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Summary

Environmental variation (V) in a quantitative trait — variation in phenotype that cannot be
explained by genetic variation or identifiable genetic differences — can be regarded as being under
some degree of genetic control. Such variation may be either between repeated expressions of the
same trait within individuals (e.g. for bilateral traits), in the phenotype of different individuals,
where variation within families may differ, or in both components. We consider alternative models
for defining the distribution of phenotypes to include a component due to heterogeneity of V.

We review evidence for the presence of genetic variation in Vg and estimates of its magnitude.
Typically the heritability of Vg is under 10 %, but its genetic coefficient of variation is typically 20 %
or more. We consider experimental designs appropriate for estimating genetic variance in Vg and
review alternative methods of estimation. We consider the effects of stabilizing and directional
selection on Vg and review both the forces that might be maintaining levels of Vg and heritability
found in populations. We also evaluate the opportunities for reducing Vg in breeding programmes.
Although empirical and theoretical studies have increased our understanding of genetic control of

environmental variance, many issues remain unresolved.

1. Introduction

The phenotypic variation (Vp) in quantitative traits
comprises genetic and non-genetic components, plus
possible interactions and covariances between them
(Falconer & Mackay, 1996; Lynch & Walsh, 1998).
The proportion of each component differs markedly
among traits, although the proportion that is genetic
is typically highest for traits related to morphology
(e.g. mature size and conformation) and lowest for
traits more closely related to fitness (e.g. litter size).
For any type of trait, however, the values are typically
quite similar among species.

The genotypic variance, Vg, is usually partitioned
into additive genetic (¥4) and non-additive compo-
nents, and the parameter most often used to compare
the magnitudes of genetic and phenotypic variance is
the narrow sense heritability (A= V/Vp), because it
is easiest to estimate from information on relatives
and is used in prediction of progeny performance. In
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practice, however, it can be difficult to distinguish be-
tween non-additive genetic and environmental vari-
ance without the use of clones or inbred lines, as both
are components of within-family variance. An alterna-
tive measure of the phenotypic variability is the co-
efficient of variation (CV=\/ Vp/u), which facilitates
comparisons among traits and species, and the co-
efficient of evolvability (CVp= \/ Valu) defines its
additive genetic component (Houle, 1992).

Variation in quantitative traits is ubiquitous, and
there has been extensive analysis and discussion as to
what maintains genetic variation. This requires some
balance between the input from mutation and loss by
drift and by most, if not all, selective forces acting
directly on the trait itself or through pleiotropic ef-
fects. There is not yet, however, an unequivocal con-
clusion as to how the typical levels of genetic variance
are maintained (e.g. Biirger, 2000; Johnson & Barton,
2005; Zhang & Hill, 2005 «; Hill, 2010).

Much less attention has been paid to factors
accounting for the magnitude of the Vp, Vg or the CV.
The CV is typically smaller for morphological traits
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(e.g. adult size) than for traits related to reproductive
fitness (e.g. litter size and egg number). These quan-
tities are not functions of the genetic variance,
although typically the CV and heritability are nega-
tively correlated. Understanding the forces that de-
termine the magnitude of the non-genetic component
of phenotypic variance is a broad question in evol-
utionary biology.

Thus, we wish to know how selection and other
evolutionary forces are likely to influence Vg, both the
variance observable among repeated records on the
same individual (expressed as what is often termed
‘fluctuating asymmetry’ (FA)) and that between in-
dividuals. Selective forces may include stabilizing
selection, which is likely to reduce variation and en-
vironmental heterogeneity in time and space, which
might increase variation as individuals have to be
plastic to cope successfully with varying resources.

A related topic, but which we will not pursue here, is
that of canalization in its specific sense of reduced vari-
ation found for a particular phenotype (Waddington,
1942; Rendel et al. 1966), which has been subject
to theoretical analysis in recent years by Wagner et al.
(1997), Gavrilets & Hastings (1994) and others.
Here we concentrate on the more general nature of Vg
found over any range of genotypic or phenotypic
mean.

The level of variation is also of importance in agri-
cultural production because product consistency is
desirable in growing, processing and consumption of
foods. While it may be possible to avoid genetic vari-
ation by the use of inbred lines or their crosses, the
non-genetic component cannot be avoided. Hence,
there has been research recently in animal breeding on
the extent to which variation can be reduced by selec-
tion so as to improve homogeneity, with the potential
additional benefit of increasing accuracy of selection.

In this review we are concerned with the variation
among or within individuals maintained in the same
environment. A rather different but related topic is
that of ‘robustness’ or sensitivity, which describes
the extent to which the mean phenotype changes ac-
cording to the environment. Differences among geno-
types in such robustness give rise to genotype X
environment interaction, but we shall not discuss
these further in this review and focus on analyses
within an identifiable (macro-) environment. Indivi-
duals within such an environment will each experience
their own micro-environment, but these environmen-
tal differences are not identified. Differences among
genotypes in Vg may therefore reflect, at least in
part, their differing sensitivity to micro-environmental
factors (e.g. Falconer & Mackay, 1996).

The approach used to analyse and understand the
magnitude of the environmental variance (or of the
CV or CVg) is to consider it as a trait in its own right.
For traits that are expressed or recorded only once in
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an individual’s lifetime, there is only one environ-
mental component, E, that can be considered. If there
are two or more records, for example, of bristles
on opposite sides of a fly or of piglet weight within
a litter, this can be partitioned into two components,
the general or permanent environment effect, £, and
that specific to individual records, E; (Falconer &
Mackay, 1996). In principle, there can be genetic vari-
ation in both components, but it may not be possible
to separate them. An indicator of robustness and of
fitness, widely used in evolutionary studies, is FA
(Van Valen, 1962), which is a measure of individual
asymmetry in bilateral traits that are symmetric at the
population level, for example, features of a fly’s wing
or a human face and is measured as the variance in E,.
In this review, we shall concentrate primarily on
the variation among individuals; reviews on FA have
been published elsewhere (e.g. Leamy & Klingenberg,
2005).

Since the genotype for the magnitude of environ-
mental variation can be regarded as a quantitative
trait, it is assumed to be determined by the actions and
interactions of multiple genes. Much of the standard
methodology of quantitative genetics can then be
invoked. We do, however, have to recognize that the
variances are unlikely to be normally (Gaussian) dis-
tributed, that there are inevitable problems of scale
when considering the correlation or covariance of
trait mean and variance and that natural selection acts
on the individual phenotype, not on the ‘variation
trait’.

Here we review the current state of knowledge
of inheritance of environmental variance. We start by
discussing quantitative genetic and statistical model-
ling of Vg, methods of analysis and experimental
designs for estimating the genetic variance in Vg, and
estimates which have been obtained of its magnitude.
We subsequently consider the dynamics: the influ-
ences of artificial and of natural selection on Vg and
the evolutionary forces that determine the levels of
heritability in natural and domesticated populations.
We conclude with uncertainties and questions to be
answered in the future.

2. Quantitative genetic models
(1) Alternative models

In standard quantitative genetic models, the variation
in phenotype given genotype, Var(P|G), or Vg, is as-
sumed to be constant. When different genotypes differ
in their environmental variance, we can postulate that
some genes affect the phenotype and others affect the
environmental variance or both, such that Var(P|G)
depends on genotype. We can then define genotypic
effects on both the mean and the variance. For
simplicity and practicality of estimation, these are
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typically restricted to additive genetic effects. Differ-
ent mathematical functions have been proposed to
model the effect of genes on environmental variance,
and here we discuss and compare their mathematical
and statistical properties and their utility for predict-
ing response to selection. We start with models as-
suming a single observation on an individual, and
then extend the principles to include repeated ob-
servations on an individual.

In the additive model, the genetic component for
variance is modelled as an additive effect on the
environment variance (Hill & Zhang, 2004; Mulder
et al., 2007):

P=pit A7 J0L + Ay, (1)

where u and o% are, respectively, the mean trait value
and the mean environmental variance of the popu-
lation, A4,, and A, are, respectively, the additive gen-
etic effects for the mean and environmental variance
and y is a standard normal deviate, N(0,1), for the
environmental effect. The additive genetic effects for
individuals are assumed to follow a bivariate normal
distribution, where 0% , 0% , covy, =cov(An, 4,)=
ra04,04, and ra are the additive genetic variances,
covariance and correlation of A, and A4,, respectively.
Covariances among individuals are additionally de-
fined by the additive genetic relationship matrix. Note
that /0% + A, is defined only if o} + 4,>0, and so
the model breaks down if aiv is very high. The model
can easily be extended to include systematic environ-
mental sources of heterogeneity of environmental
variance such as herd effects. Random non-systematic
environmental effects on the environmental variance
are observed as sampling effects, but are not explicit in
the quantitative genetic model.

In the standard deviation model, the genetic com-
ponent for variance is modelled as an additive effect
on the environmental standard deviation (Garcia
et al., 2009):

P=u+ An+ (0 + A4y, sp)- @)

It is very similar to model (1) and has the same limi-
tation in being defined only when og+A4,sp>0.
The magnitudes of 0% differ between the models,
however.

The exponential model (SanCristobal-Gaudy et al.,
1998) is multiplicative on the level of the environ-
mental effect, but additive on the level of the natural
logarithm of the variance scale

P:/"+Am + X exp E( 10g (O§)+Av,exp)]- (3)

Modelling variances on the log scale is convenient
because the log of a variance estimate tends to a nor-
mal distribution when the degrees of freedom are
large. Modelling the log of variances has been applied
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in structural models to account for heterogeneity
of variance between experimental units or farms
(e.g. Foulley & Quaas, 1995; Foulley et al., 1998) and
for genetic heterogeneity of environmental variance
(SanCristobal-Gaudy et al., 1998; Sorensen &
Waagepetersen, 2003).

In the reaction norm model, the genetic component
of variance is additive on the level of the reaction
norm (Gavrilets & Hastings, 1994; Gimelfarb, 1994;
Wagner et al., 1997; Wu & O’Malley, 1998):

P=M+Am+'y€=,u+Am+(ﬂ+AV,RN)ea (4)

where y is the multiplication factor, with mean § and ¢
is the unscaled environmental effect. It is equivalent to
the linear reaction norm model (Finlay & Wilkinson,
1963), but the unscaled environmental effect is used
instead of an environmental descriptive parameter.

(i1) Comparison of models

When the models are compared in terms of their
expectations and variances (Table 1), the standard
deviation and the reaction norm models are equiva-
lent and can be re-parameterized from one to the
other. The average environmental variance is a func-
tion of 0% for the standard deviation model, the
exponential model and the reaction norm model, but
not for the additive model. Additive genetic values,
Ay, can be converted from the standard deviation,
exponential and reaction norm model to the additive
model (Table 2) by equating the second central
moments of the environmental effects and similarly
those for additive genetic variances, aiv, by equating
their fourth central moments.

The expectation of the environmental variance given
A, is linear for the additive model, but shows some
non-linearity (concave upwards) for the other models,
starting to become substantial when |4,|>2SD; the
curvilinearity increases with increasing 0% . The de-
parture from the additive model is greatest for the
exponential model.

(iii) Extension to repeated observations on
an individual

As there may be genetic variation in environmental
variation both within and between individuals, we
extend the additive model for repeated observations
using the additive model, but the principles are
straightforward to extend to the other models.
Repeated observations lead to covariances between
environmental effects. To account for these, the
environmental effects can be expressed as a sum of
permanent environmental effects, common to all re-
cords of the individual (Falconer & Mackay, 1996),
and specific environmental effects Pj;=p+ A4y, ;+
PE.,;+E; Analyses of genetic heterogeneity of
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Table 1. Expectation of environmental effect and environmental variance with additive models on variance and
standard deviation, exponential and reaction norm models on variance (modified from Walsh & Lynch, 2010)

Model Var(E) E var(E)| 4, E(var(E))=0%
Additive ok V(oL + Ay oE+4, o}

Standard deviation 055D (0esp+Avsply 0.5p+2A4y sp0esp+ A2 sp 0% sp+ oi“ b
Exponential Oxp eXp(Ay, exp)eexp exp(Ay exp)Teexp exp (30%, . )0 oy
Reaction norm ORN B+ Ay rRN)ERN (B+ Ay rRN)0ZRN B+ 0% RN)O RN

“ A, is the additive genetic effect for environmental variance, E is the environmental effect, y is standard normal deviate, ecxp
and egry are the unscaled environmental effects for exponential and reaction norm models and f is the average reaction

norm=1.

Table 2. Conversion of breeding values (A,) and its genetic variance of (oiw)from standard deviation,
exponential and reaction norm models to the additive model (based on Mulder et al., 2007)

Model Breeding value  Var(E) A, in additive model Var(4,) in additive model
Additive A, ok A, a

Standard deviation Ayvsp 05D Ay=02p+0%  —0E+24, 5050 0% =40% 0% s
Exponential Ay exp 0% exp Ay =02 oxp eXP(Ay exp) — OF 0% =0} ,.,eXp (20% .,)— 0L
Multiplicative (5=1)  A4yrn O:RN Ay =02 gn+ 0%  —OE 24 RNOe Ry 0%, =40% | 0% gy

variance have so far included only one of these effects,
but any of the fuller models can be obtained by ex-
tending eqns (1-4), assuming that both general and
specific environmental effects are under genetic con-
trol. For the additive model, from (1):

Py=u+An i+xpp, \/ b + Ay pE.i

®)
+XE,;'/\/O%5 +PE, ;+ 4,k

where definitions are extensions of those given pre-
viously and ypg; and yg,; are N(0,1). The additive
genetic effects Ay, ;, Ay pe,; and A, g ;are assumed to be
trivariate normal and the permanent environmental
effects PE,,; and PE,; to be bivariate normal, each
with corresponding variances and covariances.

The model is highly parameterized and needs very
good designs if all parameters are to be estimated. In
principle it postulates that the repeatability of a trait
is genetically determined, by genetic variance not only
of specific environmental effects, but also of permanent
environmentally effects. These genetic effects on the
permanent and specific environment effects may be
highly correlated, as both depend on the individual’s
ability to respond to environmental conditions. The
estimation of oiWPE requires family relationships,
whereas 0%  can be estimated based on both re-
peated observations on the individual itself and family
relationships. Analysis of the power to estimate all
parameters and development of statistical methods
need further research.
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3. Statistical analysis of large populations

Several methods have been proposed for estimating
genetic heterogeneity in Vg. As the between-individual
environmental variance can never be estimated di-
rectly unless clones or MZ twins are used, some
measure of residual variance or squared residuals
is modelled in order to estimate (additive) genetic
variance in V.

The simplest type of analysis in segregating popu-
lations uses the within-family variances to estimate
directly the genetic variance in Vg (e.g. Rowe et al.,
2006; Ordas et al., 2008), i.e. by restricted maximum
likelihood (REML) or least squares. In this analysis,
the strong assumption is made that there are no
systematic environmental effects that influence the
within-family variance, although heterogeneity of
environmental or residual variance has been observed
in many situations. The method used by Rowe et al.
(2006) gave upwardly biased estimates of genetic
variance in Vg of broiler body weights in the data
of Mulder et al. (2009), as the records spanned a long
time period. More advanced methods have been
developed that are aimed at reducing such bias
(e.g. SanCristobal-Gaudy et al., 1998, 2001 ; Sorensen
& Waagepetersen, 2003; Mulder et al., 2009;
Roénnegard et al., 2010).

SanCristobal-Gaudy et al. (1998, 2001) developed
an EM-REML algorithm using expectation-
maximisation and incorporating a structural model
on the residual variance. In a structural model, fixed
and random effects for both the mean and the log of
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the residual variance are fitted simultaneously, al-
lowing for covariance structures between random ef-
fects on mean and on residual variance. To obtain
solutions they used an iterative system because
analytical integrals of some expressions were not
available. Other simpler REML applications make
use of a two-step approach, fitting a model on the
phenotype in the first step and a model in which the
(transformed) squared residuals are used as proxies
for squared environmental effects in the second step.
There are two main problems with using squared
residuals, however: the residual is a mixture of true
environmental effects and unexplained other effects;
and if residuals are truly normally distributed, their
squares are x> distributed, violating the normality as-
sumptions when the squared residuals are analysed as
a trait.

The accuracy of squared residuals (i.e. correlation
between squared environmental effects and squared
residuals) is a function of the accuracy of the estimated
effects (i.e. correlation between true and estimated
effects) and is reflected in the so-called hat-matrix
of the mixed model equations, for which diagonal
elements are called ‘leverages’ (Hoaglin & Welsch,
1978). The hat-matrix describes the influence each ob-
served value has on each fitted value and the leverage
describes the influence each observed value has on the
fitted value for that same observation (Hoaglin &
Welsch, 1978). This idea of accounting for leverages is
implemented in the double hierarchical generalized
linear model (DHGLM) (Roénnegard et al., 2010),
where the squared residuals are assumed to be gamma
distributed, the residual variance is fitted using a gen-
eralized linear model (GLM) with gamma-distributed
residuals to resolve the non-normality problem
and the algorithm iterates between a model on
the phenotype and a model on the residual variance.
The DHGLM algorithm can be implemented in
ASREML (Gilmour et al., 2006), but estimation of
the genetic correlation between effects for mean and
residual variance is not possible with the current
algorithm (Roénnegard et al., 2010). Although less
appealing in theory than GLM, the non-normality of
squared residuals can be resolved by appropriate
transformations (Mulder ez al., 2009).

An alternative way to model genetic heterogeneity
of residual variance is to use structural modelling
of variances in a Bayesian framework (Sorensen &
Waagepetersen, 2003; Sorensen, 2009) and Markov
chain Monte Carlo (MCMC) sampling to estimate all
the parameters, both on phenotype and residual
variance. Complex sampling algorithms (e.g. mixtures
of Gibbs sampling and Metropolis—Hastings or
Langevin—Hastings algorithms) are necessary in order
to estimate all parameters because full conditional
distributions are not of standard form, and some
approximations may be used to increase efficiency and
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reduce computing time (Waagepetersen et al., 2008).
Even so, computing time may prohibit the use of these
highly dimensional models on extremely large data
sets. Although a potential downside of the Bayesian
approach is its dependence on priors and prior dis-
tributions, results are not strongly dependent on them
(Sorensen & Waagepetersen, 2003; Ibanez-Escriche
et al., 2008 a).

In the Bayesian approach, all parameters can be
estimated in all designs, posterior intervals give in-
formation about the precision and model selection
criteria such as the deviance information criterion
and Bayes factors can be used to compare the fit of
different models (Sorensen & Waagepetersen, 2003).
In the computationally much less demanding REML
framework, methods of comparison are less devel-
oped and there is not yet a well-established way to
estimate the genetic correlation between the additive
genetic effects on mean and V.

The Bayesian methodology has been used in a
number of studies to estimate the genetic variation in
Vg (Table 3) and a software package is now freely
available (Ibanez-Escriche et al., 2010). Some pub-
lished studies using both REML and Bayesian
methods on the same data have given similar esti-
mates of genetic variance in Vg (Ronnegard et al.,
2010; Wolc et al., 2009) and others quite different
estimates (Gutierrez et al., 2006). A more formal com-
parison on simulated and on real data using cross-
validation is recommended for repeated observations
on the same individual or with large family groups.

One of the main dilemmas in estimating genetic
variation in Vg is that these highly dimensional models
may pick up some confounding effects. Perhaps most
importantly, skew and kurtosis in the data may lead
to biased estimates. Therefore, Box—Cox transform-
ation has been proposed to transform the data and
can have a substantial effect on estimates of the gen-
etic variance in Vg and the genetic correlation be-
tween mean and Vg (Yang et al., 2010). Another
solution might be to use residuals with a Student’s
t-distribution, which are more robust to their non-
normality (Rosa et al., 2003 ; Cardoso et al., 2005).

There are some important assumptions in many of
these analyses. The first is that there is no confounding
of environmental variance with non-additive genetic
components. These are overtly confounded in simple
analyses such as those in which heterogeneity of
variance within half-sib families is undertaken. In
other more sophisticated methods such as fitting a
structural model, there again can be confounding be-
cause covariances of relatives include both additive
genetic and other genetic variance components. The
particular concern is that there are individual genes or
quantitative trait loci (QTL) segregating with indi-
vidually large effect on the trait. Although these may
lead to heterogeneity of within-family variance, Rowe
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Table 3. Published estimates of heritability (h} = 0% [(20%+30% ), genetic coefficients of variation
(GCVg =0y, /0}) and genetic correlation (r4,,) between additive genetic effects for mean and environmental
variance. (— no estimate published)
Source Trait Method* 5} GCV ra,
SanCristobal-Gaudy et al. Fat/protein ratio milk goats REML 0-000 0-00 -
(1998) pH muscle pigs REML 0-039 0-40 0-79
SanCristobal-Gaudy et al. Litter size sheep REML 0-048 0-51 0-19
(2001)
Sorensen & Waagepetersen  Litter size pigs MCMC  0-026 0-31 —0-62
(2003)
Ros et al. (2004) Body weight snails MCMC 0017 0-58 —0-81
Rowe et al. (2006) Body weight broiler males, females ANOVA 0:029,0-031 0-30,0-32 —0-17, —0-11
Gutierrez et al. (2006) Litter size, litter weight mice MCMC  0-048,0-039 0-44,0-37 —0-93, —0-81
Birth weight mice MCMC  0-208 1-21 0-97
Ibafez-Escriche et al. Body weight 21d, 42d old mice MCMC  0-006 0-36 —0-31
(2008 a) Weight gain mice MCMC  0-018 0-47 —0-19
Ibanez-Escriche et al. Litter size rabbits MCMC  0-045 0-42 —0-74
(2008 b)
Ibafez-Escriche et al. Slaughter weight pigs MCMC 0011 0-34 —0-07
(2008 ¢)
Garreau et al. (2008) Birth weight rabbits REML 0-013 0-25 -
Ordas et al. (2008) Plant height, ear height maize ANOVA - 0-24, 0-19 -
Tassel length, days to flowering ANOVA - 0-15, 0-21 -
maize
Wolc et al. (2009) Body weight broiler males, females = REML 0-030, 0-038 0-32,0-37 —0-23, —0-27
Conformation score broiler males, REML 0-023, 0-032  0-25, 0-31 0-40, 0-33
females
Mulder et al. (2009) Body weight broiler males, females REML 0-046, 0-047 0-49,0-57 —0-45, —041
Yang et al. (2010) Litter size rabbits, pigs” MCMC  0-041, 0-021 0-37,0-27 —0-73, —0-64
(no Box—Cox)
Litter size rabbits, pigs” MCMC 0-017,0-012 0-24,0-19 0-28, 0-70

(+ Box—Cox)

¢ Methods classified into ANOVA, REML and MCMC. Within the REML methods in particular there are substantial

differences in procedures applied (see text).
b Before and after Box—Cox transformation of data.

et al. (2006) concluded that it could not explain the
amount of heterogeneity found in their study. In
general, however, all methods rely to some extent on
the infinitesimal model and normality assumptions
and all methods may be biased if these are violated.

4. Empirical evidence for genetic variation in
environmental variance

(1) Direct estimates of Vg

Inbred lines (Whitlock & Fowler, 1999 ; Sorensen et al.,
2007) and chromosome substitution lines (Mackay &
Lyman, 2005) have provided direct evidence of overall
genetic variation in Vg in Drosophila melanogaster.
The differences in Vg for bristle number observed
by Mackay and Lyman, for example, cannot be ac-
counted for solely by scale transformation. Individual
genes associated with differences in Vg or CVg have
also been identified, e.g. the Dopa decarboxylase
(Ddc) gene in D. melanogaster was shown to cause
differences of up to 5% between homozygotes in CVg
of abdominal bristle number (Mackay & Lyman,
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2005). There are widely accepted differences in en-
vironmental variability between inbred lines and their
hybrid crosses (Lerner, 1954; Falconer & Mackay,
1996; Lynch & Walsh, 1998). At a more basic level,
genetic differences in variability of gene expression
differences among cells have been observed (Ansel
et al., 2008), which may in turn provide insight into
the magnitude of differences found at the level of the
observable trait.

(i1) Estimates in large segregating populations

In the last ten years many estimates of genetic variance
in Vg between individuals have been published, pre-
dominately of body weight or litter traits. Table 3
updates that of Mulder et al. (2007) and shows esti-
mates of heritability (42), genetic coefficient of vari-
ation (GCVg; note also that GCV}, ~ 0%, exp) based
on the linear model and genetic correlations (r4, )
between the additive genetic effects for mean and V.
With one exception (Gutierrez et al., 2006, for body
weight in mice), estimates of 4,2 range between 0-0 and
0-05 and those for GCVg between 0-0 and 0-60, albeit
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with some consistency, and median values are 3 and
30 %, respectively. Estimates of r4  take up the whole
parameter space between —1-0 and 1-0, but tend to
be negative for the body weight traits. Estimates are
based on different models (see above) and data struc-
tures, however, and the studies using MCMC all have
quite large 95 %-posterior intervals. In addition, Yang
et al. (2010) showed that Box—Cox transformation
of litter size data of pigs and rabbits reduced 5,? by,
respectively, 45 and 51 % and r,_ changed sign.

Studies are not included in Table 3 if published
results were insufficient to compute 4,2 and GCVg.
In these the heritability reported for within-litter
variability of birth weight generally lies in the range
0-:06-0-11 (Damgaard et al., 2003; Wittenburg
et al., 2008; Canario et al., 2010). In some older
studies, ANOVA techniques were used to analyse
within-family variances of dairy bulls with large off-
spring groups, and substantial differences between
sires were found (Van Vleck, 1968; Clay et al., 1979).

There is substantial literature and discussion on
estimates of genetic parameters for FA, which are
de facto repeat records with only two observations.
The data come particularly from Drosophila and
humans (Meller & Thornhill, 1997; Gangestad &
Thornhill, 1999; Fuller & Houle, 2003; Leamy &
Klingenberg, 2005). The general finding is that heri-
tability estimates are low and averaging about 0-03
(Fuller & Houle, 2003), but depend to some extent on
the trait and on the statistical methodology used. By
aggregating traits on each side of the body, for ex-
ample physical dimensions in humans, Johnson et al.
(2008) show that heritabilities over 0-25 can be
obtained.

(ii1) Results from selection experiments

Other evidence for the existence of genetic variation in
Vg comes from selection experiments, but changes
in genetic and environmental variances are often con-
founded and results are not clear cut. No significant
changes in phenotypic variance of body size of mice
were found by Falconer & Robertson (1956) who
selected mice with either the largest deviations or the
smallest deviations from their litter-mean. Following
canalizing selection in both D. melanogaster (Rendel
et al., 1966) and Tribolium castaneum (Kaufman et al.,
1977) substantial decreases in phenotypic variance
were obtained, both Vg and Vg decreasing in the
latter. Disruptive selection in D. melanogaster led to
increases in Vg and Vg in one experiment (Scharloo
et al. 1972), but only in Vg in another (Sorensen &
Hill, 1983), and there were substantial changes in
phenotypic variance following selection on higher and
lower within-family variance in Tribolium (Cardin &
Minvielle, 1986). Although phenotypic variance can
change greatly in directional selection experiments
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(Clayton & Robertson, 1957; Falconer & Mackay,
1996), these changes are further confounded by scale
effects.

A few selection experiments have been conducted
to reduce phenotypic variance by selecting on esti-
mated breeding value (EBV) for environmental vari-
ance. No response to divergent selection in pigs on
EBV for Vg in pH was observed by Larzul er al.
(2006), but EBVs were based on only four progeny
and had low accuracy. In experiments with rabbits,
divergent selection was practised for eight generations
on within-litter variability in birth weight (Garreau
et al., 2008; Bodin et al., 2010) and for high or low
variability in litter size for three generations in an-
other population (Argente et al., 2010). Although a
substantial response was obtained in the first gener-
ation in both experiments, only after generation 5
was further response achieved in the experiment of
Bodin et al. (2010) and little further response was
obtained by Argente et al. (2010).

(iv) Conclusion

There are data from genetically homogeneous popu-
lations showing genetic variation in Vg. From the
published results on analyses of large outbred popu-
lations and selection experiments, it can be concluded
that there is much empirical evidence for the existence
of additive genetic variation in Vg, although appro-
priate modelling of genetic heterogeneity of environ-
mental variance remains a challenging area. The
results from the selection experiments are not con-
vincing, but changes in variance in the expected
direction seem to be observed in the majority. There
may, however, be some publication bias.

5. Experimental design for estimating
genetic parameters

In laboratory- and population-based studies where
new information has to be collected in order to obtain
estimates of parameters such as the variance or QTL
effects for genetic heterogeneity of Vg, designs can be
optimized and the minimal experimental size deter-
mined. For field data already collected, there is little
opportunity to influence design, but the expected
sampling errors of estimates and power of detection
can determine whether it is worthwhile doing any
analysis. It is assumed that the basic observations X
are normally distributed, and also, where necessary,
that the distributions among groups of log variance
estimates are also normally distributed.

(1) Estimating QTL or other fixed effects

For comparing two groups each with n observations,
and assuming only Vg is unaccounted for, the
sampling error of the difference in means is 2 V'g/n and
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of (natural) log variance 4/n. Hence, roughly twice
as many observations are required to detect a pro-
portional effect on variance of the same size as an
effect on mean expressed in SD units. For example, if
the sample size is 1000 and there is a real 10% pro-
portionate difference (b) in variance, b/SE(b)~1-6
and the power to detect the difference would be low.
More records are needed if degrees of freedom are lost
through fixed effects and/or if genetic variance in ad-
dition to Vg is included in the error variance. Yang
(2010) considered detection of QTL in an association
study more formally but, as she assumed the variance
in one of the groups was known without error, sam-
pling variances were half the above.

The analysis was further developed by Visscher &
Posthuma (2010) for a linear regression of (mean or)
variances of genotype (scored 1, 2, 3), with estimation
of Vp and Vg from sets of either unrelated individuals
or identical twin pairs. They argue that, as genome-
wide association studies rarely find loci accounting for
over 1% of variation in mean human height, effects
on Vg are also likely to be small. As tiny type-I errors
are needed in whole genome investigations, very large
samples will be needed, e.g. over 10000 individuals
or monozygotic (MZ) twin pairs (over all genotypes)
to detect a QTL with an effect of 10% on the vari-
ance. They further show that, if the QTL affects only
Vg, identical twin pairs give a more efficient design
than unrelated individuals. Even though power is low,
seeking QTL affecting variance is a cheap by-product
of studying genome-wide associations for trait mean.

(i) Estimation of components of variance

To study the inheritance of Vg, measures of variance
on relatives are needed. The more highly related they
are, the smaller is the sampling variance of the esti-
mates, but the greater is the risk of confounding by
environmental covariances. If interest is in estimating
the genotypic rather than the additive genetic vari-
ance, and if they are available, clones or highly
inbred/isogenic lines are most efficient. Otherwise
family studies are needed, and design considerations
are similar to those for estimating the usual genetic
variances (i.e. 0%p).

For simplicity consider a one-way classification
with # individuals, each with single records; if repeat
records are being analysed, a further nested effect is
needed. Results initially derived for an additive model
(Hill, 2004), are simpler to optimize using the expo-
nential variance model. If z; ZIOg[Z/(Xii —X)?/(n—1)]
in group i, z; has an approximate normal distribution
with variance 2/(n— 1) +7? where y* is the CV? of the
variance within groups. For large n and m (needed for
useful estimates) and y*>—0, it can be shown that
SE()?)~[\/(8/m)]/n and is increased by a factor 1/R
to estimate ‘heritability’ if family members have
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relationship R. For example, with 100 half-sib fam-
ilies each of size 20, SE(y?) ~0:014, so a much larger
experiment would be needed to get much power to
detect 0% >0, if the true value of y* is small (see also
Mulder, 2007). The SE would be halved by a doubling
of family size or by a fourfold increase in the number
of families. The optimum family size, 2/y* for a
specified total number recorded, is large because the
genetic variance in Vg is generally low, just as for
estimating the usual heritability of a very lowly heri-
table trait (Robertson, 1959; Falconer & Mackay,
1996).

(ii1) Selection experiments

As selection intensities for disruptive selection can be
higher than for stabilizing selection, the former is
likely to provide a more powerful test of whether
Oi\, >0, but analysis is complicated by changes in
genetic variance due to gametic disequilibrium. For a
trait recorded only once on each individual, selection
has to be practised among families and so, to maintain
large-enough families to practise accurate selection
with adequate effective population size, selection
intensity has to be low. Power calculations for short-
term experiments to detect between individual variance
in Vg show that such experiments may be feasible, but
need large resources (Mulder, 2007).

If, however, the trait of interest is variance among
repeated observations on each individual, truncation
selection can be practised on within-individual vari-
ance among n records. Ibafiez-Escriche et al. (2008 b)
consider the optimization and concluded that such a
selection experiment to estimate the genetic variance
in Vg, would also have to be large, particularly when
n is small (e.g. n=2, for bilateral traits).

In principle, information on the between individual
heterogeneity can come from data on traditional
mass selection experiments to increase or decrease the
mean. In practice, however, analysis and interpret-
ation of data to reveal the genetic variance in hetero-
geneity is complicated by potential changes in genetic
variance caused by selection, which are predictable
under infinitesimal model assumptions, but not other-
wise (Hill & Zhang, 2004 ; Mulder, 2007; Mulder et al.,
2008).

6. Effects of selection on environmental variance

Selection changes gene frequencies and hence the
population mean and the genetic variance. Selection
can also influence the magnitude of non-genetic com-
ponents of phenotypic variance if these are at least
partially under genetic control and genes responsible
are segregating in the population. In the evolutionary
literature, following Bull (1987), much of the interest
has been on studying the extent to which stabilizing
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Box 1. Some formulae for predicting response to selection in mean, W and environmental variance, V

mutation effects

Assuming a normal distribution of @ and b,

AVg =~ (©—u)cov,

mv

truncation point, relative fitness is

w/W 2 const. + ia/\/ﬁ-l-%ix(b +a*)/Vp.

Au =io® [\/Vy+lixcovy, /Vp and
AVg =icovy, [/ Vy +3ix0% [ Vp.

terms of [ are:

R(0 %) ~ id”,

[VR2[(n—=D+0d% 1.

v, exp v, exp

Changes due to a gene with effect « on mean and b on Vg as a function of relative fitness w/w and magnitude of

Au=cov(w/w, a)+A,u and AVg=cov(w/w, b) +A,VE.
Under stabilizing selection with optimum © and strength Vg relative fitness is

w/W & const+(© —u)a/ Vs + (O —u)* — Vs)(b+d*)]/ V.
A= (O -’y [Vs+3(O—w)’ —Vslcovy, /VE+Auu,

[Vs+3(© —pu) —Vslo® [V +A, Ve

For truncation selection of a proportion p, with i the corresponding selection intensity and x the standardized

The predicted changes in 4 and Vg are, ignoring mutation,

Here cov(P, P?) is ignored; otherwise more complicated formulae apply (Mulder et al., 2007).
For n-repeat records on each individual with truncation selection on /=log[X (X

Var(=[2/(n—1)+0%_ Wk oV, Ay) = o, .,» and hence

See Ibafiez-Escriche et al. 2008 b) for more accurate formulae if 0% ., is not small.

(B1)

(B2)

(B3)

(B4)

(B3)

—X,)?/(n—1)], predictions in

(B6)

selection might reduce the environmental variance
and on other factors, such as the ability to cope
with changing environments, which might favour in-
creasing variance (e.g. Zhang & Hill, 20055). In
the breeding literature emphasis has been on how
quickly Vg could be reduced by artificial selection
(SanCristobal-Gaudy et al. 1998; Mulder et al., 2007;
2008 ; Ibanez-Escriche et al., 2008a,b) and on the
correlated response in Vg with directional selection on
phenotype (Hill & Zhang, 2004; Mulder et al., 2007).
Here, we deal with theory that has been undertaken
both at the level of individual genotypes and using
the infinitesimal model. In addition we quantify how
response to selection with artificial selection can be
increased using family information or repeated observ-
ations, but defer fuller discussion of the evolution of
Vg to the subsequent section.

Rather than review the development of the meth-
odology we utilize a recent generalization (Zhang &
Hill, 2010) based on the Price (1970) equation. Rel-
evant formulae are summarized in Box 1 eqs (B1-B6).
A genotype is assumed to have an effect ¢ on mean
phenotype, i.e. on genotypic value G and correspon-
ding effect b on environmental variance, Var(G|E).
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From the Price equation, the expected genetic
changes in trait mean Au and environmental variance
AVE between generations due to selection are given
by the covariance of genotypic value and relative fit-
ness, with the addition of other segregation effects,
restricted here to those from mutation (eqn. Bl in
Box 1).

(1) Stabilizing selection

Stabilizing selection in a natural population towards
an optimum O is usually modelled as a nor-optimal
fitness function (i.e. with shape that of a normal dis-
tribution), with ‘variance’ w? about the optimum
(i.e. w? is small when selection is strong) (Biirger,
2000). Selection strength then depends on
Vs=w?+ Vg (eqns. B2 and B3). If the population is at
or near the optimum, genotypes causing an increase in
Vg are at a selective disadvantage. The strength is re-
duced if the population mean departs from the opti-
mum, but if the mean is far from the optimum, genes
increasing phenotypic variance and Vg could be at a
selective advantage (Slatkin & Lande, 1976; Bull,
1987). The former would pertain if the environment
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and optimum remain fairly constant, the latter if it
shows trends or fluctuates. The same patterns in
selective advantage for optimum traits can be achieved
by deriving economic values for mean and variance
(Mulder et al., 2008).

Providing the position of the optimum remains
constant, the trait mean converges at or close to the
optimum, although it can be displaced somewhat by
mutation and by a covariance of gene effects on mean
and variance. The environmental variance declines to
zero as long as there is genetic variance affecting Vi,
i.e. 0% >0 and there is no increase in Vg from mu-
tation (Bull, 1987; Zhang & Hill, 20055, 2010).

Disruptive selection where intermediates are at a dis-
advantage will have opposite effects to those of stabil-
izing selection near what is then an unstable optimum,
but as the population departs from the optimum the
population will increasingly behave as for directional
selection.

(1) Truncation selection

The impact of directional selection on both phenotypic
mean and Vg is quite different from that of stabilizing
selection acting on fitness (Hill & Zhang, 2004; Zhang
& Hill, 2010). If there is no genetic covariance between
the effects of genes on mean and Vg, i.e. cov,, =0,
response in the mean is given by the breeders’ equation,
R=1*S.1f 0% >0, selection also increases Vg if selec-
tion is intense (<50% selected), and the responses
in mean and variance are both influenced if effects
are correlated (|cov, [>0). Thus, under intense
truncation selection whereby extreme individuals are
favoured, Vg is predicted to increase if it varies gen-
etically (eqns. B4 and BS5). Scale effects complicate
interpretation.

These arguments can also be shown under multiple
locus models, but a full multi-generation analysis
requires that changes in the components such as 0%
be computed. This can be done under infinitesimal
model assumptions, i.e. to account for reduction in 0%
due to gametic phase disequilibrium (* Bulmer effect”)
(Hill & Zhang, 2004), but otherwise it depends on
knowledge of individual gene effects.

If selection is weak and gene effects are additive
the responses to multi-locus selection can be predicted
adequately from eqn (B5), where terms such as cov_,
and 0% now refer to sums over loci. With intense
artificial selection on mean or variance complications
arise because, if there is heterogeneity of environ-
mental variance, the regression of breeding value (A4,,)
on phenotype (P) is no longer linear (Mulder et al.,
2007). As extreme scoring individuals are more likely
to come from high variance families, this regression is
slightly sigmoid. Hence, P and P? can be regarded as
two traits in a bivariate selection index and response
in mean and variance predicted more accurately.
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Table 4. Approximate accuracy r 4 of predicted
breeding value A, for Vg using family information

h:  0-005 0-05
Relatives n 1 10 100 1 10 100
Clones 0-071 0-219 0-58 0-224 0-59 092
Full-sibs 0-035 0-111 0-32 0-112 0-32 0-60
Half-sibs 0-018 0-056 0-17 0-056 0-17 0-37
Half-sib 0-035 0-111 0-33 0-112 033 075
progeny

rA,‘=phh‘,\/{n/[1+pw(nfl)h§], for n phenotypic records,
and additive (unless clones) genetic relationships, p, be-
tween the evaluated animal and the group of relatives and
p,» among individuals within the group (based on Mulder
et al. 2007).

Predictions for response to stabilizing selection in a
breeding programme carried out by truncation of ex-
tremes can be predicted similarly from the reduction
in selection differential.

Family information can be utilized in animal and
plant breeding to increase the accuracy of selection de-
cisions. As prediction of breeding values for environ-
mental variance (A4,) can be regarded as predictions
for a trait with a low heritability, records on large
numbers of relatives are needed to get high accuracy.
Selection index theory can be used to predict the
accuracy of A, based on family size and relationship
(Mulder et al., 2007, 2008), and examples are given in
Table 4. Observations on clones, feasible in some
plant species, are most effective in realizing high ac-
curacy. Half-sib progeny can provide higher accuracy
than sibs, and so progeny testing may be more
efficient than sib-testing schemes in reducing Vg by
selection (Mulder ez al., 2008).

Multiple objectives feature if, for example, amount
and consistency of product at the farm and/or con-
sumer level are desirable, including, for example, ro-
bustness to environmental fluctuation. Selection for
reduced variance is therefore of interest for traits with
an optimum, and more generally there is a non-linear
profit equation (Mulder ez al., 2008). To bring the
mean closer to the optimum and decrease the variance
around it, selection both on mean and variance is
needed. SanCristobal-Gaudy et al. (1998) derived
an appropriate quadratic index, although a linearized
selection index with updated weights can bring the
mean to the optimum more rapidly (Mulder et al.,
2008).

Repeated records allow individual animals to have a
direct measure of within-individual variation in the
trait (Vgs). The analysis therefore differs from that
above which is based on one record per individual.
If selection operates on the variation among the n
observations on each individual, a simple prediction is
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that the response in variance will equal the product of
selection differential on variance and its ‘heritability’
as a function of the number of records (eqn. B6, from
SanCristobal-Gaudy et al., 1998; Ibanez-Escriche
et al., 2008 D).

The more general case of a repeated trait such as
the distribution of flowering time among florets of a
plant, where natural selection may operate within and
between plants, is considered by Deveaux & Lande
(2010). The effects of artificial selection for the similar
situation, e.g. egg weight of birds where homogeneity
among both individual eggs within birds and average
egg size between birds may be desirable, have not been
worked out.

7. Factors affecting the magnitude of Vg

The presence of genetic variance for a trait requires
that genes with influence on the trait are segregating
in the population. In contrast, the presence of Vg does
not require segregation and in that sense is more like
the population mean. If no mutations occur that in-
fluence Vg then obviously it will fix at a constant level,
but there is plenty of evidence for genetic variation in
Vg (Table 3) and, by inference, mutations that affect
VE. Therefore, we need to consider what determines
the levels maintained. We review what forces may be
acting and discuss some of the models, but recognize
that the analysis is far from being conclusive: indeed,
this is hardly surprising as our real understanding is
weak of why trait means take the values they do, and
is poorer for why genetic variance and V7 take the
values they do. It should be emphasized that we are
considering just the magnitude of Vg expressed by
quantitative traits in segregating populations and are
not concerned with major transitions or with, for
example, evolution of canalization to a specific
phenotype.

Stabilizing selection in a constant environment
where extreme organisms are at a disadvantage pro-
vides selective pressure to reduce Vg in all traits
(Slatkin & Lande, 1976; Bull, 1987; Box 1), and there
is no reason to assume that the nor-optimal model
would lead to different general conclusions than
others in which extremes are at a disadvantage.
Hence, stabilizing selection acts like directional selec-
tion downwards on Vg among individuals. Similarly,
any selection against variation within individuals, e.g.
FA, whether it is stabilizing selection on individual
records or selection against asymmetry among trait
expressions, similarly leads to downward selection
pressure. The theoretical problem is basically, there-
fore, to establish why Vg does not decline towards
zero and is maintained at values typical for the trait.
We distinguish between potential extrinsic opposing
forces, such as variability in the optimum pheno-
type among generations or niches (Bull, 1987), and
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intrinsic forces such as those associated with costs of
regulating the phenotype.

(1) Extrinsic factors

Environmental heterogeneity. There is extensive dis-
cussion on the impact of environmental heterogeneity
in the evolution of plasticity and maintenance of
genetic variation, but rather little on its influence on
the maintenance of Vg, although variation in plas-
ticity to local heterogeneity would appear in analyses
as Vg. Bull (1987), in a pioneering study, proposes a
model whereby stabilizing selection operates within
the environment (Box 1), but with ®,, the position of
the optimum at generation ¢, varying among gener-
ations. If ®, is constant, the population mean stabilizes
at the optimum and there is consistent selection to
reduce Vg towards 0. If the position of the optimum
varies, however, the expected fitness of a genotype k
with mean u, and environmental variance Vg, is then
also a function of Vg, at generation ¢. The optimum
genotype maximizes the expectation of this quantity
over generations. If u; has a constant mean and the
optima @, are uncorrelated over generations, the
presence of genetic variation in Vg leads to an opti-
mum at Vg=ma?—w?, where 7% is the variance of u;
and must exceed w? (Bull, 1987). If the fluctuation in
the mean is large, the optimum Vg is greater than 0,
but this is a very stringent requirement. Even at what
are generally regarded as typical values of w? of at
least 20 (but see Kingsolver et al., 2001, indicating
higher values), this implies that the position of the
optimum has a variation across generations in excess
of 20 phenotypic standard deviations.

Fluctuations in the width of the selection profile,
i.e. in w2, can reduce this stringency a little, how-
ever, dependent on the correlation of mean and
width of the fitness profile (Zhang & Hill, 20055).
Nevertheless, simple fluctuations in the position of the
optimum or width of the fitness profile do not seem
sufficient forces on their own to maintain V.

In the presence of heterogeneity in the environment,
Vg may reflect plastic responses to this heterogeneity
in addition to intrinsic factors such as developmental
noise. Zhang (2005) shows that plasticity can be adapt-
ive if a correlation can be established between the
optimal phenotype and environmental quality if it
varies over time or space. The consequent increase in
evolved plasticity induces increases in the Vg of the
trait. While the sum of spatial and temporal variation
needs to be larger than the observed Vg, which is a
stringent requirement, variation in environmental
quality can be much less than Vg. Some of these issues
have been further explored subsequently (Zhang,
2006). The inter-relationship between parameters such
as heterogeneity of environment in time and space
and rates of migration are complicated, although the
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magnitude of Vg maintained is much less sensitive to
them than is V. Even so, there are circumstances
with high levels of environmental variability that can
lead to reductions in V.

Competition within species. Competition between
individuals for resources, ¢.g. seeds as food for birds,
would appear to favour high Vg in, say, bill size in
that it increases differences between them and thereby
reduces direct competition. Although under strong
assumptions such a model can lead to increases in Vg
in the presence of stabilizing selection, it has little
impact on maintaining Vg because competing geno-
types diverge and stabilizing selection still acts within
each (Zhang & Hill, 2007).

Interactions among species. A specific example is
considered by Deveaux & Lande (2010) who model
the variation in flowering time of an insect-pollinated
plant species for which there are two levels of variation,
between individual flowers within one plant and that
between plants. They show that selective forces may
act to increase (environmental) variation in flowering
time within plants, in particular if there is a limitation
in pollinator availability at any one time and a tem-
poral autocorrelation of individual pollinator visi-
tation. Such a model might apply in other organisms
in which the phenotype is repeated at different times
or in different locations, but not for bilateral traits.

Conclusion. None of the above models lead to an
equilibrium in Vg at observed levels except for special
situations (e.g. flowering time) without very stringent
requirements on the parameters, such as the magnitude
of variation in the optimum genotype.

(ii) Intrinsic factors

Cost of uniformity. If the same genes are assumed to be
expressed on bilaterally repeated traits, then variation
in a trait between sides can be regarded as develop-
mental noise. This is, presumably, under some degree
of selective control: in Drosophila, for example, the
CV within individuals for wing size is much smaller
than that of sternopleural bristle number. While stabil-
izing selection would be expected to reduce the Vi,
one can reasonably assume it is stronger for main-
taining symmetry of wings than of bristles. It does not
address what magnitude is maintained. One simple
model is that there is a cost to the organism associated
with reducing variability, an ‘engineering cost’ of
control of the trait or homeostasis in Lerner’s (1954)
terms.

The same cost argument pertains in principle to
reducing Vg between individuals for a trait such as
body size. Zhang & Hill (20055) applied a rather arbi-
trary cost function of exp(C/VE), which increases as
Vg decreases, such that fitness with stabilizing selection
is proportional to exp(C/VE) exp[— Y2(X —©)*/w?].
The model predicts a stable equilibrium at
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VE~\/(2Cw2), with quite a small accompanying loss
of mean fitness (selection load) compared to an equi-
librium at Vg=0. The equilibrium in the CV and,
for repeated traits, an equilibrium point in within-
individual Vg can be computed similarly. The model
is appealing but direct evidence, such as observations
showing the energetic cost of developmental stability,
is lacking.

Mutation effects on Vg. Mutation influences the
genotypic mean and can also affect the variance,
typically upwards, by more than can be explained by a
simple scale effect. The scute gene in Drosophila is
an example, albeit associated with canalizing effects
(Rendel et al., 1966). If the mutations have sym-
metrically distributed effects on Vg, i.e. are equally
likely to increase or decrease it, they merely provide
fuel for Vg to evolve and are unlikely to affect equi-
librium points. If, however, mutants tend to increase
Vg, i.e. to reduce developmental control, equilibria
can be obtained (Zhang & Hill, 2008). These depend
on the mean effect of mutations on Vg, on the relation
between effects of mutation on the mean and the
variance and on the fitness function. As the mutation
rate affects both the amount of genetic variance
maintained and the amount of environmental vari-
ance, it leads to stable values of the heritability, for
which we know of no other model.

A basic model with stabilizing selection which
yields analytic solutions is to assume that mutant ef-
fects @ on the mean are normally distributed N(0, ¢,2),
and so & is gamma distributed with shape parameter
1/2, and effects b on Vg are independently gamma (%)
distributed with variance ¢,2. Equilibria are obtained
for 0% and 0% and consequently for heritability, at
h*=eg,/(e,+/€») (Zhang & Hill, 2008). For h? in the
range 0-1-0-5, &, has to lie in the range ¢,2 to almost
81e,2, implying that mutants must have as large or
greater effects on Vg as on the trait itself. Evidence for
the effects of mutations on Vg of quantitative traits is
limited, but there is some from mutation accumu-
lation experiments that show a net increase in variance
(Fry et al., 1995; Baer, 2008). Even so, the magnitude
of mutational increase in Vg needed seems so large
that, judging by this simplistic model, a mutation—
selection balance is no more than a partial candidate
for explaining the levels of Vg or heritability.

Conclusion. The models that appear to have most
promise are those in which a cost is attached to homo-
geneity, and are plausible in that if a more intense
selection is applied to inequality of wing size than
to bristles, the latter would show relatively higher
within-individual variance, as is indeed the case.
These are compatible with stabilizing selection, but
other forms of selection have not been investigated in
this context. Our understanding of why variances and
heritabilities take the levels they do is at best, however,
superficial.


https://doi.org/10.1017/S0016672310000546

Genetic analysis of environmental variation

8. Concluding remarks

While we have attempted to assess some of the current
state of knowledge, we see there are many uncer-
tainties and questions still to be answered. We em-
phasize a few which we consider as most important:

(i) Estimates of the magnitude of genetic variance
in Vg in segregating populations are potentially
biased upwards by factors such as non-
normality of data, confounding with fixed ef-
fects, confounding with non-additive sources
of genetic variance such as epistasis and simple
errors in data. The magnitude of such biases
remains to be assessed.

(i) There is no consistent choice of the statistical
model, e.g. between the exponential and the ad-
ditive model of variance partition. The import-
ance in practice for estimation of parameters and
predictions of breeding values for Vg has not
been fully evaluated, and might lead to choice of
a more uniform approach.

(ii1) The magnitude of parameter estimates indicates
that there are substantial opportunities to change
the magnitude of Vg by selection, but the poss-
ible biases noted in (i) show that, for example,
cross-validation in breeding programmes is
needed.

(iv) Current models to explain the levels of Vg and
heritability of traits maintained in nature are
both simplistic and inadequate, but it will be
difficult to obtain sufficient information on
selective forces and parameters to improve our
understanding forward.

(v) The level of understanding of the genetic basis
of Vg is poor, for example, the extent to which it is
related to and can be explained by biological
phenomena such as epigenetic and other non-
Mendelian variation, to plasticity in response
to micro-environment and between- and within-
individual variation.
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