝑡)
=: 𝐿BP (𝑡), 𝑡 ≥ 0, (3.9)

and a famous upper bound was obtained by Lorden [18] who proved that

𝑈 (𝑡) ≤ 𝑡

𝜇
+ 𝜇2

𝜇2 =: 𝑈𝐿 (𝑡), 𝑡 ≥ 0.

For the above distribution, we shall compare numerically the aforementioned lower bounds
𝐿BP (𝑡), 𝐿𝑀 (𝑡), 𝐿𝑊 (𝑡) and 𝐿𝐶𝑇 (𝑡) as well as the upper bounds 𝑈𝐿 (𝑡),𝑈𝑀 (𝑡),𝑈𝑊 (𝑡) and 𝑈𝐶𝑇 (𝑡).
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It turns out that the after some routine calculations, these bounds are

𝐿𝑀 (𝑡) =
{

0.384615𝑡2 + 0.614286𝑡 + 1, 0 ≤ 𝑡 < 1,
1.07692𝑡 + 0.168474𝑒−𝑡 + 0.86, 𝑡 ≥ 1,

𝑈𝑀 (𝑡) =
{

0.384615𝑡2 + 0.771429𝑡 + 1, 0 ≤ 𝑡 < 1,
1.07692𝑡 − 0.0023897𝑒−𝑡 + 1.08, 𝑡 ≥ 1,

𝐿𝑊 (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

91 − 35𝑡2

91 − 65𝑡
, 0 ≤ 𝑡 < 0.6,

0.384615(𝑡2 + 1.59993𝑡 + 2.6), 0.6 ≤ 𝑡 < 1,
1.07692𝑡 + 0.167309𝑒−𝑡 + 0.8615, 𝑡 ≥ 1,

𝑈𝑊 (𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.384615𝑡2 + 0.714286𝑡 + 1, 0 ≤ 𝑡 <

33
35

,

0.384615𝑡2 + 5(5𝑡2 − 14𝑡 + 13)𝑡
13(7 − 5𝑡) + 1,

33
35

≤ 𝑡 < 1,

1.07692𝑡 + 1.07692, 𝑡 ≥ 1,

𝐿𝐶𝑇 (𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.192308𝑡2 + 0.538462𝑡 − 0.246154 log(7 − 5𝑡) + 1.47899, 0 ≤ 𝑡 ≤ 0.6,
0.384615𝑡2 + 0.61538𝑡 + 1.02237, 0.6 < 𝑡 ≤ 1,
0.246154 log(12. − 5.𝑡) + 0.192308𝑡2 + 0.61538𝑡 − 0.293419𝑒−𝑡
+1.08536𝑒−𝑡Γ(0, 12/5 − 𝑡) + 0.797222, 1 < 𝑡 < 1.6,

1.07692𝑡 + 0.196084𝑒−1.𝑡 + 0.861537, 𝑡 ≥ 1.6,

𝑈𝐶𝑇 (𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.384615𝑡2 + 0.71422839011𝑡 + 1, 0 ≤ 𝑡 <
33
35

,

0.192308𝑡2 + 0.538462𝑡 − 0.246154 log(7 − 5𝑡) + 1.54022,
33
35

≤ 𝑡 < 1,

1.13186𝑡 + 0.0597444𝑒−𝑡 + 0.94652, 1 ≤ 𝑡 <
68
35

,

0.19231𝑡2 + 0.769233𝑡 − 0.178646𝑒−𝑡 + 0.24615 log(12 − 5𝑡)
+1.08536𝑒−𝑡Γ(0, 12/5 − 𝑡) + 0.66015,

68
35

≤ 𝑡 < 2,
1.07692𝑡 − 0.0983675𝑒−𝑡 + 1.07692, 𝑡 ≥ 2,

𝐿BP (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

14
14 − 5𝑡

, 0 ≤ 𝑡 ≤ 1,
14𝑡

13 − 4𝑒−(𝑡−1) , 𝑡 > 1,

𝑈𝐿 (𝑡) = 14
13

𝑡 + 5
3

(
14
13

)2

.

Table 1 presents the values of these bounds for various values of 0 ≤ 𝑡 ≤ 50. We observe that the
general lower bound given by Barlow and Proschan [1] is worse than all other bounds 𝐿𝑀 (𝑡), 𝐿𝑊 (𝑡)
and 𝐿𝐶𝑇 . Also, the general upper bound 𝑈𝐿 (𝑡) given by Lorden [18] is worse than all upper bounds
𝑈𝑀 (𝑡),𝑈𝑊 (𝑡) and𝑈𝐶𝑇 (𝑡). We also observe that our new lower (upper) bound 𝐿𝐶𝑇 (𝑡)(𝑈𝐶𝑇 (𝑡)) improve
the corresponding lower (upper) bound 𝐿𝑀 (𝑡) and 𝐿𝑊 (𝑡) (𝑈𝑀 (𝑡) and𝑈𝑊 (𝑡)), respectively, for any 𝑡 > 0
and especially for small values of 𝑡, whereas for larger values of 𝑡, the bounds are approximately equal.

Example 2. In this example, we consider an interarrival random variable 𝑋 given in Example 7.16 in
Beichelt and Fatti [3], having df 𝐹 (𝑡) = (1 − 𝑒−𝑡 )2, 𝑡 ≥ 0, with 𝜇 = 3

2 . If 𝜇𝑒 (𝑡) denotes the failure rate
of the random variable having df 𝐹𝑒 (𝑡), then

𝜇𝑒 (𝑡) = 2(2 − 𝑒−𝑡 )
4 − 𝑒−𝑡

, 𝑡 ≥ 0.
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Table 1. Numerical values for Marshall’s, Waldmann’s and 𝐶𝑇 lower and upper bounds as well as
Lorden’s upper bound and Barlow and Proschan’s lower bound.

𝑡 𝐿BP(𝑡) 𝐿𝑀 (𝑡) 𝐿𝑊 (𝑡) 𝐿𝐶𝑇 (𝑡) 𝑈𝐿 (𝑡) 𝑈𝑀 (𝑡) 𝑈𝑊 (𝑡) 𝑈𝐶𝑇 (𝑡)
0.0 0.000000 1.000000 1.000000 1.000000 1.932939 1.000000 1.000000 1.000000
0.1 1.037037 1.065275 1.072781 1.074011 2.040631 1.080989 1.075275 1.075274
0.2 1.076923 1.138242 1.148718 1.153329 2.148323 1.169670 1.158242 1.158241
0.3 1.120000 1.218901 1.228671 1.238209 2.256016 1.266044 1.248901 1.248900
0.4 1.166667 1.307253 1.313846 1.328978 2.363708 1.370110 1.347253 1.347252
0.5 1.217391 1.403297 1.405983 1.426067 2.471400 1.481868 1.453297 1.453296
0.6 1.272727 1.507033 1.507676 1.530059 2.579093 1.601319 1.567033 1.567032
0.7 1.333333 1.618462 1.619212 1.641598 2.686785 1.728462 1.688462 1.688461
0.8 1.400000 1.737582 1.738440 1.760828 2.794477 1.863297 1.817582 1.817581
0.9 1.473684 1.864396 1.865360 1.887750 2.902170 2.005824 1.954396 1.954394
1.0 1.555556 1.998901 1.999973 2.022365 3.009862 2.156044 2.153846 2.100362
1.5 1.986026 2.512976 2.514216 2.520759 3.548323 2.694851 2.692308 2.657645
2.0 2.428767 3.036647 3.037989 3.041920 4.086785 3.233523 3.230769 3.217454
2.5 2.890775 3.566137 3.567541 3.569940 4.625247 3.772112 3.769231 3.761153
3.0 3.371149 4.099157 4.100599 4.102069 5.163708 4.310650 4.307692 4.302792
3.5 3.866897 4.634318 4.635783 4.636689 5.702170 4.849159 4.846154 4.843180
4.0 4.374709 5.170778 5.172257 5.172821 6.240631 5.387649 5.384615 5.382811
4.5 4.891604 5.708025 5.709512 5.709869 6.779093 5.926127 5.923077 5.921981
5.0 5.415133 6.245751 6.247243 6.247474 7.317554 6.464599 6.461538 6.460873
10.0 10.769640 11.629238 11.630738 11.630777 12.702170 11.849231 11.846154 11.846146
20.0 21.538462 22.398462 22.399962 22.399999 23.471400 22.618462 22.615385 22.615382
50.0 53.846154 54.706154 54.707654 54.707691 55.779093 54.926154 54.923077 54.923074

Since 𝜇𝑒 (𝑡) is strictly increasing function in 𝑡 ≥ 0, then using that

𝐹𝑒 (𝑥)
�̄� (𝑥) =

1
𝜇𝜇𝑒 (𝑥)

,

we find

𝛼𝑢 = sup
𝑡≥0

�̄� (𝑡)>0

{
�̄�𝑒 (𝑡)
�̄� (𝑡)

}
= sup
𝑡≥0

{
4 − 𝑒−𝑡

3(2 − 𝑒−𝑡 )

}
= 1,

𝛼𝑈 (𝑡) = sup
0≤𝑥≤𝑡
�̄� (𝑥)>0

{
�̄�𝑒 (𝑥)
�̄� (𝑥)

}
= sup

0≤𝑥≤𝑡

{
4 − 𝑒−𝑥

3(2 − 𝑒−𝑥)

}
= 1,

𝛼ℓ = inf
𝑡≥0

�̄� (𝑥)>0

{
�̄�𝑒 (𝑥)
�̄� (𝑥)

}
= inf
𝑡≥0

{
4 − 𝑒−𝑡

3(2 − 𝑒−𝑡 )

}
=

2
3
,

and

𝛼𝐿 (𝑡) = inf
0≤𝑥≤𝑡
�̄� (𝑥)>0

{
�̄�𝑒 (𝑥)
�̄� (𝑥)

}
= inf

0≤𝑥≤𝑡

{
4 − 𝑒−𝑥

3(2 − 𝑒−𝑥)

}
=

4 − 𝑒−𝑡

3(2 − 𝑒−𝑡 ) .
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Therefore, the upper bounds 𝑈𝑀 (𝑡),𝑈𝑊 (𝑡) and 𝑈𝐶𝑇 (𝑡) given in (3.3), (3.5) and (3.6), respectively, are
the same, and thus, we obtain

𝑈 (𝑡) ≤ 2
3 𝑡 + 2

3 (2 − 1
2 𝑒

−𝑡 )𝑒−𝑡 + (1 − 𝑒−𝑡 )2, 𝑡 ≥ 0.

Also, since 𝑎𝐿 (𝑡) ≥ 𝑎ℓ for any 𝑡 ≥ 0, it follows that the lower bound 𝐿𝐶𝑇 (𝑡) given in (3.6) is a refinement
of the lower bound 𝐿𝑀 (𝑡) given in (3.3) obtained by Marshall [20] and of course is refinement of (3.2).
As in the previous Example 1, let us denote by 𝐿BP(𝑡), 𝐿𝑀 (𝑡), 𝐿𝑊 (𝑡) and 𝐿𝐶𝑇 (𝑡) the lower bounds
given in (3.9), (3.3), (3.5) and (3.6), respectively. These bounds, for any 𝑡 ≥ 0, are given by

𝐿BP(𝑡) = 2𝑡
3 − (4 − 𝑒−𝑡 )𝑒−𝑡 ,

𝐿𝑀 (𝑡) = 2𝑡
3

+ 4 − 𝑒−𝑡 − 𝑒−𝑡 (1 − 𝑒−𝑡 )2

3(2 − 𝑒−𝑡 ) ,

𝐿𝑊 (𝑡) = 2𝑡
3

+ 4 − 𝑒−𝑡

3(2 − 𝑒−𝑡 ) ,

𝐿𝐶𝑇 (𝑡) = 2𝑡
3

+ (4 − 𝑒−𝑡 )(1 − (1 − 𝑒−𝑡 )2)
3(2 − 𝑒−𝑡 ) ,

+ 1
6
𝑒−2𝑡 (−10𝑒𝑡 + 4𝑒2𝑡 + (2𝑒𝑡 − 1) log(2𝑒𝑡 − 1) + 6).

In Table 2, we give the numerical values of these bounds for several values of 0 ≤ 𝑡 ≤ 50. As in the
Example 1, we observe that the lower bounds 𝐿BP (𝑡) obtained by Barlow and Proschan [1] is worse than
all lower bounds 𝐿𝑀 (𝑡), 𝐿𝑊 (𝑡) and 𝐿𝐶𝑇 (𝑡). Also for the values 0 ≤ 𝑡 ≤ 10, the lower bound 𝐿𝑊 (𝑡) is
better than the bound 𝐿𝑀 (𝑡), while our new lower bound 𝐿𝐶𝑇 (𝑡) is a refinement of the lower bounds
𝑈𝑀 (𝑡) and 𝑈𝑊 (𝑡). Note that for 𝑡 > 10, the bounds 𝑈𝑀 (𝑡),𝑈𝑊 (𝑡) and 𝑈𝐶𝑇 (𝑡) are approximately equal.

Improvements of the bounds for the renewal function 𝑈 (𝑡) given in Proposition 3.1 are obtained in
Corollary 3.2, with a different (but even simple) proof than that given in Proposition 3.1.

Using Theorem 2.4, one can directly obtain a sequence of general two-sided bounds for the renewal
function 𝑈 (𝑡). Thus, we get the following main result of this section.

Corollary 3.2. If 𝛼𝑈 (𝑡) and 𝛼𝐿 (𝑡) are given by (3.4), and

𝜉𝐿 (𝑡) = �̄�𝑒 (𝑡) − 𝛼𝐿 (𝑡)�̄� (𝑡) ≥ 0, 𝜉𝑈 (𝑡) = 𝛼𝑈 (𝑡)�̄� (𝑡) − �̄�𝑒 (𝑡) ≥ 0, (3.10)

then, for every 𝑛 = 1, 2, 3, . . ., it holds

𝑡

𝜇
+ �̄�𝑒 (𝑡) + (𝛼𝐿 ∗ 𝐹)(𝑡) +

𝑛∑
𝑚=1

(𝜉𝐿 ∗ 𝐹∗𝑚)(𝑡) ≤ 𝑈 (𝑡)

≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡) −

𝑛∑
𝑚=1

(𝜉𝑈 ∗ 𝐹∗𝑚)(𝑡). (3.11)

The upper (lower) bound is monotone non-increasing (non-decreasing) in 𝑛 ≥ 1.

Proof. Since for 𝑟 (𝑡) = �̄�𝑒 (𝑡), then 𝑍 (𝑡) satisfying (1.1) is 𝑍 (𝑡) = 𝑈 (𝑡) − 𝑡/𝜇, 𝜎𝑈 (𝑡), 𝜎𝐿 (𝑡) defined in
relation (2.6), are reduced to 𝛼𝑈 (𝑡), 𝛼𝐿 (𝑡) given by (3.4), and 𝜓𝑈 (𝑡), 𝜓𝐿 (𝑡) defined in (2.7) are reduced
to 𝜉𝑈 (𝑡) and 𝜉𝐿 (𝑡) given by (3.11) respectively. Applying now Theorem 2.4 with 𝑟 (𝑡) = �̄�𝑒 (𝑡), the result
follows. Since 𝜉𝑈 (𝑡) ≥ 0 and 𝜉𝐿 (𝑡) ≥ 0, it follows that the upper (lower) bound in (3.11) is monotone
non-increasing (non-decreasing) in 𝑛 ≥ 1. �
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Table 2. Numerical values for Barlow and Proschan’s, Marshall’s, Waldmann’s and 𝐶𝑇 lower bounds.

𝑡 𝐿BP 𝐿𝑀 (𝑡) 𝐿𝑊 (𝑡) 𝐿𝐶𝑇 (𝑡)
0.0 0.00000 1.00000 1.00000 1.00000
0.1 1.00310 1.00624 1.00874 1.00907
0.2 1.01164 1.02344 1.03103 1.03306
0.3 1.02470 1.04960 1.06278 1.06807
0.4 1.04160 1.08311 1.10137 1.11119
0.5 1.06185 1.12263 1.14509 1.16025
0.6 1.08504 1.16706 1.19273 1.21360
0.7 1.11089 1.21553 1.24343 1.27004
0.8 1.13913 1.26730 1.29659 1.32867
0.9 1.16958 1.32177 1.35172 1.38882
1.0 1.20205 1.37845 1.40847 1.45002
1.5 1.39065 1.68326 1.70852 1.76259
2.0 1.61487 2.00611 2.02419 2.07742
2.5 1.86679 2.33558 2.34760 2.39315
3.0 2.14031 2.66749 2.67518 2.71108
3.5 2.43045 3.00030 3.00511 3.03196
4.0 2.73311 3.33345 3.33641 3.35579
4.5 3.04498 3.66671 3.66853 3.68215
5.0 3.36350 4.00002 4.00113 4.01052
10.0 6.66707 7.33333 7.33334 7.33348
20.0 13.33333 14.00000 14.00000 14.00000
50.0 33.33333 34.00000 34.00000 34.00000

Note that the lower and the upper bound in (3.11) are exact at 𝑡 = 0 and for every 𝑛 = 1, 2, 3, . . .

Remark 2. Corollary 3.2 still holds if we replace 𝛼𝑈 (𝑡) and 𝛼𝐿 (𝑡) with the weaker functions 𝛼𝑢 and
𝛼𝑙 defined by (3.1). Then, from Corollary 3.2 and for every 𝑛 = 0, 1, 2, . . ., we get that

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑙𝐹 (𝑡) +

𝑛−1∑
𝑚=1

(𝜉𝑙 ∗ 𝐹∗𝑚)(𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑢𝐹 (𝑡)

−
𝑛−1∑
𝑚=1

(𝜉𝑢 ∗ 𝐹∗𝑚)(𝑡), (3.12)

where 𝜉𝑙 (𝑡) = �̄�𝑒 (𝑡) −𝛼𝑙 �̄� (𝑡) ≥ 0, 𝜉𝑢 (𝑡) = 𝛼𝑢 �̄� (𝑡) − �̄�𝑒 (𝑡) ≥ 0. Substituting 𝜉𝑙 (𝑡) and 𝜉𝑢 (𝑡) in the above
relation and using that

∑𝑛−1
𝑚=1(�̄� ∗ 𝐹∗𝑚)(𝑡) = 𝐹 (𝑡) − 𝐹∗𝑛 (𝑡), we get the following two-sided bound,

𝐽𝑛 (𝑎ℓ , 𝑡) ≤ 𝑈 (𝑡) ≤ 𝐽𝑛 (𝑎𝑢 , 𝑡), for every 𝑛 = 0, 1, 2, . . . . (3.13)

where

𝐽𝑛 (𝑎, 𝑡) = 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝑎𝐹∗𝑛 (𝑡) +

𝑛−1∑
𝑚=1

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡).

Since 𝑀 (𝑡) = 𝑈 (𝑡) + 1, Marshall [20, Thm. 1] we obtain the following two-sided bounds.

𝐼𝑛 (𝑏ℓ , 𝑡) ≤ 𝑈 (𝑡) ≤ 𝐼𝑛 (𝑏𝑢 , 𝑡), for every 𝑛 = 0, 1, 2, . . . .
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with

𝐼𝑛 (𝑏, 𝑡) = 1 + 𝑡

𝜇
+ 𝑏𝐹∗𝑛 (𝑡) −

𝑛∑
𝑚=1

(𝐹𝑒 ∗ 𝐹∗(𝑚−1) ) (𝑡) +
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡)

and

𝑏𝑙 = inf
𝑡 ∈𝐴

{
𝐹 (𝑡) − 𝐹𝑒 (𝑡)

�̄� (𝑡)

}
, 𝑏𝑢 = sup

𝑡 ∈𝐴

{
𝐹 (𝑡) − 𝐹𝑒 (𝑡)

�̄� (𝑡)

}
.

Since it can be easily shown that 𝐼𝑛 (𝑎 − 1, 𝑡) = 𝐽𝑛 (𝑎, 𝑡) and since 𝑏𝑙 = 𝑎𝑙 − 1, 𝑏𝑢 = 𝑎𝑢 − 1, it follows
that the lower (upper) bounds in (3.13) is exactly the aforementioned lower (upper) bounds obtained by
Marshall [20] for every 𝑛 = 0, 1, 2, . . .

Marshall [20] using mathematical induction in 𝑛, proved that both the upper and the lower bounds
𝐼𝑛 (𝑏𝑙 , 𝑡) and 𝐼𝑛 (𝑏𝑢 , 𝑡) converge to 𝑈 (𝑡). This follows immediately from (3.13), since

∞∑
𝑚=1

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) = 𝑈 (𝑡) − 𝑡

𝜇
− �̄�𝑒 (𝑡) and lim

𝑛→∞
𝐹∗𝑛 (𝑡) = 0,

implying that lim𝑛→∞ 𝐽𝑛 (𝛼, 𝑡) = 𝑈 (𝑡) for every real 𝛼. Thus, it holds that

lim
𝑛→∞

𝐽𝑛 (𝛼𝑙 , 𝑡) = lim
𝑛→∞

𝐽𝑛 (𝛼𝑢 , 𝑡) = 𝑈 (𝑡).

It deserves mentioning that a disadvantage of the upper bound obtained by Marshall [20] is that 𝛼𝑢
could be infinite and thus no linear upper bound exist in such a case. For example, this could be happen
if the df 𝐹 has an increasing mean residual lifetime. Of course, there is no problem even in this case
with the function 𝛼𝑈 (𝑡).

Example 3. In this example, we consider that the r.v. 𝑋 follows the two-parametric Pareto distribution
having df

𝐹 (𝑥) = 1 −
(

𝜆

𝜆 + 𝑡

) 𝛼
, 𝑡 ≥ 0, 𝜆 > 0, 𝑎 > 1.

Obviously, the distribution has an increasing mean residual lifetime. Since

�̄�𝑒 (𝑥) =
(

𝜆

𝜆 + 𝑡

) 𝛼−1

, 𝑡 ≥ 0.

It follows that

𝑎𝑈 (𝑡) = sup
0≤𝑥≤𝑡
�̄� (𝑥)>0

{
�̄�𝑒 (𝑥)
�̄� (𝑥)

}
= sup

0≤𝑥≤𝑡

{
1 + 𝑥

𝜆

}
= 1 + 𝑡

𝜆
,

𝑎𝑢 = sup
𝑡≥0

�̄� (𝑡)>0

�̄�𝑒 (𝑡)
�̄� (𝑡) = sup

𝑡≥0

{
1 + 𝑡

𝜆

}
= ∞,

𝑎𝐿 (𝑡) = inf
0≤𝑥≤𝑡
�̄� (𝑥)>0

�̄�𝑒 (𝑥)
�̄� (𝑥) = inf

0≤𝑥≤𝑡

{
1 + 𝑥

𝜆

}
= 1,

and

𝑎ℓ = inf
𝑡≥0

�̄� (𝑡)>0

�̄�𝑒 (𝑡)
�̄� (𝑡) = inf

𝑡≥0

{
1 + 𝑡

𝜆

}
= 1.
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Therefore, since, 𝑎ℓ = 𝑎𝐿 (𝑡) = 1, 𝑡 ≥ 0, the lower bounds given in (3.3), (3.5) and (3.6) are the same.
Comparing the upper bounds we observe that Marshall’s [20] upper bound given in (3.2) and (3.3)
becomes infinity while our new upper bound in (3.6) is finite. Of course, the same holds true for the
corresponding Waldmann’s [26] upper bound given in (3.5).

Now, under a monotonicity condition for the function 𝜉𝑈 (𝑡) (𝜉𝐿 (𝑡)), we shall give another upper
(lower) bounds for 𝑈 (𝑡) which are tighter than the corresponding bounds obtained by Waldmann [26]
and given in Proposition 3.1. Thus, we have the following

Theorem 3.3. Let 𝛼𝑈 (𝑡), 𝛼𝐿 (𝑡) are given by (3.4), and 𝜉𝑈 (𝑡), 𝜉𝐿 (𝑡) are given by (3.10).

(i) If 𝜉 ′𝑈 (𝑡) ≤ 0, then

𝑈 (𝑡) ≤
𝑡
𝜇 + 𝛼𝑈 (𝑡)�̄� (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡)

1 + 𝜉𝑈 (𝑡)
(3.14)

≤
𝑡
𝜇 + 𝛼𝑈 (𝑡)
1 + 𝜉𝑈 (𝑡)

. (3.15)

(ii) If 𝜉 ′𝐿 (𝑡) ≤ 0, then

𝑈 (𝑡) ≥
𝑡
𝜇 + 𝛼𝐿 (𝑡)�̄� (𝑡) + (𝛼𝐿 ∗ 𝐹)(𝑡)

1 − 𝜉𝐿 (𝑡)
(3.16)

≥
𝑡
𝜇 + 𝛼𝐿 (𝑡)
1 − 𝜉𝐿 (𝑡)

(3.17)

Proof. (i) Since 𝛼𝑈 (𝑡) and −𝜉𝑈 (𝑡) are non-decreasing functions in 𝑡 ≥ 0, for 0 ≤ 𝑦 ≤ 𝑡, it follows that
𝛼𝑈 (𝑡− 𝑦) ≤ 𝛼𝑈 (𝑡) and −𝜉𝑈 (𝑡− 𝑦) ≤ −𝜉𝑈 (𝑡), and hence from the general solution for𝑈 (𝑡), we have that

𝑈 (𝑡) = 𝑡

𝜇
+ �̄�𝑒 (𝑡) +

∞∑
𝑛=1

∫ 𝑡

0
�̄�𝑒 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦)

=
𝑡

𝜇
+ �̄�𝑒 (𝑡) +

∞∑
𝑛=1

∫ 𝑡

0
[𝛼𝑈 (𝑡 − 𝑦)�̄� (𝑡 − 𝑦) − 𝜉𝑈 (𝑡 − 𝑦)]𝑑𝐹∗𝑛 (𝑦)

≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑈 (𝑡)

∞∑
𝑛=1

∫ 𝑡

0
�̄� (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦) − 𝜉𝑈 (𝑡)

∞∑
𝑛=1

∫ 𝑡

0
𝑑𝐹∗𝑛 (𝑦),

=
𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑈 (𝑡)𝐹 (𝑡) − 𝜉𝑈 (𝑡) [𝑈 (𝑡) − 1]

=
𝑡

𝜇
+ 𝛼𝑈 (𝑡) − 𝜉𝑈 (𝑡)𝑈 (𝑡),

from which (3.14) follows directly.
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Now, by inserting the upper bound of the above relation into the right-hand side of (1.3), we obtain

𝑈 (𝑡) ≤ 1 +
∫ 𝑡

0

{
𝑡 − 𝑦

𝜇
+ 𝛼𝑈 (𝑡 − 𝑦) − 𝜉𝑈 (𝑡 − 𝑦)𝑈 (𝑡 − 𝑦)

}
𝑑𝐹 (𝑦)

≤ 1 + 𝑡

𝜇
− 𝐹𝑒 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡) − 𝜉𝑈 (𝑡)

∫ 𝑡

0
𝑈 (𝑡 − 𝑦) 𝑑𝐹 (𝑦)

=
𝑡

𝜇
+ 𝛼𝑈 (𝑡)�̄� (𝑡) − 𝜉𝑈 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡) − 𝜉𝑈 (𝑡) [𝑈 (𝑡) − 1],

which gives the upper bound in (3.11).
Since, 𝛼𝑈 (𝑡)�̄� (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡) ≤ 𝛼𝑈 (𝑡)�̄� (𝑡) + 𝛼𝑈 (𝑡)𝐹 (𝑡) = 𝛼𝑈 (𝑡), it follows that the bound in

(3.14) is tighter than that given in (3.15).
In order to show that the bound in (3.14) is a refinement of the upper bound given in (3.6), it suffices

to show that

𝜉𝑈 (𝑡)
{
𝑡

𝜇
+ �̄�𝑒 (𝑡) + (𝛼𝑈 ∗ 𝐹)(𝑡) − 1

}
≥ 0.

This inequality holds true because of the upper bound in (3.6) and the fact that 𝜉𝑈 (𝑡) ≥ 0, 𝑈 (𝑡) ≥
𝑈 (0) = 1 for 𝑡 ≥ 0. Similarly, in order to show that the bound in (3.15) is a refinement of the upper
bound given in (3.5), it suffices to show that

𝜉𝑈 (𝑡)
{
𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝛼𝑈 (𝑡)𝐹)(𝑡) − 1

}
≥ 0.

This inequality holds true because of the upper bound in (3.5) and the fact that 𝜉𝑈 (𝑡) ≥ 0, 𝑈 (𝑡) ≥
𝑈 (0) = 1 for 𝑡 ≥ 0.

(ii) The proof is similar as in (i). �

The bound in (3.14) is a refinement of the upper bounds given in (3.6) and (3.5), and the bound in
(3.15) is a refinement of the upper bound given in (3.5). Also, the bound in (3.16) is a refinement of the
lower bounds given in (3.6) and 3.5), and the bound in (3.17) is a refinement of the lower bound given
in (3.5).

4. Bounds based on reliability properties of the inter-arrival times

In this section, we obtain bounds for the renewal function 𝑈 (𝑡) based on some reliability properties of
the df 𝐹.

4.1. The class of distributions with bounded mean residual lifetime and the NBUE (NWUE) class

Consider the residual lifetime random variable𝑇𝑡 = 𝑋−𝑡/𝑋 > 𝑡 for 𝑋 > 𝑡, and𝑇𝑡 is undefined otherwise.
Then, the right-tail of 𝑇𝑡 is

Pr(𝑇𝑡 > 𝑦) = �̄� (𝑡 + 𝑦)
�̄� (𝑡) , 𝑦 ≥ 0,

and the expected value of 𝑇𝑡 called the mean residual lifetime of the random variable 𝑋 is given by

𝑟𝐹 (𝑡) = 𝐸 (𝑇𝑡 ) =
∫ ∞

0
Pr(𝑇𝑡 > 𝑦) 𝑑𝑦,
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that is, it holds

𝑟𝐹 (𝑡) =
∫ ∞
𝑡

�̄� (𝑦) 𝑑𝑦
�̄� (𝑡) .

Now, using Corollary 3.2, we obtain the following (for the proof, see Appendix)

Corollary 4.1. (i) If for some 0 < 𝑟1 < ∞, it holds 𝑟𝐹 (𝑡) ≥ 𝑟1, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≥ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝑟1𝐹 (𝑡)

𝜇
+

𝑛∑
𝑚=1

(𝜉1,𝐿 ∗ 𝐹∗𝑚)(𝑡), (4.1)

where 𝜉1, 𝐿 (𝑡) = �̄�𝑒 (𝑡) − 𝑟1
𝜇 �̄� (𝑡) ≥ 0.

The lower bound is monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑈 (𝑡).
(ii) If for some 0 < 𝑟2 < ∞, it holds 𝑟𝐹 (𝑡) ≤ 𝑟2, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝑟2𝐹 (𝑡)

𝜇
−

𝑛∑
𝑚=1

(𝜉1,𝑈 ∗ 𝐹∗𝑚)(𝑡), (4.2)

where 𝜉1,𝑈 (𝑡) = (𝑟2/𝜇)�̄� (𝑡) − �̄�𝑒 (𝑡) ≥ 0.
The upper bound is monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑈 (𝑡).

If for some 𝑟1, 𝑟2 such that 0 < 𝑟1 < 𝑟2 < ∞ it holds 𝑟1 ≤ 𝑟𝐹 (𝑡) ≤ 𝑟2, then from (4.1) and (4.2), we
obtain the following two-sided bound

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝑟1𝐹 (𝑡)

𝜇
+

𝑛∑
𝑚=1

(𝜉1, 𝐿 ∗ 𝐹∗𝑚)(𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝑟2𝐹 (𝑡)

𝜇

−
𝑛∑
𝑚=1

(𝜉1,𝑈 ∗ 𝐹∗𝑚)(𝑡).

Also, using Theorem 3.3, we obtain the following (for the proof, see Appendix)

Corollary 4.2. (i) If for some 0 < 𝑟1 < ∞, it holds 𝜇𝐹 (𝑡) ≤ 1/𝑟1, then

𝑈 (𝑡) ≥ 𝑡 + 𝑟1

𝑟1�̄� (𝑡) + 𝜇𝐹𝑒 (𝑡)
. (4.3)

(ii) If for some 0 < 𝑟2 < ∞, it holds 𝜇𝐹 (𝑡) ≥ 1/𝑟2, then

𝑈 (𝑡) ≤ 𝑡 + 𝑟2

𝑟2�̄� (𝑡) + 𝜇𝐹𝑒 (𝑡)
. (4.4)

Note that, in this case, the upper (lower) bounds in (3.14) and (3.15) (in (3.16) and (3.17)) are the
same, since 𝑎𝑈 (𝑡)(𝑎𝐿 (𝑡)) is independent of 𝑡.

An important class of non-parametric distributions is the new better (worse) than used in expectation
or NBUE (NWUE) class which is a subclass of the class of distributions with bounded mean residual
lifetime from above (below). The df 𝐹 is NBUE (NWUE) if the mean residual lifetime 𝑟𝐹 (𝑡) satisfies
𝑟𝐹 (𝑡) ≤ (≥)𝑟 (0) = 𝐸 (𝑋), that is, if 𝑟𝐹 (𝑡) ≤ (≥)𝜇. Clearly, from 𝑟𝐹 (𝑡) = 𝜇�̄�𝑒 (𝑡)/�̄� (𝑡), NBUE (NWUE)
is equivalent to �̄�𝑒 (𝑡) ≤ (≥)�̄� (𝑡).

Barlow and Proschan [2, p. 171] proved that if the df 𝐹 is NBUE (NWUE), then

𝑈 (𝑡) ≤ (≥)1 + 𝑡

𝜇
, 𝑡 ≥ 0. (4.5)
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Since by Jensen’ s inequality it always holds 𝜇2 ≥ 𝜇2, it follows that for the class of NBUE distributions,
the upper bound of Barlow and Proschan in (4.5) is a refinement of Lorden’s [18] upper bounds 𝑈𝐿 (𝑡)
given in Example 1.

Using now the previous Corollary 4.1, we get improved bounds than that given in (4.5). Thus, by
setting 𝑟1 = 𝑟2 = 𝐸 (𝑋) = 𝜇 in Corollary 4.1, we obtain the following (for the proof, see Appendix)

Corollary 4.3. If the df 𝐹 is NWUE, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≥ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡) +

𝑛∑
𝑚=1

(𝜉2,𝐿 ∗ 𝐹∗𝑚)(𝑡), (4.6)

where 𝜉2,𝐿 (𝑡) = �̄�𝑒 (𝑡) − �̄� (𝑡) ≥ 0.
The lower bound is monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑈 (𝑡).
(ii) If the df 𝐹 is NBUE, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡) −

𝑛∑
𝑚=1

(𝜉2,𝑈 ∗ 𝐹∗𝑚)(𝑡), (4.7)

where 𝜉2,𝑈 (𝑡) = �̄� (𝑡) − �̄�𝑒 (𝑡) ≥ 0. The upper bound is monotone non-increasing in 𝑛 ≥ 1 for any fixed
𝑡 and converges to 𝑈 (𝑡).

Note that (4.6) and (4.7) can also be obtained by using Theorem 2.2. Indeed, if 𝑟 (𝑡) = 𝐹𝑒 (𝑡), then
𝑍 (𝑡) = 𝑡/𝜇 and 𝑤(𝑡) = 𝐹𝑒 (𝑡) − 𝐹 (𝑡) = 𝐹 (𝑡) − 𝐹𝑒 (𝑡). Since 𝑤(𝑡) ≥ (≤)0 if the df is NBUE(NWUE),
then (4.6) and (4.7) follow directly from (2.4). Finally, in this subsection, we shall give another lower
(upper) bound for 𝑈 (𝑡) if the df 𝐹 is NBUE (NWUE), which is the best one of all the aforementioned
bounds. Thus, we have the following

Theorem 4.4. (i) If the df 𝐹 is NWUE, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≥ 1 + 𝑡/𝜇 + 𝜀𝑛,𝐿 (𝑡)
�̄� (𝑡) + 𝐹𝑒 (𝑡)

, (4.8)

for all 𝑡 such that 𝜇𝐹 (𝑡) ≤ 1/𝜇, where

𝜀𝑛,𝐿 (𝑡) = [𝐹𝑒 (𝑡) − 𝐹 (𝑡)]
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) −
𝑛∑
𝑚=1

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) +
𝑛∑
𝑚=1

𝐹∗(𝑚+1) (𝑡) ≥ 0.

The lower bound is monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡, converges to 𝑈 (𝑡) and is a
refinement of the bound in (4.6) for every 𝑛 = 1, 2, 3, . . ..

(ii) If the df 𝐹 is NBUE, then for every 𝑛 = 1, 2, 3, . . .,

𝑈 (𝑡) ≤ 1 + 𝑡/𝜇 − 𝜀𝑛,𝑈 (𝑡)
�̄� (𝑡) + 𝐹𝑒 (𝑡)

, (4.9)

for all 𝑡 such that 𝜇𝐹 (𝑡) ≥ 1/𝜇, where

𝜀𝑛,𝑈 (𝑡) =
𝑛∑
𝑚=1

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) −
𝑛∑
𝑚=1

𝐹∗(𝑚+1) (𝑡) − [𝐹𝑒 (𝑡) − 𝐹 (𝑡)]
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) ≥ 0.

The upper bound is monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡, converges to 𝑈 (𝑡) and is a
refinement of the bound in (4.7) for every 𝑛 = 1, 2, 3, . . ..
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Proof. (i) Let 𝑤(𝑡) = 𝐹𝑒 (𝑡) − 𝐹 (𝑡). Since the df 𝐹is NWUE, then 𝑤(𝑡) ≤ 0. Also, it holds

𝑤′(𝑡) = �̄� (𝑡)
(

1
𝜇
− 𝜇𝐹 (𝑡)

)
≥ 0.

Consider now, the equilibrium renewal function satisfying (1.1) with 𝑟 (𝑡) = 𝐹𝑒 (𝑡) and thus 𝑍 (𝑡) = 𝑡/𝜇.
Then, since 𝑤(𝑡) ≤ 0 and 𝑤′(𝑡) ≥ 0, from Theorem 2.3 we obtain for every 𝑛 = 1, 2, 3, . . .

𝑀 (𝑡) ≥ 1
1 + 𝑤(𝑡)

(
𝑡

𝜇
− 𝑤(𝑡) − 𝜀𝑛 (𝑡)

)
, (4.10)

where −𝜀𝑛 (𝑡) =
∑𝑛
𝑚=1{(𝑤 ∗ 𝐹∗𝑚)(𝑡) − 𝑤(𝑡)𝐹∗𝑚 (𝑡)} ≥ 0 reduces to 𝜀𝑛,𝐿 (𝑡) ≥ 0. Hence, (4.8) follows

directly from (4.10).
Let 𝐿𝑛 (𝑡) be the lower bound in (4.8). Since 𝜀𝑛,𝐿 (𝑡) ≥ 0 for all 𝑡 ≥ 0, it follows that 𝐿𝑛 (𝑡) is

monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡. Also, since

𝜀𝑛,𝐿 (𝑡) = [𝐹𝑒 (𝑡) − 𝐹 (𝑡)]
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) −
𝑛∑
𝑚=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝐹𝑒 (𝑡) +
𝑛+1∑
𝑚=1

𝐹∗𝑚 (𝑡) − 𝐹 (𝑡)

= [�̄� (𝑡) + 𝐹𝑒 (𝑡)]
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) −
𝑛∑
𝑚=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝐹𝑒 (𝑡) + 𝐹∗(𝑛+1) (𝑡) − 𝐹 (𝑡)

we get

lim
𝑛→∞

𝜀𝑛,𝐿 (𝑡) = [�̄� (𝑡) + 𝐹𝑒 (𝑡)]𝑀 (𝑡) − 𝑡

𝜇
+ 𝐹𝑒 (𝑡) − 𝐹 (𝑡)

implying that lim𝑛→∞ 𝐿𝑛 (𝑡) = 1 + 𝑀 (𝑡) = 𝑈 (𝑡), that is, 𝐿𝑛 (𝑡) converges to 𝑈 (𝑡).
Since as stated previously, the bound in (4.6) is also obtained using relation (2.4) in Theorem 2.2, it

follows from Theorem 2.3(ii), that the bound 𝐿𝑛 (𝑡) is a refinement of the bound given in (4.6) for every
𝑛 = 1, 2, 3, . . .

(ii) The proof is similar as in (i) by reversing the inequalities. �

Since 𝜀𝑛,𝑈 (𝑡) ≥ 0 and 𝜀𝑛,𝐿 (𝑡) ≥ 0 for every 𝑛 ≥ 0 and for all 𝑡 ≥ 0, from Theorem 4.4 we obtain the
following weaker but simpler lower (upper) bound for 𝑈 (𝑡), namely

𝑈 (𝑡) ≥ (≤) 1 + 𝑡/𝜇
�̄� (𝑡) + 𝐹𝑒 (𝑡)

, (4.11)

for all 𝑡 such that 𝜇𝐹 (𝑡) ≤ (≥)1/𝜇, when the df 𝐹 is NWUE (NBUE).
Obviously, the bound in (4.11) is also a refinement of the corresponding bound given by (4.5) obtained

by Barlow and Proschan [2] for all 𝑡 such that 𝜇𝐹 (𝑡) ≤ (≥)1/𝜇. Note that the lower (upper) bound in
(4.11) is also obtained from Corollary 4.2 with 𝑟1 = 𝜇 (𝑟2 = 𝜇) if df 𝐹 is NWUE (NBUE).

Example 4. (i) Let the r.v. 𝑋 follows the two-parametric Pareto distribution with �̄� (𝑡) = 𝜆𝑎/(𝜆 + 𝑡)𝑎,
𝑎 > 1, 𝜆 > 0, 𝑡 ≥ 0. Then, the df 𝐹 is NWUE and the condition 𝜇𝐹 (𝑡) ≤ 1

𝜇 is equivalent to 𝑡 ≥ 𝜇.
Therefore, for this distribution, the lower bound in (4.8) and (4.11) holds for all 𝑡 ≥ 𝜇.

Let us denote by 𝐿BP(𝑡) the lower bound obtained by Barlow and Prochan [2] given in (4.5), by
𝐿1 (𝑡), 𝑡 ≥ 0 the lower bound given in Corollary 4.3, by 𝐿2(𝑡), 𝑡 ≥ 𝜇 the lower bound given by (4.11),
𝐿3 (𝑡), 𝑡 ≥ 𝜇 the lower bound given in Theorem 4.4 for 𝑛 = 1 and by 𝐿𝑀 (𝑡), 𝑡 ≥ 0 the Marshall’s [20]
general lower bound given by (3.3). Note that since 𝑎𝐿 (𝑡) = 𝑎ℓ = 1, 𝑡 ≥ 0 (see Example 3) this bound
is also equal to the lower bound obtained by Waldmann [26] and given in (3.5) as well as to the lower
bound given in Proposition 3.1.
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Table 3. Numerical values for 𝐿BP (𝑡), 𝐿𝑀 (𝑡), 𝐿1(𝑡), 𝐿2 (𝑡) and 𝐿3 (𝑡) lower bounds.

𝑡 𝐿BP (𝑡) 𝐿𝑀 (𝑡) 𝐿1 (𝑡) 𝐿2(𝑡) 𝐿3 (𝑡)
1. 2. 2.25000 2.41667 2.66667 3.36505
2. 3. 3.22222 3.42689 3.85714 4.83261
3. 4. 4.18750 4.37924 4.92308 5.98737
4. 5. 5.16000 5.33046 5.95238 7.04434
5. 6. 6.13889 6.28931 6.96774 8.06612
6. 7. 7.12245 7.25583 7.97674 9.07369
7. 8. 8.10938 8.22861 8.98246 10.0751
8. 9. 9.09877 9.20625 9.98630 11.0737
9. 10. 10.0900 10.1877 10.9890 12.0711
10. 11. 11.0826 11.172 11.9910 13.0681
11. 12. 12.0764 12.1587 12.9925 14.0649
12. 13. 13.0710 13.1473 13.9936 15.0618
13. 14. 14.0663 14.1373 14.9945 16.0588
14. 15. 15.0622 15.1286 15.9953 17.056
15. 16. 16.0586 16.1209 16.9959 18.0534
16. 17. 17.0554 17.1141 17.9963 19.0510
17. 18. 18.0525 18.1080 18.9967 20.0487
18. 19. 19.0499 19.1025 19.9971 21.0466
19. 20. 20.0475 20.0975 20.9974 22.0447
20. 21. 21.0454 21.093 21.9976 23.0429
50. 51. 51.0192 51.0389 51.9996 53.019
100. 101. 101.010 101.020 102.000 103.010

Now, consider that 𝑎 = 2, 𝜆 = 1, implying that 𝜇 = 1 and let us compare numerically the
aforementioned bounds for 1 ≤ 𝑡 ≤ 100. After some routine calculations, we find that

𝐿BP(𝑡) = 1 + 𝑡, 𝑡 ≥ 0,

𝐿𝑀 (𝑡) = 𝑡 + 1
1 + 𝑡

+ 1 −
(

1
1 + 𝑡

)2

= 1 + 𝑡 + 𝑡

(1 + 𝑡)2 , 𝑡 ≥ 0,

𝐿1(𝑡) = 𝑡6 + 9𝑡5 + 35𝑡4 + 76𝑡3 + 86𝑡2 + 46𝑡 + 8
(𝑡 + 1)2(𝑡 + 2)3 + 4(−1 + 𝑡2) log(1 + 𝑡)

(1 + 𝑡)(𝑡 + 2)4 , 𝑡 ≥ 0,

𝐿2(𝑡) = (1 + 𝑡)3

1 + 𝑡 (1 + 𝑡) , 𝑡 ≥ 1,

𝐿3(𝑡) = 1
𝑡2 + 𝑡 + 1

(
(𝑡 + 1)2 (𝑡 + 2) − 1 − 𝑡2(𝑡 + 2)

(𝑡 + 1)2 + 𝑡4 + 7𝑡3 + 8𝑡2 + 2𝑡
(𝑡 + 2)3 ,

−4(𝑡 + 1)2(𝑡 + 5) log(1 + 𝑡)
(𝑡 + 2)4

)
, 𝑡 ≥ 1,

In Table 3, we present the values of the above lower bounds for various values of 1 ≤ 𝑡 ≤ 100.
We observe that for any 1 ≤ 𝑡 ≤ 100, it holds

𝐿3(𝑡) > 𝐿2 (𝑡) > 𝐿1(𝑡) > 𝐿𝑀 (𝑡) > 𝐿BP (𝑡)
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and thus the lower bound 𝐿3 (𝑡) given in Theorem 4.4 is the best of all bounds 𝐿1 (𝑡), 𝐿2(𝑡), 𝐿𝑀 (𝑡) and
𝐿BP (𝑡), while the lower bound 𝐿BP(𝑡) is the worst. Also the simplest bound 𝐿2(𝑡) is a refinement of the
bounds 𝐿1(𝑡), 𝐿𝑀 (𝑡) and 𝐿BP (𝑡).

(ii) Also, if the r.v. 𝑋 follows the Weibull distribution with �̄� (𝑡) = 𝑒−𝑐𝑡
2 , 𝑐 > 0, 𝑡 ≥ 0, then the df 𝐹

is NBUE and the condition 𝜇𝐹 (𝑡) ≥ 1/𝜇 is equivalent to 𝑡 ≥ 1/2√𝑐𝜋. Thus, the upper bounds in (4.9)
and (4.11) hold for all 𝑡 ≥ 1/2√𝑐𝜋.

4.2. The class of distributions with bounded failure rate

Now, consider the class of absolutely continuous distribution functions 𝐹 with failure rate 𝜇𝐹 (𝑡) =
𝑓 (𝑡)/�̄� (𝑡) bounded from below and/or above. Namely, suppose that for some 𝑚1, 𝑚2 ∈ (0,∞), it holds
that 𝜇𝐹 (𝑡) ≥ 𝑚1 or 𝜇𝐹 (𝑡) ≤ 𝑚2 and/or 𝑚1 ≤ 𝜇𝐹 (𝑡) ≤ 𝑚2 for 𝑚2 > 𝑚1 applying Corollary 4.5 we
obtain the following (for the proof, see Appendix).

Corollary 4.5. Suppose that the df 𝐹 is absolutely continuous with bounded failure rate 𝜇𝐹 (𝑡) < ∞.

(i) If 𝜇𝐹 (𝑡) ≥ 𝑚1 for some 0 < 𝑚1 < ∞, then for every 𝑛 = 1, 2, 3, . . .

1 + 𝑚1𝑡 ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡)

𝑚1𝜇
−

𝑛∑
𝑚=1

(𝜉3,𝑈 ∗ 𝐹∗𝑚)(𝑡),

where 𝜉3,𝑈 (𝑡) = �̄� (𝑡)/𝑚1𝜇 − �̄�𝑒 (𝑡) ≥ 0.
The upper bound is monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑈 (𝑡).

(ii) If 𝜇𝐹 (𝑡) ≤ 𝑚2 for some 0 < 𝑚2 < ∞, then for every 𝑛 = 1, 2, 3, . . .

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡)

𝑚2𝜇
+

𝑛∑
𝑚=1

(𝜁1,𝐿 ∗ 𝐹∗𝑚)(𝑡) ≤ 𝑈 (𝑡) ≤ 1 + 𝑚2𝑡,

where 𝜁1,𝐿 (𝑡) = �̄�𝑒 (𝑡) − �̄� (𝑡)/𝑚2𝜇 ≥ 0.
The lower bound is monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑈 (𝑡).

(iii) If 𝑚1 ≤ 𝜇𝐹 (𝑡) ≤ 𝑚2, for some 𝑚1, 𝑚2 such that 0 < 𝑚1 < 𝑚2 < ∞, then for every 𝑛 = 1, 2, 3, . . .

𝐴𝐿 (𝑡) ≤ 𝑈 (𝑡) ≤ 𝐴𝑈 (𝑡),

where

𝐴𝐿 (𝑡) = max

{
1 + 𝑚1𝑡,

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡)

𝑚1𝜇
+

𝑛∑
𝑚=1

(𝜉3,𝐿 ∗ 𝐹∗𝑚)(𝑡)
}

,

and

𝐴𝑈 (𝑡) = min

{
1 + 𝑚2𝑡,

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡)

𝑚1𝜇
−

𝑛∑
𝑚=1

(𝜉3,𝑈 ∗ 𝐹∗𝑚)(𝑡)
}

.

The class of absolutely continuous distributions with bounded failure rate is a large one, in the sense
that includes many families of distributions. The NBUFR (NWUFR) class is the special case with
𝑚1 = 𝜇𝐹 (0) (𝑚2 = 𝜇𝐹 (0)) and this also includes IFR, IFRA, NBU and NBU (2) (DFR, DFRA, NWU
and NWU (2)) classes (e.g., [13]). Note that 𝜇𝐹 (0) always exists for an absolutely continuous df 𝐹.

Therefore, by setting 𝑚1 = 𝑓 (0), from Corollary 4.5, we get a two-sided bound when the df 𝐹 is IFR
(i.e., the failure rate is a non-decreasing function), while for 𝑚2 = 𝑓 (0), we get a two-sided bound when
the df 𝐹 is DFR (i.e., the failure rate is a non-increasing function).
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4.3. The IMRL (DMRL) class

A two-sided bound for the renewal function 𝑈 (𝑡) if the df 𝐹 has increasing mean residual lifetime
(IMRL) was given by Brown [6, Thm. 2(i) and (iv)] who proved that

𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝜇2

2𝜇2 𝐹2(𝑡) ≤ 𝑈 (𝑡) ≤ 𝑡

𝜇
+ 𝜇2

2𝜇2 , (4.12)

provided that 𝜇2 = 𝐸 (𝑋2) < ∞, where 𝐹2 (𝑡) = (2𝜇/𝜇2)
∫ 𝑡

0 �̄�𝑒 (𝑦) 𝑑𝑦 is the equilibrium df of the random
variable having df 𝐹𝑒. Using (4.12), we easily obtain the following

Corollary 4.6. If the df 𝐹 is IMRL, then for every 𝑛 = 0, 1, 2, . . .

𝑈 (𝑡) ≤ 𝑡

𝜇
+
𝑛−1∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝜇2

2𝜇2 𝐹∗𝑛 (𝑡), (4.13)

and

𝑈 (𝑡) ≥ 𝑡

𝜇
+

𝑛∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝜇2

2𝜇2 (𝐹2 ∗ 𝐹∗𝑛)(𝑡). (4.14)

Both the upper and lower bound converge to 𝑈 (𝑡) as → ∞.

When the df 𝐹 has decreasing mean residual lifetime (DMRL), to the best of our knowledge there
does not exist in the literature lower bounds for the renewal function 𝑈 (𝑡). Of course, since the df 𝐹
is also NBUE, one can use the upper bounds for the NBUE case. In the following corollary, we give
two-sided bounds when the df 𝐹 is DMRL (IMRL).

Corollary 4.7. If the df 𝐹 is DMRL (IMRL), then

𝑈 (𝑡) ≥ (≤) 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 1

𝜇
(𝑟𝐹 ∗ 𝐹)(𝑡), (4.15)

Proof. Since the functions 𝛼𝐿 (𝑡) and 𝛼𝑈 (𝑡) can be rewritten as

𝛼𝐿 (𝑡) = 1
𝜇

inf
0≤𝑧≤𝑡
�̄� (𝑧)>0

{𝑟𝐹 (𝑧)} and 𝛼U(t) = 1
𝜇

sup
0≤𝑧≤𝑡
�̄� (𝑧)>0

{rF(z)},

it follows that 𝛼𝐿 (𝑡) = 𝑟𝐹 (𝑡)/𝜇, if the df 𝐹 is DMRL and 𝛼𝑈 (𝑡) = 𝑟𝐹 (𝑡)
𝜇 if the df is IMRL. Therefore, if

the df 𝐹 is DMRL, then
𝜉𝐿 (𝑡) = �̄�𝑒 (𝑡) − 𝛼𝐿 (𝑡)�̄� (𝑡) = 0,

and
𝜉𝑈 (𝑡) = 𝛼𝑈 (𝑡)�̄� (𝑡) − �̄�𝑒 (𝑡) = 0,

if the df 𝐹 is IMRL. Hence, the result follows immediately from (3.11). �

We note that an upper (lower) bound for 𝑈 (𝑡) when the df 𝐹 is DMRL (IMRL) is given by (4.9) (4.8)
for all 𝑡 such that 𝜇𝐹 (𝑡) ≥ (≤)1/𝜇, since 𝐹 is also NBUE (NWUE).

Since (𝑟𝐹 ∗𝐹)(𝑡) ≥ (≤)𝑟𝐹 (𝑡)𝐹 (𝑡), if the df 𝐹 is DMRL (IMRL), from Corollary 4.7, we get a weaker
but simpler lower (upper) bound, given by

𝑈 (𝑡) ≥ (≤) 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 1

𝜇
𝑟𝐹 (𝑡)𝐹 (𝑡),
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or equivalently

𝑈 (𝑡) ≥ (≤) 𝑡

𝜇
+ �̄�𝑒 (𝑡)

�̄� (𝑡) . (4.16)

Since the DMRL (IMRL) implies the NBUE (NWUE) property, and thus �̄�𝑒 (𝑡) ≤ (≥)�̄� (𝑡), it follows
that the upper (lower) bound in (4.16) is a refinement of the corresponding upper (lower) bound in (4.5)
obtained by Barlow and Proschan [2] when the df 𝐹 is NBUE (NWUE).

4.4. The DFR (IFR) class

Supposing that the df 𝐹 is absolutely continuous having pdf 𝑓 (𝑡) = 𝐹 ′(𝑡), then the failure rate of 𝑋
is defined by 𝜇𝐹 (𝑡) = 𝑓 (𝑡)/�̄� (𝑡). In many situations of practical interest, the failure rate is a strictly
monotone non-increasing function in 𝑡, and this is associated with the situation where the distribution
of 𝑋 has a thick right tail. The df 𝐹 is said to be a decreasing failure rate or DFR, if �̄� (𝑦 + 𝑡)/�̄� (𝑡) is
a non-decreasing function in 𝑡 for fixed 𝑦 ≥ 0, that is, if �̄� (𝑡) is log-convex. From the definition of the
failure rate function, it is evident that if the df 𝐹 is absolutely continuous, then the DFR property is
equivalent to 𝜇𝐹 (𝑡) non-increasing in 𝑡. In this situation, the random variable 𝑋 has a thick tail.

Before we proceed, we need the following Lemma ([8, Lemma 3]).

Lemma 4.8. If 𝑔1(𝑡) and 𝑔2(𝑡) are differentiable functions with 𝑔′
1(𝑡)𝑔′

2(𝑡) ≤ (≥)0 on [𝑎, 𝑏], then∫ 𝑏

𝑎

𝑔1(𝑡)𝑔2(𝑡) 𝑑𝑡 ≤ (≥) 1
𝑏 − 𝑎

∫ 𝑏

𝑎

𝑔1(𝑡) 𝑑𝑡
∫ 𝑏

𝑎

𝑔2(𝑡) 𝑑𝑡.

Let the df 𝐹 is DFR. Then, it is well-known that the renewal density 𝑢(𝑡) is a decreasing function in
𝑡 ≥ 0 (see, e.g., [6]). Let 𝑟 (𝑡) = �̄� (𝑡). Then 𝑍 (𝑡) = 1, and since 𝑟 ′(𝑡)𝑢′(𝑡) ≥ 0, from Lemma 4.8, we
obtain

�̄� (𝑡) + 𝑈 (𝑡) − 1
𝑡

∫ 𝑡

0
�̄� (𝑦) 𝑑𝑦 ≥ 1,

yielding the following lower bound

𝑈 (𝑡) ≥ 1 + 𝑡𝐹 (𝑡)
𝜇𝐹𝑒 (𝑡)

. (4.17)

Let us compare the bound given in (4.17) with some lower bounds stated previously.

• If the df 𝐹 is DFR, then 𝐹 is also NWUE, implying that 𝐹 (𝑡) ≥ 𝐹𝑒 (𝑡) and hence the bound in (4.17)
is a refinement of the lower bound 1 + 𝑡/𝜇 obtained by Barlow and Proschan [2].

• From 𝜇𝐹𝑒 (𝑡) =
∫ 𝑡

0 �̄� (𝑦) 𝑑𝑦 ≥ 𝑡�̄� (𝑡), it can be easily verified that the bound in (4.17) is also a
refinement of Erickson’ s lower bound 𝑡𝜇𝐹𝑒 (𝑡) [12].

• Since 𝐹 is also NWUE, from Corollary 4.3 it holds

𝑈 (𝑡) ≥ 𝑡

𝜇
+ �̄�𝑒 (𝑡) + 𝐹 (𝑡), (4.18)

which is a refinement of the aforementioned lower bound of Barlow and Proschan [2].
Since 𝜇𝐹𝑒 (𝑡) =

∫ 𝑡
0 �̄� (𝑦) 𝑑𝑦 ≤

∫ 𝑡
0 𝑑𝑦 = 𝑡, it follows that the bound in (4.17) is tighter than that given

in (4.18).
• However, from 𝜇𝐹𝑒 (𝑡) ≥ 𝑡�̄� (𝑡), it can be easily checked that the lower bound in (4.11) is a

refinement of the bound given in (4.17), and thus, this is also true for the lower bound given in (4.8)
of Theorem 4.4.
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Since the df 𝐹 is DFR, is also IMRL, all the bounds stated previously for the IMRL and NWUE case
are applicable when the df 𝐹 is DFR. More precisely, all the bounds given in (4.6), (4.8), (4.11), (4.13),
(4.14), (4.15) and (4.16) are applicable.

If the df 𝐹 is IFR, Brown [7, Thm. 2.11] proved that

𝑈 (𝑡) ≥ 𝑡

𝜇
+ 𝜎2

𝜇2 , where 𝜎2 = Var(𝑋).

By inserting this bound into the right-hand side of (1.3) and using mathematical induction in 𝑛 ≥ 0, we
can easily obtain the following.

Corollary 4.9. If the df 𝐹 is IFR, then for every 𝑛 = 0, 1, 2, . . .

𝑈 (𝑡) ≥ 𝑡

𝜇
+
𝑛−1∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝜎2

𝜇2 𝐹∗𝑛 (𝑡).

The bound converges to 𝑈 (𝑡) as 𝑛 → ∞.

Also, if the df 𝐹 is IFR, then 𝐹 is also DMRL and NBUE, implying that all the bounds given in (4.7),
(4.9), (4.11), (4.15) and (4.16) are applicable when the df 𝐹 is IFR.

5. Bounds for the renewal density

In this section, we assume that the df 𝐹 is absolutely continuous and the failure rate 𝜇𝐹 (𝑡) = 𝑓 (𝑡)/�̄� (𝑡)
exists. At first, we shall give an upper bound for the renewal density 𝑢(𝑡) in terms of the renewal function
𝑀 (𝑡), using Lemma 4.8. Thus, we have the following.

Corollary 5.1. (i) If the df 𝐹 is DFR, then

𝑢(𝑡) ≤ 𝑓 (𝑡) + 1
𝑡
𝐹 (𝑡)𝑀 (𝑡), 𝑡 > 0.

(ii) If the pdf 𝑓 (𝑡) is increasing in 𝑡 ∈ [ 0, 𝑡0], for 0 < 𝑡0 ≤ ∞, then

𝑢(𝑡) ≤ 𝑓 (𝑡) + 1
𝑡
𝐹 (𝑡)𝑀 (𝑡), 0 < 𝑡 ≤ 𝑡0.

Proof. (i) It is well known, that if the pdf 𝐹 is DFR, then the 𝑢(𝑡) is a decreasing function in 𝑡 ≥ 0. Also
since 𝑑𝜇𝐹 (𝑡)/𝑑𝑡 ≤ 0, it holds that 𝑓 ′(𝑡) ≤ 0 implying that 𝑓 ′(𝑡)𝑢′(𝑡) ≥ 0. Hence, the direct application
of Lemma 4.8 to (1.4) yields the the required bound.

(ii) Since the pdf 𝑓 (𝑡) is increasing in 𝑡 ∈ [ 0, 𝑡0], it follows that 𝑢(𝑡) is also increasing in the same
interval [28, Thm. 4.8]. Now, since 𝑓 ′(𝑡)𝑢′(𝑡) ≥ 0 as in (i) we get the following required bound. �

Now, we shall give a general two-sided bound for 𝑢(𝑡) by applying Theorem 2.4. Since for 𝑟 (𝑡) = 𝑓 (𝑡),
the function 𝑍 (𝑡) satisfying (1.1) is reduced to 𝑢(𝑡) satisfying (1.4), the direct application of Theorem
2.4 gives us the following sequence of general two-sided bounds for 𝑢(𝑡)

Corollary 5.2. Let

𝜎1,𝑈 (𝑡) = sup
0≤𝑧≤𝑥
�̄� (𝑧)>0

{𝜇𝐹 (𝑧) > 0}, 𝜎1,𝐿 (𝑡) = inf
0≤𝑧≤𝑥
�̄� (𝑧)

{𝜇𝐹 (𝑧)}, (5.1)

and 𝜓1,𝑈 (𝑡) = �̄� (𝑡) [𝜎1,𝑈 (𝑡) − 𝜇𝐹 (𝑡)] ≥ 0, 𝜓1, 𝐿 (𝑡) = �̄� (𝑡) [𝜇𝐹 (𝑡) − 𝜎1, 𝐿 (𝑡)] ≥ 0.
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Then, for every 𝑛 = 1, 2, 3, . . . and 𝑡 ≥ 0, holds:

(𝑖) 𝑢(𝑡) ≤ 𝑓 (𝑡) + (𝜎1,𝑈 ∗ 𝐹)(𝑡) −
𝑛∑
𝑚=1

(𝜓1,𝑈 ∗ 𝐹∗𝑚)(𝑡) (5.2)

≤ 𝑓 (𝑡) + 𝜎1,𝑈 (𝑡)𝐹 (𝑡) −
𝑛−1∑
𝑚=1

(𝜓1,𝑈 ∗ 𝐹∗𝑚)(𝑡). (5.3)

(𝑖𝑖) 𝑢(𝑡) ≥ 𝑓 (𝑡) + (𝜎1,𝐿 ∗ 𝐹)(𝑡) +
𝑛∑
𝑚=1

(𝜓1,𝐿 ∗ 𝐹∗𝑚)(𝑡) (5.4)

≥ 𝑓 (𝑡) + 𝜎1,𝐿 (𝑡)𝐹 (𝑡) +
𝑛−1∑
𝑚=1

(𝜓1,𝐿 ∗ 𝐹∗𝑚)(𝑡). (5.5)

Proof. (i) If we apply Theorem 2.4 to the renewal density 𝑢(𝑡) satisfying (1.4), with 𝑟 (𝑡) = 𝑓 (𝑡),
then 𝜎𝑈 (𝑡), 𝜎𝐿 (𝑡), defined by (2.6), 𝜓𝑈 (𝑡) and 𝜓𝐿 (𝑡) defined by (2.7) are reduced to 𝜎1,𝑈 (𝑡), 𝜎1,𝐿 (𝑡),
𝜓1,𝑈 (𝑡) and 𝜓1,𝐿 (𝑡), respectively, and thus (5.2) follows directly from (2.8). The right-hand side of (2.9)
is reduced to

𝜎1,𝑈 (𝑡) −
𝑛∑
𝑚=1

(𝜓1,𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡) = 𝜎1,𝑈 (𝑡) − 𝜓1,𝑈 (𝑡) −
𝑛∑
𝑚=2

(𝜓1,𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡)

= 𝑓 (𝑡) + 𝜎1,𝑈 (𝑡)𝐹 (𝑡) −
𝑛−1∑
𝑚=1

(𝜓1,𝑈 ∗ 𝐹∗𝑚)(𝑡),

giving the upper bound in (5.3).
(ii) Follows in a similar way as in (i). �

Xie [28, Cor. 4.3] proved that

𝜎1,𝐿 (𝑡) ≤ 𝑢(𝑡) ≤ 𝜎1,𝑈 (𝑡), 𝑡 ≥ 0. (5.6)

Since for all 𝑡 ≥ 0, 𝜎1,𝑈 (𝑡) ≥ 𝜇𝐹 (𝑡) and 𝜎1,𝐿 (𝑡) ≤ 𝜇𝐹 (𝑡), it follows that

𝑓 (𝑡) + 𝜎1,𝑈 (𝑡)𝐹 (𝑡) ≤ 𝜎1,𝑈 (𝑡) and 𝑓 (𝑡) + 𝜎1,𝐿 (𝑡)𝐹 (𝑡) ≥ 𝜎1,𝐿 (𝑡),

implying that the two-sided bounds given in Corollary 5.2 for every 𝑛 = 1, 2, 3, . . ., are better than that
of Xie’ s two-sided bound given in (5.6).

An immediate consequence of Corollary 5.2 are the following corollaries.

Corollary 5.3. (i) If the df 𝐹 is IFR, then for all 𝑡 ≥ 0

𝑢(𝑡) ≤ 𝑓 (𝑡) + (𝜇𝐹 ∗ 𝐹)(𝑡). (5.7)

(ii) If the df 𝐹 is DFR, then for all 𝑡 ≥ 0

𝑢(𝑡) ≥ 𝑓 (𝑡) + (𝜇𝐹 ∗ 𝐹)(𝑡). (5.8)

Proof. (i) If the df 𝐹 is IFR, then 𝜎1,𝑈 (𝑡) and 𝜓1,𝑈 (𝑡) defined by Corollary 5.2 are equal to 𝜎1,𝑈 (𝑡) =
𝜇𝐹 (𝑡) and 𝜓1,𝑈 (𝑡) = 0. Then, (5.7) follows from (5.2).

(ii) If the df 𝐹 is DFR, then 𝜎1,𝐿 (𝑡) defined by (5.1) and 𝜓1,𝐿 (𝑡) defined by (5.2) are equal to
𝜎1,𝐿 (𝑡) = 𝜇𝐹 (𝑡) and 𝜓1,𝐿 (𝑡) = 0. Then, (5.8) follows from (5.4). �
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Xie [28, Cor. 4.4] proved that if the df 𝐹 is IFR(DFR), then

𝑢(𝑡) ≤ (≥)𝜇𝐹 (𝑡).

Since
𝑓 (𝑡) + (𝜇𝐹 ∗ 𝐹)(𝑡) ≤ 𝑓 (𝑡) + 𝜇𝐹 (𝑡)𝐹 (𝑡) = 𝜇𝐹 (𝑡),

if the df 𝐹 is IFR, and

𝑓 (𝑡) + (𝜇𝐹 ∗ 𝐹)(𝑡) ≥ 𝑓 (𝑡) + 𝜇𝐹 (𝑡)𝐹 (𝑡) = 𝜇𝐹 (𝑡),

if the df 𝐹 is DFR, it follows that the bounds in Corollary 5.3 are tighter than the corresponding bounds
given by Xie [28].

Combining (5.8) and Corollary 5.1 (i), we immediately obtain the following

Corollary 5.4. If the df 𝐹 is DFR, then

𝑈 (𝑡) ≥ 1 + 𝑡 (𝜇𝐹 ∗ 𝐹)(𝑡)
𝐹 (𝑡) .

In the following corollary (for the proof, see Appendix), we give bounds for the renewal density
function by considering the class of absolutely continuous distribution functions 𝐹 with bounded failure
rate.

Corollary 5.5. (i) If for some 𝑚1 ∈ (0,∞), it holds 𝜇𝐹 (𝑡) ≥ 𝑚1, 𝑡 ≥ 0, then for every 𝑛 = 1, 2, 3, . . .

𝑢(𝑡) ≥ 𝑓 (𝑡) + 𝑚1𝐹 (𝑡) +
𝑛−1∑
𝑚=1

(�̂�1,𝐿 ∗ 𝐹∗𝑚)(𝑡),

where �̂�1,𝐿 (𝑡) = �̄� (𝑡) [𝜇𝐹 (𝑡) − 𝑚1] ≥ 0.
The lower bound is monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑢(𝑡).

(ii) If for some 𝑚2 ∈ (0,∞), it holds 𝜇𝐹 (𝑡) ≤ 𝑚2, 𝑡 ≥ 0, then for every 𝑛 = 1, 2, 3 . . .

𝑢(𝑡) ≤ 𝑓 (𝑡) + 𝑚2𝐹 (𝑡) +
𝑛−1∑
𝑚=1

(�̂�1,𝑈 ∗ 𝐹∗𝑚)(𝑡),

where �̂�1,𝑈 (𝑡) = �̄� (𝑡) [𝑚2 − 𝜇𝐹 (𝑡)] ≥ 0.
The upper bound is monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡 and converges to 𝑢(𝑡).

(iii) If for some 𝑚1, 𝑚2 ∈ (0,∞) with 𝑚1 < 𝑚2, it holds 𝑚1 ≤ 𝜇𝐹 (𝑡) ≤ 𝑚2, 𝑡 ≥ 0, then for every
𝑛 = 1, 2, 3, . . .

𝑓 (𝑡) + 𝑚1𝐹 (𝑡) +
𝑛−1∑
𝑚=1

(�̂�1,𝐿 ∗ 𝐹∗𝑚)(𝑡) ≤ 𝑢(𝑡) ≤ 𝑓 (𝑡) + 𝑚1𝐹 (𝑡) −
𝑛−1∑
𝑚=1

(�̂�1,𝑈 ∗ 𝐹∗𝑚)(𝑡).

Let
𝜎1 = inf

𝑧≥0
{𝜇𝐹 (𝑧)} and 𝜎2 = sup{𝜇𝐹 (𝑧)}

𝑧≥0
. (5.9)

Then, Xie [28, Cor. 4.7], using the two-sided bound for the renewal density 𝑢(𝑡) given in (5.6), obtained
the following two-sided linear bound for the renewal function 𝐻 (𝑡)

𝜎1𝑡 ≤ 𝑀 (𝑡) ≤ 𝜎2𝑡,

and conjectured that this two-sided bound may be improved. An improvement is given in the next section.
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Corollary 5.6. If 𝜎1 and 𝜎2 are given by (5.9), then it holds the following general two-sided bound

𝜎1𝑡 + [𝐹 (𝑡) − 𝜎1𝜇𝐹𝑒 (𝑡)] ≤ 𝑀 (𝑡) ≤ 𝜎2𝑡 − [𝜎2𝜇𝐹𝑒 (𝑡) − 𝐹 (𝑡)] .

Proof. Since 𝜎1,𝑈 (𝑡) ≤ 𝜎2 and 𝜎1,𝐿 (𝑡) ≥ 𝜎1, where 𝜎1,𝑈 (𝑡) and 𝜎1,𝐿 (𝑡) are given in (5.9), then from
Corollary 5.2 and for 𝑛 = 1, we get the following two-sided bound

𝑓 (𝑡) + 𝜎1𝐹 (𝑡) ≤ 𝑢(𝑡) ≤ 𝑓 (𝑡) + 𝜎2𝐹 (𝑡).

Therefore, it holds

𝐹 (𝑡) + 𝜎1

∫ 𝑡

0
𝐹 (𝑦) 𝑑𝑦 ≤ 𝐻 (𝑡) ≤ 𝐹 (𝑡) + 𝜎2

∫ 𝑡

0
𝐹 (𝑦) 𝑑𝑦,

and since
∫ 𝑡

0 𝐹 (𝑦) 𝑑𝑦 = 𝑡 − 𝜇𝐹𝑒 (𝑡), the result follows. �

Since, 𝑓 (𝑡) ≥ 𝜎1�̄� (𝑡) and 𝑓 (𝑡) ≤ 𝜎2�̄� (𝑡), it follows that

𝐹 (𝑡) ≥ 𝜎1

∫ 𝑡

0
�̄� (𝑦) 𝑑𝑦 = 𝜎1𝜇𝐹𝑒 (𝑡) and 𝐹 (𝑡) ≤ 𝜎2

∫ 𝑡

0
�̄� (𝑦) 𝑑𝑦 = 𝜎2𝜇𝐹𝑒 (𝑡),

implying that the two-sided bound in Corollary 5.6 is tighter than the above mentioned Xie’ s two-sided
bound.

6. Some bounds for the distribution of the forward recurrence time

In this section, we shall give some bounds for the right-tail of the excess lifetime 𝛾(𝑡). Let �̄�𝑦 (𝑡) =
Pr[𝛾(𝑡) > 𝑦]. Since the solution of (1.5) is given by

𝑉𝑦 (𝑡) = 𝐹 (𝑡 + 𝑦) −
∫ 𝑡

0
�̄� (𝑡 + 𝑦 − 𝑥) 𝑑𝑀 (𝑥), (6.1)

and �̄�𝑦 (𝑡) = 1 −𝑉𝑦 (𝑡), from (1.5) and (6.1), it follows that the right-tail �̄�𝑦 (𝑡) satisfies the renewal-type
equation

�̄�𝑦 (𝑡) = �̄� (𝑦 + 𝑡) +
∫ 𝑡

0
�̄�𝑦 (𝑡 − 𝑥) 𝑑𝐹 (𝑥), (6.2)

with solution (in terms of the renewal function 𝑀 (𝑡))

�̄�𝑦 (𝑡) = �̄� (𝑦 + 𝑡) +
∫ 𝑡

0
�̄� (𝑦 + 𝑡 − 𝑥) 𝑑𝑀 (𝑥). (6.3)

Let (�̄� (𝑦 + ·) ∗ 𝐹)(𝑡) =
∫ 𝑡

0 �̄� (𝑦 + 𝑡 − 𝑥) 𝑑𝐹 (𝑥). Note that the general solution of (6.2) is given by

�̄�𝑦 (𝑡) =
∞∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡) =
∞∑
𝑚=0

∫ 𝑡

0
�̄� (𝑦 + 𝑡 − 𝑥) 𝑑𝐹∗𝑚 (𝑥). (6.4)

Since �̄�𝑦 (𝑡) is of the form (1.1) with 𝑟 (𝑡) = �̄� (𝑦 + 𝑡), then from Theorem 2.4 we immediately obtain the
following sequence of general two-sided bounds for �̄�𝑦 (𝑡).
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Corollary 6.1. Let

𝛽𝑈 (𝑡) = sup
0≤𝑧≤𝑡
�̄� (𝑧)>0

{
�̄� (𝑦 + 𝑧)
�̄� (𝑧)

}
and 𝛽𝐿 (𝑡) = inf

0≤𝑧≤𝑡
�̄� (𝑧)>0

{
�̄� (𝑦 + 𝑧)
�̄� (𝑧)

}
. (6.5)

Then, for every 𝑛 = 1, 2, 3, . . ., it holds the following general two-sided bounds

�̄�𝑦 (𝑡) ≤ �̄� (𝑦 + 𝑡) + (𝛽𝑈 ∗ 𝐹)(𝑡) −
𝑛∑
𝑚=1

(𝑔𝑦,𝑈 ∗ 𝐹∗𝑚)(𝑡) (6.6)

≤ 𝛽𝑈 (𝑡) −
𝑛∑
𝑚=1

(𝑔𝑦,𝑈 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.7)

and

�̄�𝑦 (𝑡) ≥ �̄� (𝑦 + 𝑡) + (𝛽𝐿 ∗ 𝐹)(𝑡) +
𝑛∑
𝑚=1

(𝑔𝑦,𝐿 ∗ 𝐹∗𝑚)(𝑡) (6.8)

≥ 𝛽𝑈 (𝑡) +
𝑛∑
𝑚=1

(𝑔𝑦, 𝐿 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.9)

where
𝑔𝑦,𝐿 (𝑡) = �̄� (𝑦 + 𝑡) − 𝛽𝐿 (𝑡)�̄� (𝑡) ≥ 0, 𝑔𝑦,𝑈 (𝑡) = 𝛽𝑈 (𝑡)�̄� (𝑡) − �̄� (𝑦 + 𝑡) ≥ 0. (6.10)

Now, using Corollary 6.1, we can easily get bounds for �̄�𝑦 (𝑡) based on some reliability properties of
the df 𝐹. Thus, we have

Corollary 6.2. (i) If the df 𝐹 is IFR, then for every 𝑛 = 1, 2, . . .

�̄� (𝑦 + 𝑡)
�̄� (𝑡) ≤ �̄�𝑦 (𝑡) ≤ �̄� (𝑦 + 𝑡) + �̄� (𝑦)𝐹 (𝑡) −

𝑛∑
𝑚=1

(𝑔1,𝑦 ∗ 𝐹∗𝑚)(𝑡) (6.11)

≤ �̄� (𝑦) −
𝑛∑
𝑚=1

(𝑔1,𝑦 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.12)

where 𝑔1,𝑦 (𝑡) = �̄� (𝑦)�̄� (𝑡) − �̄� (𝑦 + 𝑡) ≥ 0.
The upper bounds are monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡 and converge to �̄�𝑦 (𝑡).

(ii) If the 𝐹 is DFR, then for every 𝑛 = 1, 2, 3, . . .

�̄� (𝑦 + 𝑡)
�̄� (𝑡) ≥ �̄�𝑦 (𝑡) ≥ �̄� (𝑦 + 𝑡) + �̄� (𝑦)𝐹 (𝑡) +

𝑛∑
𝑚=1

(𝑔2,𝑦 ∗ 𝐹∗𝑚)(𝑡) (6.13)

≥ �̄� (𝑦) +
𝑛∑
𝑚=1

(𝑔2,𝑦 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.14)

where 𝑔2,𝑦 (𝑡) = �̄� (𝑦 + 𝑡) − �̄� (𝑦)�̄� (𝑡) ≥ 0.
The lower bounds are monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converge to �̄�𝑦 (𝑡).

Probability in the Engineering and Informational Sciences 767

https://doi.org/10.1017/S026996482200016X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482200016X


Proof. (i) Since the df 𝐹 is IFR, then �̄� (𝑦 + 𝑧)/�̄� (𝑧) is a non-increasing function in 𝑧 for fixed 𝑦 ≥ 0.
Then, from (6.5), it follows that 𝛽𝑈 (𝑡) = �̄� (𝑦), 𝛽𝐿 (𝑡) = �̄� (𝑦 + 𝑡)/�̄� (𝑡), implying from (6.10), that
𝑔𝑦,𝐿 (𝑡) = 0 and 𝑔𝑦,𝑈 (𝑡) = �̄� (𝑦)�̄� (𝑡) − �̄� (𝑦 + 𝑡) = 𝑔1,𝑦 (𝑡), which is non-negative for all 𝑦, 𝑡 ≥ 0,
since the df 𝐹 is also NBU. Therefore, from (6.6) and (6.7), we immediately obtain (6.11) and (6.12),
respectively.

Let 𝑈𝑛, 𝑦 (𝑡) and �̂�𝑛,𝑦 (𝑡) be the upper bounds in (6.11) and (6.12), respectively. Since 𝑔1,𝑦 (𝑡) is a
non-negative function for all 𝑡 ≥ 0, it follows that 𝑈𝑛,𝑦 (𝑡) and �̂�𝑛,𝑦 (𝑡) are monotone non-increasing in
𝑛 ≥ 1 for any fixed 𝑡 ≥ 0. By definition of 𝑔1,𝑦 (𝑡), the upper bound 𝑈𝑛,𝑦 (𝑡) can be rewritten as

𝑈𝑛,𝑦 (𝑡) = �̄� (𝑦 + 𝑡) + �̄� (𝑦)𝐹 (𝑡) − �̄� (𝑦)
𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡) +
𝑛∑
𝑚=1

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡)

= �̄� (𝑦) + �̄� (𝑦)𝐹 (𝑡) − �̄� (𝑦) [�̄�∗(𝑛+1) (𝑡) − �̄� (𝑡)] +
𝑛∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡)

= �̄� (𝑦) − �̄� (𝑦)�̄�∗(𝑛+1) (𝑡) +
𝑛∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡),

and thus from (6.4) and using that lim𝑛→∞ �̄�∗(𝑛+1) (𝑡) = 1, we get that lim𝑛→∞𝑈𝑛,𝑦 (𝑡) = �̄�𝑦 (𝑡), implying
that 𝑈𝑛,𝑦 (𝑡) converges to �̄�𝑦 (𝑡) as 𝑛 → ∞.

Also,

�̂�𝑛,𝑦 (𝑡) = �̄� (𝑦) − �̄� (𝑦)
𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗(𝑚−1) ) (𝑡) +
𝑛∑
𝑚=1

(�̄� (𝑦 + ·) ∗ 𝐹∗(𝑚−1) ) (𝑡)

= �̄� (𝑦) − �̄� (𝑦)�̄�∗𝑛 (𝑡) +
𝑛−1∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡),

from which it follows that lim𝑛→∞𝑈𝑛,𝑦 (𝑡) = �̄�𝑦 (𝑡). Therefore, 𝑈𝑛,𝑦 (𝑡) converges to �̄�𝑦 (𝑡) as 𝑛 → ∞.
(ii) When the df 𝐹 is IFR, then 𝛽𝐿 (𝑡) = �̄� (𝑦), 𝛽𝑈 (𝑡) = �̄� (𝑦 + 𝑡)/�̄� (𝑡), and the bounds in (6.13) and

(6.14) follows directly from (6.8) and (6.9), respectively. The rest of the proof is exactly the same as in
(i). �

When the df 𝐹 is DFR, we can also obtain and some other upper bounds for �̄�𝑦 (𝑡) in terms of the
renewal function 𝑀 (𝑡).

Corollary 6.3. If the df 𝐹 is DFR, then for every 𝑛 = 1, 2, 3, . . .

�̄�𝑦 (𝑡) ≤ 𝐹 (𝑡) + �̄� (𝑦 + 𝑡) − [�̄� (𝑡) + 𝐹 (𝑦 + 𝑡)]𝑀 (𝑡) − 𝜀𝑛 (𝑡) (6.15)

where

𝜀𝑛 (𝑡) =
𝑛∑
𝑚=1

𝐹∗(𝑚+1) (𝑡) −
𝑛∑
𝑚=1

∫ 𝑡

0
�̄� (𝑦 + 𝑡 − 𝑥) 𝑑𝐹∗𝑚 (𝑥)

−
𝑛∑
𝑚=1

[𝐹 (𝑦 + 𝑡) − 𝐹 (𝑡)]𝐹∗𝑚 (𝑡) ≥ 0

and
�̄�𝑦 (𝑡) ≤ �̄� (𝑦 + 𝑡) + 𝜇

𝑡
[�̄�𝑒 (𝑦) − �̄�𝑒 (𝑦 + 𝑡)]𝑀 (𝑡). (6.16)
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Proof. Let 𝑤(𝑡) = 𝐹 (𝑦 + 𝑡) − 𝐹 (𝑡) ≥ 0. Then, 𝑤′(𝑡) = 𝑓 (𝑡 + 𝑦) − 𝑓 (𝑡) ≤ 0, since the pdf 𝑓 is a
non-increasing function. Then, for 𝑟 (𝑡) = 𝐹 (𝑦 + 𝑡), from Theorem 2.3, we obtain

𝑉𝑦 (𝑡) ≥ 𝐻 (𝑡) + [𝐹 (𝑦 + 𝑡) − 𝐹 (𝑡)] [1 + 𝑀 (𝑡)] + 𝜀𝑛 (𝑡),

with 𝜀𝑛 (𝑡) =
∑𝑛
𝑚=1{(𝑤 ∗ 𝐹∗𝑚)(𝑡) − 𝑤(𝑡)𝐹∗𝑚 (𝑡)} ≥ 0, which gives (6.15).

Since the function �̄� (𝑦 + 𝑡 − 𝑥) is non-decreasing in 𝑥, for 0 ≤ 𝑥 ≤ 𝑡, and the renewal density 𝑢(𝑡) is
a non-increasing function in 𝑡 ≥ 0, from (6.3) and Lemma 4.8, we obtain

�̄�𝑦 (𝑡) = �̄� (𝑦 + 𝑡) +
∫ 𝑡

0
�̄� (𝑦 + 𝑡 − 𝑥)𝑢(𝑥) 𝑑𝑥

≤ �̄� (𝑦 + 𝑡) + 1
𝑡

∫ 𝑡

0
�̄� (𝑦 + 𝑥) 𝑑𝑥

∫ 𝑡

0
𝑢(𝑥) 𝑑𝑥

= �̄� (𝑦 + 𝑡) + 1
𝑡

{∫ 𝑦+𝑡

0
�̄� (𝑥) 𝑑𝑥 −

∫ 𝑦

0
�̄� (𝑥) 𝑑𝑥

}
𝑀 (𝑡),

and thus (6.16) follows. �

Corollary 6.4. (i) If for some 𝑚1 ∈ (0,∞), it holds 𝜇𝐹 (𝑡) ≥ 𝑚1, 𝑡 ≥ 0, then for every 𝑛 = 1, 2, 3, . . .

�̄�𝑦 (𝑡) ≤ �̄� (𝑦 + 𝑡) + 𝑒−𝑚1𝑦𝐹 (𝑡) −
𝑛∑
𝑚=1

(𝑔3,𝑦 ∗ 𝐹∗𝑚)(𝑡) (6.17)

≤ 𝑒−𝑚1𝑦 −
𝑛∑
𝑚=1

(𝑔3,𝑦 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.18)

where 𝑔3,𝑦 (𝑡) = �̄� (𝑡)𝑒−𝑚1𝑦 − �̄� (𝑡 + 𝑦) ≥ 0
The upper bounds are monotone non-increasing in 𝑛 ≥ 1 for any fixed 𝑡 and converge to �̄�𝑦 (𝑡).

(ii) If for some 𝑚2 ∈ (0,∞), it holds 𝜇𝐹 (𝑡) ≤ 𝑚2, 𝑡 ≥ 0, then for every 𝑛 = 1, 2, 3, . . .

�̄�𝑦 (𝑡) ≥ �̄� (𝑦 + 𝑡) + 𝑒−𝑚1𝑦𝐹 (𝑡) +
𝑛∑
𝑚=1

(𝑔4,𝑦 ∗ 𝐹∗𝑚)(𝑡) (6.19)

≥ 𝑒−𝑚2𝑦 +
𝑛∑
𝑚=1

(𝑔4,𝑦 ∗ 𝐹∗(𝑚−1) ) (𝑡), (6.20)

where 𝑔4,𝑦 (𝑡) = �̄� (𝑡 + 𝑦) − �̄� (𝑡)𝑒−𝑚2𝑦 ≥ 0.
The lower bounds are monotone non-decreasing in 𝑛 ≥ 1 for any fixed 𝑡 and converge to �̄�𝑦 (𝑡).

Proof. (i) Since
�̄� (𝑦 + 𝑧)
�̄� (𝑧) = exp

{
−

∫ 𝑧+𝑦

𝑧

𝜇𝐹 (𝑥) 𝑑𝑥
}
,

then
�̄� (𝑦 + 𝑧)
�̄� (𝑧) ≤ exp

{
−

∫ 𝑧+𝑦

𝑧

𝑚1𝑑𝑥

}
= 𝑒−𝑚1𝑦 ,

and thus, from (6.5) and (6.10), we get 𝛽𝑈 (𝑡) = 𝑒−𝑚1𝑦 and 𝑔𝑦,𝑈 (𝑡) = �̄� (𝑡)𝑒−𝑚1𝑦 − �̄� (𝑦 + 𝑡) = 𝑔3,𝑦 (𝑡).
Now, the bounds in (6.17) and (6.18) follow immediately from (6.6) and (6.7), respectively.
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Let 𝐴𝑛,𝑦 (𝑡) and �̂�𝑛,𝑦 (𝑡) be the upper bounds in (6.17) and (6.18), respectively. Since 𝑔3,𝑦 (𝑡) ≥ 0 is a
non-negative function for all 𝑡 ≥ 0, it follows that 𝐴𝑛,𝑦 (𝑡) and �̂�𝑛,𝑦 (𝑡) are monotone non-increasing in
𝑛 ≥ 1 for any fixed 𝑡 ≥ 0. By definition of 𝑔3,𝑦 (𝑡), the upper bound 𝐴𝑛,𝑦 (𝑡) can be rewritten as

𝐴𝑛,𝑦 (𝑡) = �̄� (𝑦 + 𝑡) + 𝑒−𝑚1𝑦𝐹 (𝑡) − 𝑒−𝑚1𝑦
𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡)

+
𝑛∑
𝑚=1

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡)

= 𝑒−𝑚1𝑦𝐹 (𝑡) − 𝑒−𝑚1𝑦 [�̄�∗(𝑛+1) (𝑡) − �̄� (𝑡)] +
𝑛∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡)

= 𝑒−𝑚1𝑦 − 𝑒−𝑚1𝑦 �̄�∗(𝑛+1) (𝑡) +
𝑛∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡).

Using that lim𝑛→∞ �̄�∗(𝑛+1) (𝑡) = 1 and relation (6.4), it follows that lim𝑛→∞ 𝐴𝑛,𝑦 (𝑡) = �̄�𝑦 (𝑡), that is,
𝐴𝑛,𝑦 (𝑡) converges to �̄�𝑦 (𝑡).

Also, it holds that

�̂�𝑛,𝑦 (𝑡) = 𝑒−𝑚1𝑦 − 𝑒−𝑚1𝑦
𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗(𝑚−1) ) (𝑡) +
𝑛∑
𝑚=1

(�̄� (𝑦 + ·) ∗ 𝐹∗(𝑚−1) ) (𝑡)

= 𝑒−𝑚1𝑦 − 𝑒−𝑚1𝑦 �̄�∗𝑛 (𝑡) +
𝑛−1∑
𝑚=0

(�̄� (𝑦 + ·) ∗ 𝐹∗𝑚)(𝑡),

from which we get that lim𝑛→∞ �̂�𝑛,𝑦 (𝑡) = �̄�𝑦 (𝑡), implying also that the bound �̂�𝑛,𝑦 (𝑡) converges to �̄�𝑦 (𝑡).
(ii) As in (i), we find 𝛽𝐿 (𝑡) = 𝑒−𝑚2𝑦 and 𝑔𝑦,𝐿 (𝑡) = �̄� (𝑦 + 𝑡) − �̄� (𝑡)𝑒−𝑚2𝑦 = 𝑔4,𝑦 (𝑡). Therefore, the

bounds in (6.19) and (6.20) follow directly from (6.8) and (6.9), respectively. The rest of the proof is
similar as in (i). �

If it holds 𝑚1 ≤ 𝜇𝐹 (𝑡) ≤ 𝑚2, for some 𝑚1, 𝑚2 ∈ (0,∞) with 𝑚1 < 𝑚2, then from Corollary 6.4 we
obtain a two-sided bound for �̄�𝑦 (𝑡).

7. Conclusion

In this paper, we derive sequences of non-decreasing (non-increasing) general lower (upper) bounds for
the solution of a proper renewal equation, for the renewal function, the renewal density and the right-tail
probability of the forward recurrence time of a renewal process. Some of these bounds are given for
first time, whereas all the proposed bounds are refinements of the corresponding existing ones. These
bounds can be applied for any distribution F of the inter-arrival times.

Also, by considering first-order reliability classes (such as IFR, DFR, IMRL, DMRL, NWUE and
NBUE) we provide a series of such new bounds for the renewal function, the renewal density and
the right-tail probability of the forward recurrence time of a renewal process. In order to obtain such
bounds, one has to compare the tails �̄� (𝑡) and �̄�𝑒 (𝑡). This is achieved, by using the functions 𝑎𝑈 (𝑡)
and 𝑎𝐿 (𝑡) defined by (3.4), since these functions are defined through the tails �̄� (𝑡) and �̄�𝑒 (𝑡). This
approach cannot be applied directly to higher-order reliability classes for the df F, since in this case we
have to compare higher-order equilibrium distributions of F. Hence, one has to define other functions
than 𝑎𝑈 (𝑡) and 𝑎𝐿 (𝑡). This is an interesting open problem. Similar conclusions also hold with the use
of functions 𝛽𝑈 (𝑡) and 𝛽𝐿 (𝑡) (defined by (5.1) in order to obtain bounds for the right-tail probability of
the forward recurrence time).
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Appendix

Proof of Proposition 2.1. (i) We shall prove (2.2) by mathematical induction on 𝑛 = 1, 2, 3, . . .. Obvi-
ously, (2.2) it holds true for 𝑛 = 1, because of (1.1). Let �̂� (𝑠) =

∫ ∞
0 𝑒−𝑠𝑡𝑍 (𝑡) 𝑑𝑡, 𝑟 (𝑠) =

∫ ∞
0 𝑒−𝑠𝑡𝑟 (𝑡) 𝑑𝑡

and 𝑓 ∗𝑚 (𝑠) =
∫ ∞

0 𝑒−𝑠𝑡 𝑑𝐹∗𝑚 (𝑡) denote the Laplace transforms of the functions 𝑍 (𝑡), 𝑟 (𝑡) and 𝑓 ∗𝑚(𝑡),
respectively. Assuming that (2.2) holds for some 𝑛 ≥ 1, then taking Laplace transforms on both sides
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of (2.2) and (1.1), we obtain

�̂� (𝑠) =
𝑛∑
𝑚=1

𝑟 (𝑠) 𝑓 ∗(𝑚−1) (𝑠) + �̂� (𝑧) 𝑓 ∗𝑛 (𝑠),

and

�̂� (𝑠) = 𝑟 (𝑠) + �̂� (𝑠) 𝑓 (𝑧),

which yield

�̂� (𝑠) =
𝑛∑
𝑚=1

𝑟 (𝑠) 𝑓 ∗(𝑚−1) (𝑠) + [𝑟 (𝑠) + �̂� (𝑧) 𝑓 (𝑠)] 𝑓 ∗𝑛 (𝑧)

=
𝑛+1∑
𝑚=1

𝑟 (𝑠) 𝑓 ∗(𝑚−1) (𝑠) + �̂� (𝑧) 𝑓 ∗(𝑛+1) (𝑠)

implying that (2.2) is also holds for 𝑛 + 1. Therefore, (2.2) holds true for all 𝑛 = 1, 2, 3, . . .
(ii) The relation (2.3) follows directly from (2.2) with 𝑟 (𝑡) = 𝐹 (𝑡), since then 𝑍 (𝑡) = 𝑀 (𝑡). �

Proof of Theorem 2.2. Consider the function ℎ(𝑡) = 𝑍 (𝑡) − 𝑀 (𝑡). Then, from (2.2) and (2.3), it follows
that ℎ(𝑡) satisfies the renewal-type equation

ℎ(𝑡) = 𝑟𝑛 (𝑡) +
∫ 𝑡

0
ℎ(𝑡 − 𝑦) 𝑑𝐹∗ (𝑦), (A.1)

with 𝑟𝑛 (𝑡) =
∑𝑛
𝑚=1(𝑟 ∗ 𝐹∗(𝑚−1) (𝑡) − ∑𝑛

𝑚=1 𝐹∗𝑚 (𝑡).
Let 𝑀𝑛 be such that

𝑀𝑛 (𝑡) = 𝐹∗𝑛 (𝑡) +
∫ 𝑡

0
𝑀𝑛 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦), 𝑛 = 1, 2, 3, . . . (A.2)

with 𝑀1 (𝑡) = 𝑀 (𝑡).
Since (A.1) is of the form (1.1), then using that

𝑍 (𝑡) = 𝑟 (𝑡) +
∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝑀 (𝑦) = 𝑟 (𝑡) +

∫ 𝑡

0
𝑟 (𝑡 − 𝑦) 𝑑𝑈 (𝑦)

and taking into account the relation (A.2), we obtain

ℎ(𝑡) = 𝑟𝑛 (𝑡) +
∫ 𝑡

0
𝑟𝑛 (𝑡 − 𝑦) 𝑑𝑀𝑛 (𝑡). (A.3)

By observing that

𝑟𝑛 (𝑡) =
𝑛∑
𝑚=1

(𝑟 ∗ 𝐹∗(𝑚−1) (𝑡) −
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡)

=
𝑛∑
𝑚=1

(𝑟 ∗ 𝐹∗(𝑚−1) (𝑡) −
𝑛∑
𝑚=1

(𝐹 ∗ 𝐹∗(𝑚−1) ) (𝑡)

=
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) (𝑡),
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from (A.3), it follows that for every 𝑛 = 1, 2, 3, . . ., it holds

𝑍 (𝑡) = 𝑀 (𝑡) +
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) (𝑡) +
𝑛∑
𝑚=1

∫ 𝑡

0
(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡 − 𝑦) 𝑑𝑀𝑛 (𝑦). (A.4)

If 𝑤(𝑡) ≥ (≤) 0, then (2.4) it follows immediately from (A.4), since the third term in (A.4) is positive
(negative). �

Proof of Theorem 2.3. From (A.4) and for 𝑛 = 1, we obtain

𝑍 (𝑡) = 𝑀 (𝑡) + 𝑤(𝑡) +
∫ 𝑡

0
𝑤(𝑡 − 𝑦) 𝑑𝑀 (𝑦).

Since 𝑤′(𝑡) ≤ (≥)0, then for 0 ≤ 𝑦 ≤ 𝑡 it holds 𝑤(𝑡 − 𝑦) ≥ (≤)𝑤(𝑡), and thus from the above relation
we get that

𝑍 (𝑡) ≥ (≤)𝑀 (𝑡) + 𝑤(𝑡) + 𝑤(𝑡)
∫ 𝑡

0
𝑑𝑀 (𝑡),

that is,
𝑍 (𝑡) ≥ (≤)𝑀 (𝑡) + 𝑤(𝑡) + 𝑤(𝑡)𝑀 (𝑡). (A.5)

Therefore, (2.5) holds for 𝑛 = 0.
For every 𝑛 = 1, 2, 3, . . ., from (A.5) and using Proposition 2.1, we obtain

(𝑍 ∗ 𝐹∗𝑛)(𝑡) ≥ (≤)(𝑀 ∗ 𝐹∗𝑛)(𝑡) + (𝑤 ∗ 𝐹∗𝑛)(𝑡) + (𝑤𝑀 ∗ 𝐹∗𝑛)(𝑡),

or

𝑍 (𝑡) ≥ (≤)
𝑛∑
𝑚=1

(𝑟 ∗ 𝐹∗(𝑚−1) ) (𝑡) + 𝑀 (𝑡) −
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) + (𝑤 ∗ 𝐹∗𝑛)(𝑡)

+ (𝑤𝑀 ∗ 𝐹∗𝑛)(𝑡). (A.6)

Since 𝑟 (𝑡) = 𝑤(𝑡) + 𝐹 (𝑡) and 𝑤′(𝑡) ≤ (≥)0, then

𝑛∑
𝑚=1

(𝑟 ∗ 𝐹∗(𝑚−1) ) (𝑡) =
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡) +
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡),

and

(𝑤𝑀 ∗ 𝐹∗𝑛)(𝑡) =
∫ 𝑡

0
𝑤(𝑡 − 𝑦)𝑀 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦)

≥ (≤)𝑤(𝑡)
∫ 𝑡

0
𝑀 (𝑡 − 𝑦) 𝑑𝐹∗𝑛 (𝑦)

= 𝑤(𝑡)𝑀 (𝑡) − 𝑤(𝑡)
𝑛∑
𝑚=1

𝐹∗𝑛 (𝑡),

where the last relation follows from (2.3). Using the last two relations, (A.6) yields

𝑍 (𝑡) ≥ (≤)𝑀 (𝑡) + 𝑤(𝑡)𝑀 (𝑡) + (𝑤 ∗ 𝐹∗𝑛)(𝑡) +
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡) − 𝑤(𝑡)
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡), (A.7)
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and since
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡) + (𝑤 ∗ 𝐹∗𝑛)(𝑡) − 𝑤(𝑡)
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡)

= 𝑤(𝑡) +
𝑛+1∑
𝑚=2

(𝑤 ∗ 𝐹∗(𝑚−1) ) (𝑡) − 𝑤(𝑡)
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡)

= 𝑤(𝑡) + 𝜀𝑛 (𝑡),

from (A.7), we immediately obtain that the bound (2.5) is also holds for every 𝑛 ≥ 1. Therefore, (2.5)
holds true for every 𝑛 ≥ 0. Obviously, if 𝑤′(𝑡) ≤ (≥)0, then

(𝑤 ∗ 𝐹∗𝑚)(𝑚) ≥ (≤)𝑤(𝑡)𝐹∗𝑚 (𝑡),

implying that 𝜀𝑛 (𝑡) ≥ (≤)0.
(ii) Let 𝐿𝑛,1 (𝑡) and 𝐿𝑛,2 (𝑡) be the bounds in (2.4) and (2.5), respectively.
Since for every 𝑛 = 1, 2, 3, . . .,

∑𝑛
𝑚=1 𝐹∗𝑚 (𝑡) ≤ ∑∞

𝑚=1 𝐹∗𝑚 (𝑡) = 𝑀 (𝑡), it follows that if 𝑤(𝑡) ≥ (≤)0,
then

𝑤(𝑡)
𝑛∑
𝑚=1

𝐹∗𝑚 (𝑡) ≤ (≥)𝑤(𝑡)𝑀 (𝑡),

yielding that

𝐿𝑛,2 (𝑡) ≥ (≤)𝑀 (𝑡) + 𝑤(𝑡) +
𝑛∑
𝑚=1

(𝑤 ∗ 𝐹∗𝑚)(𝑡) = 𝑀 (𝑡) +
𝑛∑
𝑚=0

(𝑤 ∗ 𝐹∗𝑚)(𝑡) = 𝐿𝑛+1 (𝑡),

for every 𝑛 = 1, 2, 3, . . .
Obviously, from (A.5) (or equivalently, from (2.5) for 𝑛 = 0) and from (2.4) for 𝑛 = 1, we get

𝐿0,2 (𝑡) = 𝑀 (𝑡) + 𝑤(𝑡) + 𝑤(𝑡)𝑀 (𝑡) ≥ 𝑀 (𝑡) + 𝑤(𝑡) = 𝐿1,1 (𝑡).

Therefore, it holds that

𝐿𝑛,2 (𝑡) ≥ 𝐿𝑛+1,1 (𝑡), for every 𝑛 = 0, 1, 2, . . .

and thus applying Theorem 2.2 for 𝑛 + 1 and Theorem 2.3 for 𝑛, then for the corresponding bounds we
conclude that the bound (2.5) is tighter than that of (2.4). �

Proof of Corollary 4.1. Since 𝑟𝐹 (𝑡) = 𝜇�̄�𝑒 (𝑡)/�̄� (𝑡), from (3.4) it follows that

𝛼𝑈 (𝑡) = 1
𝜇

sup
0≤𝑧≤𝑡
�̄� (𝑧)

{𝑟𝐹 (𝑧)} and 𝛼𝐿 (𝑡) = 1
𝜇

inf
0≤𝑧≤𝑡
�̄� (𝑧)

{𝑟𝐹 (𝑧)}. (A.8)

(i) From 𝑟𝐹 (𝑡) ≥ 𝑟1, it follows that 𝛼𝐿 (𝑡) = 𝑟1/𝜇 and thus 𝜉𝐿 (𝑡) given by (3.10) becomes equal to
𝜉1,𝐿 (𝑡). Then, the lower bound follows immediately from (3.11). Let 𝐿1,𝑛 (𝑡) denotes the lower bound.
Since 𝜉1,𝐿 (𝑡) ≥ 0 for all 𝑡 ≥ 0, it follows that 𝐿1,𝑛 (𝑡) is monotone non-decreasing in 𝑛 ≥ 1 for any fixed
𝑡. By definition of 𝜉1,𝐿 (𝑡) and since

�̄�∗𝑛 (𝑡) = �̄� (𝑡) +
𝑛−1∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡),
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the lower bound 𝐿1,𝑛 (𝑡) can be rewritten as

𝐿1,𝑛 (𝑡) = 𝑡

𝜇
+ 𝑟1

𝜇
𝐹 (𝑡) +

𝑛∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) − 𝑟1

𝜇

𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡)

=
𝑡

𝜇
+ 𝑟1

𝜇
𝐹 (𝑡) +

𝑛∑
𝑚=0

𝐹∗𝑚 (𝑡) −
𝑛∑
𝑚=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) − 𝑟1

𝜇
�̄�∗(𝑛+1) (𝑡)

+ 𝑟1

𝜇
�̄� (𝑡).

Since,
∞∑
𝑛=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) = 𝑡

𝜇
, lim

𝑛→∞
�̄�∗(𝑛+1) (𝑡) = 1,

it follows that

lim
𝑛→∞

𝐿1,𝑛 (𝑡) =
∞∑
𝑚=0

𝐹∗𝑚 (𝑡),

and hence the bound 𝐿1,𝑛 (𝑡) converges to 𝑈 (𝑡).
(ii) From 𝑟𝐹 (𝑡) ≤ 𝑟2, then 𝛼𝑈 (𝑡) = 𝑟2/𝜇 and 𝜉𝑈 (𝑡) given by (3.10) is reduced to 𝜉1,𝑈 (𝑡). Now, the

required upper bound is immediately obtained by applying (3.11). The rest of the proof is similar as in
(i). �

Proof of Corollary 4.2. (i) Since 𝜇𝐹 (𝑡) ≤ 1/𝑟1, it follows that 𝑟𝐹 (𝑡) ≥ 𝑟1 (see, e.g., [27, rel. (2.3.18)])
and thus from (A.8) we get 𝑎𝐿 (𝑡) = /𝜇. Therefore, 𝜉𝐿 (𝑡) defined by (3.10) is reduced to 𝜉𝐿 (𝑡) =
�̄�𝑒 (𝑡) − (𝑟1/𝜇)�̄� (𝑡), implying that

𝜉 ′𝐿 (𝑡) =
1
𝜇
[𝑟1 𝑓 (𝑡) − �̄� (𝑡)] = �̄� (𝑡)

𝜇
[𝑟1𝜇𝐹 (𝑡) − 1] ≤ 0,

and since
1 − 𝜉𝐿 (𝑡) = 𝐹𝑒 (𝑡) + 𝑟1

𝜇
�̄� (𝑡), (𝑎𝐿 ∗ 𝐹)(𝑡) = 𝑟1

𝜇
𝐹 (𝑡),

from (3.16) (or equivalently from (3.17)), we obtain

𝑈 (𝑡) ≥ 𝑡/𝜇 + (𝑟1/𝜇)�̄� (𝑡) + (𝑟1/𝜇)𝐹 (𝑡)
(𝑟1/𝜇)�̄� (𝑡) + 𝐹𝑒 (𝑡)

,

and thus (4.3) follows directly.
(ii) Similarly, since 𝜇𝐹 (𝑡) ≥ 1/𝑟2, then it holds 𝑟𝐹 (𝑡) ≤ 𝑟2 (see again in rel. (2.3.18) of [27]) and thus

we find that 𝑎𝑈 (𝑡) = 𝑟2/𝜇 and 𝜉𝑈 (𝑡) defined by (3.10) becomes 𝜉𝑈 (𝑡) = (𝑟2/𝜇)�̄� (𝑡) − �̄�𝑒 (𝑡), yielding
that

𝜉 ′𝑈 (𝑡) =
1
𝜇
[�̄� (𝑡) − 𝑟2 𝑓 (𝑡)] = �̄� (𝑡)

𝜇
[1 − 𝑟2𝜇𝐹 (𝑡)] ≤ 0

and hence (4.4) follows immediately as above from (3.14) (or equivalently (3.15)). �

Proof of Corollary 4.5. (i) Since

�̄� (𝑡) = exp
{
−

∫ 𝑡

0
𝜇𝐹 (𝑦) 𝑑𝑦

}
≤ exp

{
−

∫ 𝑡

0
𝑚1 𝑑𝑦

}
= 𝑒−𝑚1𝑡 ,
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it follows that 𝑋 <𝑠𝑡 𝑌 , where the random variable𝑌 follows the exponential distribution with parameter
𝑚1 having df 𝐺 (𝑡) = 1 − �̄� (𝑡). Therefore, it holds

∑𝑘
𝑖=1 𝑋𝑖 <𝑠𝑡

∑𝑘
𝑖=1 𝑌𝑖 , for every 𝑘 = 1, 2, 3, . . ., where

{𝑌𝑖 : 𝑖 ≥ 1} is a sequence of i.i.d. random variables having df 𝐺. This implies that 𝐹∗𝑘 (𝑡) ≥ 𝐺∗𝑘 (𝑡), for
every 𝑘 = 1, 2, 3, . . . and hence𝑈 (𝑡) ≥ 1+𝐻𝐺 (𝑡), where 𝐻𝐺 (𝑡) =

∑∞
𝑘=1 𝐺∗𝑘 (𝑡). Since,𝐺 (𝑡) = 1−𝑒−𝑚1𝑡 ,

it follows that 𝐻 (𝑡) = 𝑚1𝑡, which yields 𝑈 (𝑡) ≥ 1 + 𝑚1𝑡.
Since 𝜇𝐹 (𝑡) ≥ 𝑚1, it follows that 𝑟𝐹 (𝑡) ≤ 1/𝑚1 (see [27, rel. (2.3.18)]), and thus applying Corollary

4.1(ii) with 𝑟2 = 1/𝑚1, we immediately obtain the upper bound.
Let 𝑈3,𝑛 (𝑡) be the upper bound. Since 𝜉3,𝑈 (𝑡) ≥ 0 it follows that 𝑈3,𝑛 (𝑡) is monotone non-decreasing

in 𝑛 ≥ 1 for any fixed 𝑡 ≥ 0. By definition of 𝜉3,𝑈 (𝑡), the bound 𝑈3,𝑛 (𝑡) can be rewritten as

𝑈3,𝑛 (𝑡) = 𝑡

𝜇
+ 𝐹 (𝑡)

𝑚1𝜇
− 1

𝑚1𝜇

𝑛∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡) +
𝑛∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡)

=
𝑡

𝜇
+ 𝐹 (𝑡)

𝑚1𝜇
− 1

𝑚1𝜇
[�̄�∗(𝑛+1) (𝑡) − �̄� (𝑡)] +

𝑛∑
𝑚=0

𝐹∗𝑚 (𝑡)

−
𝑛∑
𝑚=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡),

and since
∞∑
𝑛=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) = 𝑡

𝜇
, lim

𝑛→∞
�̄�∗(𝑛+1) (𝑡) = 1,

lim
𝑛→∞

𝑈3,𝑛 (𝑡) = 𝑡

𝜇
+ 1

𝑚1𝜇
− 1

𝑚1𝜇
lim
𝑛→∞

�̄�∗(𝑛+1) (𝑡) +𝑈 (𝑡) −
∞∑
𝑚=0

(𝐹𝑒 ∗ 𝐹∗𝑚)(𝑡) = 𝑈 (𝑡),

that is, the upper bound 𝑈3,𝑛 (𝑡) converges to 𝑈 (𝑡).
(ii) Since 𝜇𝐹 (𝑡) ≤ 𝑚2, it follows that 𝑟𝐹 (𝑡) ≥ 1/𝑚2 ([27, rel. (2.3.18)]) and thus the lower bound

follows directly from Corollary 4.1(i) with 𝑟1 = 1/𝑚2. As in (i), by reversing the inequalities we get that
𝑈 (𝑡) ≤ 1 + 𝑚2𝑡. The rest of the proof is similar as in (i). �

Proof of Corollary 4.6. We shall prove (4.13) by mathematical induction in 𝑛 ≥ 0. Obviously, from
(4.12), it follows that (4.13) holds true for 𝑛 = 0. Supposing that (4.13) holds true for some 𝑛 ≥ 0, then
by inserting the upper bound in (4.12) into the right-hand side of (1.3), we obtain

𝑈 (𝑡) ≤ 1 +
∫ 𝑡

0

𝑡 − 𝑦

𝜇
𝑑𝐹 (𝑦) +

𝑛−1∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗(𝑚+1) ) (𝑡) + 𝜇2

2𝜇2 𝐹∗(𝑛+1) (𝑡)

≤ 1 + 𝑡

𝜇
− 𝐹𝑒 (𝑡) +

𝑛∑
𝑚=1

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝜇2

2𝜇2 𝐹∗(𝑛+1) (𝑡)

=
𝑡

𝜇
+

𝑛∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) + 𝜇2

2𝜇2 𝐹∗(𝑛+1) (𝑡),

and thus (4.13) is also holds for 𝑛 + 1, implying that (4.13) holds true for all 𝑛 = 0, 1, 2, . . .
The lower bound in (4.14) follows by a similar way if we insert the lower bound in (4.12) into the

right-hand side of (1.3).
Since

∞∑
𝑚=0

(�̄�𝑒 ∗ 𝐹∗𝑚)(𝑡) = 𝑈 (𝑡) − 𝑡

𝜇
and lim

𝑛→∞
𝐹∗𝑛 (𝑡) = 0,

the upper bound in (4.13) converges to 𝑈 (𝑡) as → ∞.
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Also, since

0 ≤ (𝐹2 ∗ 𝐹∗𝑛)(𝑡) ≤
∫ 𝑡

0
𝑑𝐹∗𝑛 (𝑡) = 𝐹∗𝑛 (𝑡),

it follows that lim𝑛→∞(𝐹2 ∗𝐹∗𝑛)(𝑡) = 0. Therefore, it also holds that the lower bound in (4.14) converges
to 𝑈 (𝑡) as → ∞. �

Proof of Corollary 5.5. The lower bound in (i) and the upper bound (ii) are derived directly from
Corollary 5.2 since 𝜎1,𝐿 (𝑡) = 𝑚1, and 𝜎1,𝑈 (𝑡) = 𝑚2. The two-sided bound in (iii) follows from (i) and
(ii).

Since �̂�1,𝐿 (𝑡) ≥ 0 (�̂�1,𝑈 (𝑡) ≥ 0) it follows that the lower bound in (i) (upper bound in (ii)) is
monotone non-decreasing (monotone non-increasing) in 𝑛 ≥ 1 for all 𝑡 ≥ 0. Let 𝑢𝑛 (𝑡) be the lower
bound in (i). By definition of �̂�1,𝐿 (𝑡), the bound 𝑢𝑛 (𝑡) can also be rewritten in the form

𝑢𝑛 (𝑡) = 𝑓 (𝑡) + 𝑚1𝐹 (𝑡) +
𝑛−1∑
𝑚=1

( 𝑓 ∗ 𝐹∗𝑚)(𝑡) − 𝑚1

𝑛−1∑
𝑚=1

(�̄� ∗ 𝐹∗𝑚)(𝑡)

= 𝑓 (𝑡) + 𝑚1𝐹 (𝑡) +
𝑛−1∑
𝑚=1

𝑓 ∗(𝑚+1) (𝑡) − 𝑚1 [�̄�∗𝑛 (𝑡) − �̄� (𝑡)]

= 𝑚1 − 𝑚1�̄�
∗𝑛 (𝑡) +

𝑛∑
𝑚=1

𝑓 ∗𝑚 (𝑡).

Since lim𝑛→∞ �̄�∗𝑛 (𝑡) = 1,
∑∞
𝑚=1 𝑓 ∗𝑚(𝑡) = 𝑢(𝑡), it follows that lim𝑛→∞ 𝑢𝑛 (𝑡) = 𝑢(𝑡), that is., 𝑢𝑛 (𝑡)

converges to 𝑢(𝑡). Similarly, it can be shown that the lower bound in (ii) also converges to 𝑢(𝑡) as
𝑛 → ∞.

(iii) Follows directly from (i) and (ii). �
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