SYMMETRY BREAKING IN THE SOLAR DYNAMO:
NONLINEAR SOLUTIONS
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ABSTRACT. We examine an idealized aw-dynamo model in which the magnetic
fields depend only on latitude and time. The solutions that bifurcate from the field-
free state are either symmetric or antisymmetric about the equator (quadrupolar
or dipolar respectively). Nonlinear steady and periodic solutions, whether stable
or unstable, can be followed numerically as the dynamo number is varied, revealing
a rich bifurcation structure with mixed-mode solutions (lacking symmetry about
the equator) appearing at secondary bifurcations. These results show how stable
asymmetric fields can occur in the sun and illustrate the formation of complicated
spatial structure in more active stars.

We assume that the generation of magnetic fields in a star like the sun occurs in a
shell at the base of the convective zone and can be described by an axisymmetric
mean-field aw-dynamo (Parker 1979). In order to investigate latitudinal structure
and equatorial symmetries we consider a highly simplified model in which only the
essential physics is retained; all results are therefore strictly qualitative.

We neglect curvature and replace spherical co-ordinates (r,8,$) by cartesians
(2,z,y) respectively. Then we may consider a magnetic field B = (0, B,0A/9z)
that depends only on the colatitude =z and on time ¢. In the weak field limit
the toroidal field B is created by the sheared azimuthal velocity u = wzsinz §
while generation of the poloidal vector potential A through helicity is represented
by the parameter a = a,cosz which is antisymmetric about the equator (z =
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7/2). In the nonlinear regime we introduce parameters 7,k and A to represent
quenching of the a-effect, quenching of differential rotation and enhanced losses
through magnetic buoyancy respectively (Jones 1983; Weiss et al. 1984). Thus we
obtain the nondimensionalised system

8A/8t = DBcosz(1+7B2) ™" +8%A/0z? , (1)
8B/dt = (3A/dz)sinz(1+ kB2) ™' + 82B/dz® — AB® . 2)
Here the dynamo number D = —a,wR3/n?%, where R is the latitudinal length scale

and 7 is a turbulent diffusivity (cf. Stix 1972). The boundary conditions at the
poles are A= B =0 at z =0, .

Equations (1) and (2) possess a trivial field-free solution A = B = 0. Branches
that bifurcate from this trivial solution involve magnetic fields that are either sym-
metric (quadrupole) or antisymmetric (dipole) about the equator, with dB/dz =
A =0or B=09A/8z = 0 respectively at £ = m/2. For D > 0 we expect to find
antisymmetric dynamo waves migrating towards the equator but as D is increased
from zero the first bifurcation, at D =~ 9, is to a branch of steady quadrupole so-
lutions. A branch of oscillatory dipole solutions appears at D = 102, followed by
oscillatory quadrupole solutions at D ~ 264.

(B*)

Figure 1. Bifurcation diagram for the case & = A, 7 = 0, showing the mean square
toroidal field (B?) as a function of the dynamo number D (not to scale). Solid
(broken) lines indicate stable (unstable) solution branches. Steady quadrupole and
oscillatory dipole, quadrupole and mixed-mode solutions are denoted by SQ,D,Q
and M respectively.
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values of B. Both solutions obtained with a total of 14 modes at D

mode periodic solutions.

Figure 2. Butterfly diagrams with contours of the toroidal field B(z,t) for mixed-
when symmetry
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Nonlinear behaviour can be followed by expanding A and B as truncated Fourier
series (with a total of 30 modes). Steady or periodic selutions can then be found
numerically both when they are stable and when they are unstable. Figure 1
shows the bifurcation structure when k = A and 7 = 0. Stability is transferred
from steady quadrupole solutions to a branch of periodic mixed-mode solutions
(lacking any symmetry about the equator) at D ~ 134 and thence to periodic
dipole solutions at D = 157. The antisymmetric dipole solutions remain stable until
D = 2580 when they lose stability to mixed-mode solutions. After such a secondary
bifurcation the mixed-mode solutions with period P retain either the symmetry (a):
B(z,t) = —B(z,t + 1 P) or the symmetry (b): B(z,t) = B(r — z,t + 3 P). These
symmetries may be lost in a tertiary bifurcation. Solutions with symmetry (a) only
have fields that are consistently stronger in one hemisphere than in the other, while
those with symmetry (b) have persistent fields of the same sign at the equator.
Figure 2 shows examples of butterfly diagrams for both cases.

The branch of oscillatory quadrupole solutions is initially unstable but finally
gains stability at D =~ 2335. For a range of parameter values there are then two
stable periodic solutions with different basins of attraction as well as a number of
unstable solutions with different symmetries. At larger values of D there are still
more bifurcations whose details depend on the number of terms included in the
series.

These results demonstrate that linear theory gives a qualitatively misleading
picture of behaviour in the nonlinear regime (cf. Brandenburg et al. 1989; Schmitt
& Schiissler 1989). Stable solutions are determined by a complicated bifurcation
structure like that illustrated in Figure 1. For small D there exist pure quadrupole
and pure dipole solutions as well as mixed-mode solutions resembling behaviour
observed in the sun, where a 10% asymmetry in magnetic flux has persisted over
several cycles (Tang et al. 1984). As D increases subsidiary bifurcations lead to
multiple solutions with richer spatial structure. Moreover, dynamical effects can
produce chaotic time dependence (Weiss et al. 1984). We should therefore expect
to find complicated spatiotemporal patterns of activity in rapidly rotating stars.
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