Factors of horocycle flows

MARINA RATNER

Department of Mathematics, University of California at Berkeley, Berkeley, Calif. 94720, USA

(Received 7 October 1981)

Dedicated to the memory of V. M. Alexeyev

Abstract. We classify up to an isomorphism all factors of the classical horocycle flow on the unit tangent bundle of a surface of constant negative curvature with finite volume.

Let $T = \{T_i, t \in R\}$ and $S = \{S_i, t \in R\}$ be two measure preserving (m.p.) flows on probability spaces (X, μ) and (Y, ν) respectively. We say that S is a factor of T if there is a measure preserving

$$\psi: X \to Y$$
 such that $\psi(T_t x) = S_t \psi(x)$

for all $t \in R$ and μ -almost every (a.e.) $x \in X$. ψ is called a conjugacy between T and S. T and S are called isomorphic $(T \sim S)$ if there is an invertible conjugacy between T and S, called an isomorphism. We write $(T, S) \sim (T', S')$ if $T \sim T'$ and $S \sim S'$. S is called trivial if there is $y \in Y$ such that $\nu\{y\} = 1$. Henceforth the word factor means non-trivial factor.

Let $\Phi(T)$ denote the set of all isomorphisms

$$\phi: X \to X$$
 such that $\phi(T_x) = T_x \phi(x)$

for all $t \in R$ and a.e. $x \in X$ and let $\Psi = \Psi(T, S)$ denote the set of all conjugacies between T and S. We say that $\psi_1 \in \Psi$ and $\psi_2 \in \Psi$ are equivalent $(\psi_1 \sim \psi_2)$ if there are $\phi_1 \in \Phi(T)$ and $\phi_2 \in \Phi(S)$ such that $\psi_2 = \phi_2 \circ \psi_1 \circ \phi_1$ a.e.

Let $\pi(T, S)$ denote the set of equivalence classes in Ψ . It is clear that if $(T, S) \sim (T', S')$ then there is a natural one-to-one correspondence between $\pi(T, S)$ and $\pi(T', S')$. So $|\pi(T, S)|$ is an invariant of the isomorphism class of (T, S).

One would naturally raise the following problems: (1) classifying all possible factors of a given m.p. flow T up to an isomorphism; (2) describing $\pi(T, S)$ for a given factor S of T.

In this paper we shall solve these problems for the classical horocycle flow on the unit tangent bundle of a surface of constant negative curvature with finite volume.

Let G denote the group SL(2, R) equipped with a left invariant Riemannian metric and let \mathcal{T} be the set of all discrete subgroups Γ of G such that the quotient space $M = \Gamma \setminus G = \{\Gamma g : g \in G\}$ has finite volume. M can be viewed as the unit tangent bundle of a surface of constant negative curvature with finite volume. Let F be an element of the Lie algebra \mathcal{A} of G and let $F_t = \exp(tF) \in G$. The flow $f = \{f_t, t \in R\}$

on M defined by $f_t(\Gamma g) = \Gamma g \cdot F_t$, $g \in G$, $t \in R$ is called the algebraic flow, generated by F. f preserves the Riemannian volume v on M derived from the Haar measure on G. v is defined on the Borel σ -algebra B_M of M and we denote by (\mathcal{B}, μ) the normalized completion of (B_M, v) , $\mu(M) = 1$.

The horocycle flow

$$h = \{h_t, t \in R\}$$

on M is the algebraic flow, generated by $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, i.e.

$$h_t(\Gamma g) = \Gamma g N_t$$

where

$$N_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, \quad t \in R, g \in G.$$

It is well known that h is ergodic and mixing on (M, μ) , in fact mixing of all degrees [1].

Let $F \in \mathcal{A}$, $\Gamma_i \in \mathcal{T}$, i = 1, 2 and let $f^{(i)}$ be the algebraic flow on $M_i = \Gamma_i \setminus G$, generated by F, i = 1, 2. It is easy to see that if $\Gamma_1 \subset \Gamma_2$ then $f^{(2)}$ is a factor of $f^{(1)}$. Indeed, let

$$\psi: M_1 \to M_2$$

be defined by

$$\psi(\Gamma_1 g) = \Gamma_2 g, \quad g \in G.$$

Then ψ is measure preserving and

$$\psi f_t^{(1)}(\Gamma_1 g) = \psi(\Gamma_1 g F_t) = \Gamma_2 g F_t = f_t^{(2)}(\Gamma_2 g) = f_t^{(2)}(\psi(\Gamma_1 g)).$$

We shall call $f^{(2)}$ an algebraic factor of $f^{(1)}$.

The following theorem shows that every factor of the horocycle flow is algebraic.

THEOREM 1. Let $\Gamma_1 \in \mathcal{T}$, $M_1 = \Gamma_1 \setminus G$ and let S be a factor of the horocycle $h^{(1)}$ on (M_1, μ_1) . Then there is $\Gamma_2 \in \mathcal{T}$ such that $\Gamma_1 \subset \Gamma_2$ and S is isomorphic to $h^{(2)}$ on (M_2, μ_2) .

It has been proved in [4] that for Γ_1 , $\Gamma_2 \in \mathcal{F}$ the horocycle flows $h^{(1)}$ and $h^{(2)}$ are isomorphic iff Γ_1 and Γ_2 are conjugate in G, i.e. $\Gamma_2 = C\Gamma_1C^{-1}$ for some $C \in G$. For $\Gamma \in \mathcal{F}$ we denote

$$\alpha(\Gamma) = \{\tilde{\Gamma} \in \mathcal{F} : \Gamma \subset \tilde{\Gamma}\}.$$

It is well known [6] that $\alpha(\Gamma)$ is finite. Γ is called maximal if $\alpha(\Gamma) = {\Gamma}$. We get the following corollary.

COROLLARY 1. The number of non-isomorphic factors of the horocycle flow h on $M = \Gamma \setminus G$, $\Gamma \in \mathcal{T}$ is finite and equals the number of conjugacy classes in $\alpha(\Gamma)$.

It was proved in [4] that if $\Gamma_2 \in \alpha(\Gamma_1)$ and $\psi: M_1 \to M_2$ is a conjugacy between $h^{(1)}$ and $h^{(2)}$ then there is $C \in G$ such that

$$C\Gamma_1 C^{-1} \subset \Gamma_2$$
 and $\psi(\Gamma_1 g) = h_{\sigma}^{(2)} \psi_C(\Gamma_1 g)$

for some $\sigma \in R$ and a.e. $\Gamma_1 g \in M_1$, $g \in G$, where $\psi_C(\Gamma_1 g) = \Gamma_2 C g$. This says that $\psi \sim \psi_C$.

For $\Gamma_2 \in \alpha(\Gamma_1)$ we denote

$$\mathscr{C}(\Gamma_1, \Gamma_2) = \{ C \in G : C\Gamma_1 C^{-1} \subset \Gamma_2 \} = \{ C \in G : C^{-1}\Gamma_2 C \in \alpha(\Gamma_1) \}$$

and

$$\kappa(\Gamma_1, \Gamma_2) = \{\Gamma \in \alpha(\Gamma_1): \Gamma = C^{-1}\Gamma_2 C \text{ for some } C \in G\}.$$

It follows from [4] that

$$\psi_{C_1} \sim \psi_{C_2}$$
, $C_1, C_2 \in \mathscr{C}(\Gamma_1, \Gamma_2)$

iff $C_2 = CC_1D$ for some $C \in \tilde{\Gamma}_2$ and some $D \in \tilde{\Gamma}_1$, where $\tilde{\Gamma}$ denotes the normalizer of Γ in G, i.e.

$$\tilde{\Gamma} = \{ C \in G : C\Gamma C^{-1} = \Gamma \}.$$

In this case we write $C_2 \sim C_1$. \sim is an equivalence relation in $\mathscr{C}(\Gamma_1, \Gamma_2)$. For Γ' , $\Gamma'' \in \kappa(\Gamma_1, \Gamma_2)$ we write $\Gamma' \sim \Gamma''$ if $\Gamma'' = D^{-1}\Gamma'D$ for some $D \in \tilde{\Gamma}_1$. It is clear that $C_2 \sim C_1$ in $\mathscr{C}(\Gamma_1, \Gamma_2)$ iff $C_2^{-1}\Gamma_2C_2 \sim C_1^{-1}\Gamma_2C_1$ in $\kappa(\Gamma_1, \Gamma_2)$. We have just proved the following theorem.

THEOREM 2. Let $\Gamma_1, \Gamma_2 \in \mathcal{F}$ and $\Gamma_1 \subset \Gamma_2$. Then

$$\pi(h^{(1)}, h^{(2)}) = \{ [\psi_C] : C \in \mathscr{C}(\Gamma_1, \Gamma_2) \},$$

where $[\psi]$ denotes the equivalence class of $\psi \in \Psi(h^{(1)}, h^{(2)})$. $\pi(h^{(1)}, h^{(2)})$ is finite and $|\pi(h^{(1)}, h^{(2)})|$ equals the number of equivalence classes in $\kappa(\Gamma_1, \Gamma_2)$.

COROLLARY 2. If Γ is maximal and S is a factor of h on $\Gamma \backslash G$, then S is isomorphic to h and $|\pi(h, S)| = 1$.

THEOREM 3. Let S on (Y, ν) be a factor of h_1 (the time-one transformation of the horocycle flow) on $(M = \Gamma \backslash G, \mu)$, $\Gamma \in \mathcal{T}$ with a conjugacy $\psi : M \to Y$, $\psi h_1(x) = h_1 \psi(x)$ a.e. $x \in M$. Then there exists a m.p. flow $\{S_t, t \in R\}$ on (Y, ν) such that $S = S_1$ and $\psi h_1(x) = S_1 \psi(x)$ for all $t \in R$ and a.e. $x \in M$.

COROLLARY 3. If S is a factor of $h_1^{(1)}$ on $M_1 = \Gamma_1 \setminus G$ then there is $\Gamma_2 \supset \Gamma_1$ such that S is isomorphic to $h_1^{(2)}$ on $M_2 = \Gamma_2 \setminus G$. If Γ_1 is maximal then every factor of $h_1^{(1)}$ is isomorphic to $h_1^{(1)}$.

The geodesic flow $g = \{g_t, t \in R\}$ on $M = \Gamma \setminus G$, $\Gamma \in \mathcal{T}$ is the algebraic flow, gener-

ated by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathcal{A}$, i.e.

$$g_t(\Gamma x) = \Gamma x \begin{pmatrix} \exp(t) & 0 \\ 0 & \exp(-t) \end{pmatrix}, x \in G.$$

g and h satisfy the following commutation relation:

$$g_t \circ h_s = h_{s \exp(2t)} \circ g_t, \quad t, s \in \mathbb{R}.$$
 (*)

(*) shows that h_{α} and h_{β} are isomorphic if $\alpha \cdot \beta > 0$ and that the entropy of h is zero.

It is well known that g is Bernoulli [2] and therefore g has uncountably many non-isomorphic factors. (*) shows that the entropy of g equals 2 for every $\Gamma \in \mathcal{T}$. This implies that $g^{(1)}$ is isomorphic to $g^{(2)}$ for any $\Gamma_1, \Gamma_2 \in \mathcal{T}$. One can show that $\pi(g^{(1)}, g^{(2)})$ is uncountable.

The proof of theorem 1 consists of three basic steps: (1) We show (§ 3) that if a flow S on (Y, ν) is a factor of the horocycle flow h on (M, μ) with a factor map $\psi: M \to Y$ then $\psi^{-1}\{y\}$ is finite for a.e. $y \in Y$. This uses the basic estimates on divergence of horocycles (§ 2) to show that ψ is locally 1-1; (2) using (1) we show that any factor map of the horocycle flow must be a factor map of the entire action of SL(2, R) (§ 4); (3) using (2), we construct a discrete subgroup of SL(2, R) for which the factor is a horocycle flow (the end of § 4).

Section 1 contains some measure-theoretical background and in § 5 we prove theorem 3.

I am grateful to Joe Wolf for valuable discussions.

1. Factors and invariant partitions

Henceforth all measure spaces are assumed to be separable and complete.

Let $S = \{S_t, t \in R\}$ on (Y, ν) be a factor of $T = \{T_t, t \in R\}$ on (X, μ) with a conjugacy $\psi: X \to Y$

$$\psi T_t(x) = S_t \psi(x) \quad \text{for all } t \in R \text{ and a.e. } x \in X.$$
 (1.1)

We can assume without loss of generality that (1.1) holds for all $x \in X$. ψ induces a measurable partition

$$\xi = \xi(\psi) = \{\psi^{-1}\{y\}: y \in Y\}$$

of X (see [5]), invariant under T, i.e. for every $t \in R$

$$C \in \mathcal{E}$$
 iff $T_i C \in \mathcal{E}$.

Let X/ξ be the quotient space, induced by ξ and let $\pi: X \to X/\xi$ be the projection $\pi(x) = C(x)$, where C(x) denotes the atom of ξ , containing x. A set $A \subset X/\xi$ is called measurable in X/ξ if $\pi^{-1}(A)$ is measurable in X. We define a measure μ_{ξ} on X/ξ by $\mu_{\xi}(A) = \mu(\pi^{-1}(A))$. π is a conjugacy between T and the m.p. flow T^{ξ} on X/ξ defined by

$$T_t^{\xi}(C(x)) = C(T_t x), \quad x \in X, t \in R.$$

It is clear, that T^{ε} is isomorphic to S.

It is well known (see [5]) that for a.e. $C \in \xi$ there is a probability measure μ_C on C such that if $A \subseteq X$ is measurable in X then $A \cap C$ is measurable in C and

$$\mu(A) = \int_{X/\xi} \mu_C(A \cap C) d\mu_{\xi}(C). \tag{1.2}$$

Henceforth it will be clear from the context when $C \in \xi$ is considered as a subset of X and when it is considered as a point of X/ξ . The family of measures $\{\mu_C\}$ is unique in the following sense: a family $\{\mu'_C\}$ satisfies (1.2) iff $\mu'_C = \mu_C$ for a.e.

 $C \in X/\xi$. This says that by possibly changing $\{\mu_C\}$ on a set of μ_{ξ} -measure zero we can get a set

$$\Omega \subset X/\xi$$
, $T_t^{\xi} \Omega = \Omega$, $t \in \mathbb{R}$, $\mu_{\xi}(\Omega) = 1$

such that if $C \in \Omega$ then

$$A \subseteq C$$
 is measurable in C iff $T_t A$ is measurable in $T_t C$ and $\mu_C(A) = \mu_{T,C} T_t A$ for all $t \in R$. (1.3)

We can assume without loss of generality that (1.3) holds for all $C \in X/\xi$, since T^{ξ} restricted on Ω is isomorphic to T^{ξ} on X/ξ .

We say that μ_C is atomic if there is $x \in C$ s.t. $\mu_C\{x\} > 0$.

PROPOSITION 1.1. Suppose that T is ergodic and that there is $Z \subseteq X/\xi$, $\mu_{\xi}(Z) > 0$ such that μ_C is atomic for every $C \in Z$. Then there are

$$U \subset X/\xi$$
, $T_t^{\xi}U = U$, $t \in R$, $\mu_{\xi}(U) = 1$, $D \subset X$, $T_tD = D$, $t \in R$, $\mu(D) = 1$

and an integer n > 0 such that for every $C \in U$, $D \cap C$ consists of exactly n points $x_1(C), \ldots, x_n(C)$ with

$$\mu_C\{x_i(C)\}=\frac{1}{n}, \quad i=1,\ldots,n.$$

Proof. Let $m: X/\xi \to R$ be defined by

$$m(C) = \sup \{\mu_C\{x\}: x \in C\}.$$

m is measurable [5] and (1.3) shows that m is constant on orbits of T^{ϵ} . Since T^{ϵ} is ergodic, there is

$$U' \subset X/\xi$$
, $T_t^{\xi}U' = U'$, $t \in R$, $\mu_{\xi}(U') = 1$

such that m equals a constant α on U'. Since

$$\mu_{\mathcal{E}}(Z \cap U') > 0$$
 and $m(C) > 0$

for every $C \in \mathbb{Z}$, α must be positive.

Let

$$D = \{x \in X : C(x) \in U' \text{ and } \mu_C\{x\} = \alpha\}.$$

D is measurable [5] and (1.3) shows that D consists of orbits of T. It is clear, that $\mu(D) > 0$. Since T is ergodic, $\mu(D) = 1$.

Let

$$U = \{C \in U' : \mu_C(C \cap D) = 1\},$$

$$\mu_{\xi}(U) = 1, \quad T_t^{\xi}U = U, \quad t \in R.$$

If $x \in C \cap D$ then $\mu_C\{x\} = \alpha > 0$, $C \in U$. This says that $C \cap D$, $C \in U$ consists of finite many points $x_1(C), \ldots, x_n(C)$ and that $\alpha = 1/n$, since $\mu_C(C \cap D) = 1$, $C \in U$. This completes the proof.

It also follows from [5] that if a.e. $C \in X/\xi$ consists of *n* points of equal μ_C -measure, then there are a measurable

$$V \subset X/\xi$$
, $\mu_{\varepsilon}(V) = 1$, $\pi^{-1}(V) = \tilde{X}$, $\mu(\tilde{X}) = 1$

and pairwise disjoint measurable $X_i \subset X$, i = 1, ..., n,

$$X = \bigcup_{i=1}^{n} X_{i}, \quad \mu(X_{i}) = \frac{1}{n}, \quad i = 1, \ldots, n$$

such that if $C \in V$ then

$$C \cap X_i = \{x_i(C)\}$$

consists of exactly one point and the maps $\phi_i : \tilde{X}$ onto X_i defined by

$$\phi_i(x) = x_i(C(x))$$

are measurable, i = 1, ..., n. The pair (X_i, ϕ_i) is called a measurable cross-section of ξ , i = 1, ..., n.

2. Properties of the covering horocycle flow in G

Let $p: G \to M = \Gamma \backslash G$, $\Gamma \in \mathcal{T}$ be the covering projection $p(g) = \Gamma g$. Let

$$G_t g = g \cdot \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$$
 and $H_t g = g \cdot \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$ $g \in G, t \in R$

be the geodesic and the horocycle flows on G, covering $\{g_t\}$ and $\{h_t\}$ on M respectively. We shall also consider the flow

$$H_t^*g = g \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

on G, covering the flow

$$h_t^*(\Gamma g) = \Gamma H_t^* g$$

on M.

We have

$$G_t \circ H_s = H_{s \exp(2t)} \circ G_t$$

$$G_t \circ H_s^* = H_{s \exp(-2t)}^* \circ G_t, \quad t, s \in \mathbb{R}.$$
(2.1)

We assume that G is equipped with a left invariant Riemannian metric, in which the length of the orbit intervals $[g, G_ig]$, $[g, H_ig]$ and $[g, H_i^*g]$ is $t, g \in G$. Let $d: G \times G \to R^+$ be the left invariant metric on G, induced by this Riemannian metric and let ℓ denote the identity element of G.

Denote

$$\Delta(g) = \max\{|1-a|, |b|, |c|\} \text{ for } g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$$

It is well known, that there is A > 1 such that

$$A^{-1}\Delta(g) \le d(e, g) \le A\Delta(g)$$
 for all $g \in G$ with $d(g, e) \le 1$. (2.2)

For $x, y \in G$ we have

$$d(H_sx, H_sy) = d(e, N_{-s} \cdot g \cdot N_s)$$

(2.3)

where $g = x^{-1} \cdot y$ and $N_s = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$. It follows from (2.2) that if $d(H_s x, H_s y) \le 1$, then

$$A^{-1}\Delta(N_{-s}\cdot g\cdot N_s)\leq d(H_sx,H_sy)\leq A\Delta(N_{-s}\cdot g\cdot N_s)$$

where.

$$\Delta(N_{-s} \cdot g \cdot N_s) = \max\{|1 - a - bs|, |b|, |bs^2 + s(a - d) - c|\}$$

and

$$g = x^{-1} \cdot y = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Let $0 < \varepsilon \le 1$ be small and suppose that $d(x, y) < \varepsilon$. We shall now estimate the length of the time the horocycle orbits $H_t x$ and $H_t y$ stay within ε . (2.3) shows that $d(H_s x, H_s y)$ grows polynomially in s. We have

$$\{s \in R^+: d(H_s x, H_s y) \le \varepsilon\} \subset \{s \in R^+: \Delta(N_{-s} \cdot g \cdot N_s) \le A \cdot \varepsilon\} = E(g, \varepsilon)$$
 (2.4)

where $g = x^{-1} \cdot y$ and $\Delta(N_{-s} \cdot g \cdot N_s)$ are as in (2.3).

It is easy to compute that:

- (1) $E(g, \varepsilon)$ consists of at most two connected components $E_0 = E_0(g, \varepsilon) \ni 0$ and $E_1 = E_1(g, \varepsilon)$;
 - (2) If

$$l = l(g, \varepsilon) = \max\{l(E_0), l(E_1)\} \ge 1(l(I))$$
 denotes the length of I ,

then for every $s \in E(g, \varepsilon)$ we have

$$|1-a_s| \le D(\varepsilon)/l, \quad |b_s| \le D(\varepsilon)/l^2, \quad |c_s| \le \varepsilon$$
 (2.5)

where

$$\begin{pmatrix} a_s & b_s \\ c_s & d_s \end{pmatrix} = N_{-s} \cdot g \cdot N_s \quad \text{and} \quad \varepsilon \le D(\varepsilon) \to 0$$

when $\varepsilon \to 0$.

It follows from (2.3) and (2.5) that if $l \ge 1$ then

$$\Delta(N_{-s-u} \cdot g \cdot N_{s+u}) \le 3D(\varepsilon)$$
 for all $s \in E(g, \varepsilon)$ and all $0 \le u \le l$.

This implies that

$$d(H_{s+u}x, H_{s+u}y) \le 3AD(\varepsilon)$$
 for all $s \in E(g, \varepsilon)$ and all $0 \le u \le l$. (2.6)

Henceforth $D(\varepsilon)$ will always mean a constant depending only on ε and converging to 0 when $\varepsilon \to 0$.

Let us observe that if

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \Delta(g) < \varepsilon$$

and ε is sufficiently small then

$$g = H_q H_r^* G_p e$$
 where $p = \log a/(1+bc)$, $r = b e^{-p}$, $q = c e^p$. (2.7)

For $g \in G$ and $\alpha, \beta, \gamma \ge 0$ we define

$$U(g; \alpha, \beta, \gamma) = \{\tilde{g} \in G : \tilde{g} = H_q H_r^* G_p g \text{ for some } |p| \le \alpha, |r| \le \beta, |q| \le \gamma\}.$$

It follows from (2.1) that for every $t \in R$

$$G_t U(g; \alpha, \beta, \gamma) = U(G_t g; \alpha, \beta e^{-2t}, \gamma e^{2t}). \tag{2.8}$$

It follows from (2.4), (2.5) and (2.7) that if $s \in E(x^{-1} \cdot y, \varepsilon)$ and $l = l(x^{-1} \cdot y, \varepsilon) \ge 1$ then

$$H_{s}y \in U(H_{s}x, D(\varepsilon)/l, D(\varepsilon)/l^{2}, D(\varepsilon))$$
 (2.9)

where $D(\varepsilon) \to 0$ when $\varepsilon \to 0$.

We shall need the following:

LEMMA 2.1. Given $0 < \delta < 1$ there are $\tilde{\delta} > 0$ and $\tilde{\delta} > 0$ depending only on δ such that if $d(x, y) < \tilde{\delta}$, $x, y \in G$ then for every $s \in E(x^{-1} \cdot y, 1)$ and every $0 \le u < \tilde{\delta l}(x^{-1} \cdot y, 1)$ with $s + u \notin E(x^{-1}y, 1)$

either
$$d(H_{s+u}x, H_{s+u+1}y) < \delta$$
 or $d(H_{s+u}x, H_{s+u-1}y) < \delta$. (2.10)

Proof. It is enough to show that there are $\tilde{\delta} > 0$ and $\bar{\delta} > 0$ such that if $\Delta(g) < \tilde{\delta}$, $g \in G$ then for every $s \in E(g, 1)$ and every

$$0 \le u \le \bar{\delta}l(g, 1)$$
 and $s + u \notin E(g, 1)$

we have $|c_{s+u}| > 1$ and

$$\max\{|1-a_{s+u}|, |b_{s+u}|, |c_{s+u}-\operatorname{sign} c_{s+u}|\} \leq \delta,$$

where

$$g_s = N_{-s} \cdot g \cdot N_s = \begin{pmatrix} a_s & b_s \\ c_s & d_s \end{pmatrix}$$

and sign c = c/|c| if $c \neq 0$.

Let $0 < \tilde{\delta} < \delta$ be so small that if $\Delta(g) < \tilde{\delta}$ then

$$\Delta(g_s) < 1$$
 for all $0 \le s \le 2D(1)/\delta$.

(see (2.5) for the definition of D(1)). This says that

$$l = l(g, 1) \ge 2D(1)/\delta.$$

Let $\bar{\delta} = \delta/4D(1)$ and let $s \in E(g, 1)$, $0 \le u \le \bar{\delta}l$. We have using (2.3) and (2.5)

$$|b_{s+u}| = |b_s| \le D(1)/l^2 \le \delta$$

$$|1 - a_{s+u}| = |1 - a_s - b_s u| \le D(1)/l + \delta l \cdot D(1)/l^2 \le \delta$$
(2.11)

$$|c_{s+u}+c_s| = |b_s u^2 + u(a_s - d_s)| \le \overline{\delta}^2 D(1) + 3\overline{\delta}D(1) \le 4D(1)\overline{\delta} = \delta.$$
 (2.12)

(2.11) shows that

$$|c_{s+u}| > 1$$
 if $s+u \notin E(g,1)$

since $\Delta(g_{s+u}) > 1$ for $s + u \notin E(g, 1)$. Also $|c_s| \le 1$ for $s \in E(g, 1)$. This and (2.12) imply that

$$|c_{s+u} - \operatorname{sign} c_{s+u}| \le \delta$$
 if $s + u \notin E(g, 1)$.

This completes the proof.

Denote

$$W_{\varepsilon}(g) = U(g; \varepsilon, \varepsilon, 0), g \in G.$$

We say that $x, y \in G$, $y \in W_{\varepsilon}(x)$ form an ε -strip of length $t \ge 0$ if for every $s \in [0, t]$ there is $q(s) \ge 0$, q(0) = 0 such that

$$H_{\sigma(s)} y \in W_{\varepsilon}(H_s x). \tag{2.13}$$

q(s) = q(s, x, y) is uniquely defined by (2.13) and is a smooth function of (s, x, y). It is easy to compute that

$$|q(s)-s|=D(\varepsilon)s,$$
 (2.14)

where $D(\varepsilon) \to 0$ when $\varepsilon \to 0$. It follows from (2.1) that if x, y form an ε -strip of length t then $G_{\tau}x$, $G_{\tau}y$, $\tau \ge 0$ form an ε -strip of length $t e^{2\tau}$.

3. h-invariant partitions

Let $h = \{h_i, t \in R\}$ be the horocycle flow on $(M = \Gamma \setminus G, \mu)$ and let S on (Y, ν) be a factor of h_1 (the time-one transformation of the flow h_t) with a conjugacy $\psi: M \to Y$

$$\psi h_1(x) = S\psi(x) \quad \text{for a.e. } x \in M. \tag{3.1}$$

LEMMA 3.1. Let ζ be the partition of M induced by ψ (see § 1). Then there exists $Z \subset M/\zeta$, $\mu_{\zeta}(Z) > 0$ such that μ_{C} is atomic for every $C \in Z$.

Proof. We can assume without loss of generality that Y is a compact metric space and S is a homeomorphism of Y onto itself. Moreover, there exists $\varepsilon_Y > 0$ such that

$$d_Y(y, Sy) > \varepsilon_Y$$
 for every $y \in Y$, (3.2)

where d_Y denotes the metric in Y (see for instance [3]).

Let $0 < \theta < 0.01$ be fixed.

Since $\psi: M \to Y$ is measurable, there is $\Lambda \subset M$, $\mu(\Lambda) > 1 - \theta$ such that ψ is uniformly continuous on Λ (see lemma 3.1 in [4]).

Let $0 < \delta < 1$ be such that

if
$$d(w_1, w_2) < \delta$$
, $w_1, w_2 \in \Lambda$ then $d_Y(\psi w_1, \psi w_2) < \varepsilon_Y$.

Let $\tilde{\delta} = \tilde{\delta}(\delta) > 0$ and $\bar{\delta} = \bar{\delta}(\delta) > 0$ be as in lemma 2.1. Since h_1 is ergodic, there are $V \subset M$, $\mu(V) > 1 - \bar{\delta}/100$ and an integer $n_0 > 0$ such that

if
$$n \ge n_0$$
 and $x \in V$ then the relative frequency of Λ on $\{x, h_1 x, \dots, h_n x\}$ is at least $1 - 2\theta$. (3.3)

Let $\tilde{V} \subset M$, $\mu(\tilde{V}) > 1 - \theta$ and an integer $n_1 > n_0$ be such that

if
$$n \ge n_1$$
 and $x \in \tilde{V}$ then the relative frequency of V on $\{x, h_1 x, \dots, h_n x\}$ is at least $1 - \bar{\delta}/90$. (3.4)

Let $0 < \delta_1 < \tilde{\delta}$ be so small that if $d(x, y) < \delta_1, x, y \in G$ then

$$d(H_s x, H_s y) < 1$$
 for all $0 \le s \le 2n_1/\delta$. (3.5)

We claim that

$$d(u,v) \ge \delta_1 \tag{3.6}$$

for every $u, v \in C \cap \tilde{V}$, $u \neq v$ and every $C \in \zeta$.

Suppose on the contrary that there are $C_0 \in \zeta$ and $u_0, v_0 \in C_0 \cap \tilde{V}, u_0 \neq v_0$ such that $d(u_0, v_0) < \delta_1$.

Let $x_0 = p^{-1}(u_0)$, $y_0 = p^{-1}(v_0)$, x_0 , $y_0 \in G$ be such that $d(x_0, y_0) = d(u_0, v_0)$ and let $E = E(x_0^{-1} \cdot y_0, 1) = E_0 \cup E_1$ be as in (2.5) $(E_1$ can be empty), $E_0 = [0, s_0]$, $E_1 = [s_1, s_2]$, $s_1 > s_0$.

(3.5) implies that

$$2n_1/\bar{\delta} \le l(E_0) \le \max\{l(E_0), l(E_1)\} = l.$$

Denote

$$F_0 = [s_0, s_0 + \delta l/2], \quad F = [0, s_0] \cup F_0 \quad \text{if } s_1 - s_0 > \delta l$$

and

$$F_0 = [s_2, s_2 + \bar{\delta}l/2], \quad F = [0, s_2] \cup F_0 \quad \text{if } s_1 - s_0 \le \bar{\delta}l.$$

We have $F_0 \subset F - E$ and

$$|F| \ge n_1$$
 and $|F_0|/|F| \ge \bar{\delta}/20$. (3.7)

where |F| denotes the number of integers in F.

Let

$$\tilde{J} = \{ m \in F : m \text{ is an integer and } h_m u_0 \in V, h_m v_0 \in V \}.$$

It follows from (3.4) that

$$|\tilde{J}|/|F| \ge 1 - \bar{\delta}/40$$

since $u_0, v_0 \in \tilde{V}$ and $|F| > n_1$. This and (3.7) imply that there is an integer m_0 such that

$$m_0 \in F_0 \cap \tilde{J}$$
.

Denote

 $J = \{ m \in [m_0, m_0 + \bar{\delta}l/2] : m \text{ is an integer and } h_m u_0 \in \Lambda, h_{m-1} v_0 \in \Lambda, h_{m+1} v_0 \in \Lambda \}.$ It follows from (3.3) that

$$|J|/|[m_0, m_0 + \bar{\delta l}/2]| \ge 1 - 6\theta,$$

since

$$h_{m_0}u_0, h_{m_0}v_0 \in V$$
 and $\bar{\delta}l/2 > n_1 > n_0$.

This implies that there is

$$m_1 \in [m_0, m_0 + \bar{\delta}l/2] \subset [s_0, s_0 + \bar{\delta}l/2] \cup [s_2, s_2 + \bar{\delta}l/2]$$

such that

$$h_{m_1}u_0 \in \Lambda, \quad h_{m_1-1}v_0 \in \Lambda \quad \text{and} \quad h_{m_1+1}v_0 \in \Lambda.$$
 (3.8)

It follows from lemma 2.1 that

either
$$d(h_{m_1}u_0, h_{m_1+1}v_0) < \delta$$
 or $d(h_{m_1}u_0, h_{m_1-1}v_0) < \delta$ (3.9)

since $d(u_0, v_0) < \delta_1 < \tilde{\delta}(\delta)$.

Assume for simplicity that the first condition of (3.9) holds. We have by (3.8) and our choice of δ

$$d_Y(\psi h_{m_1} u_0, \psi h_{m_1+1} v_0) < \varepsilon_Y. \tag{3.10}$$

(3.1) implies that

$$\psi(h_{m_1+1}v_0) = S\psi(h_{m_1}v_0).$$

Also

$$\psi(h_{m_1}u_0) = \psi(h_{m_1}v_0) = y$$

since $u_0, v_0 \in C_0 \in \zeta$. (3.10) implies then that

$$d_Y(y, Sy) < \varepsilon_Y$$

which contradicts (3.2). So we have proved (3.6).

Since $\mu(\tilde{V}) > 0$ there is $Z \subset M/\zeta$, $\mu_{\zeta}(Z) > 0$ such that

$$\mu_C(C \cap \tilde{V}) > 0$$
 for every $C \in Z$. (3.11)

(3.6) implies that $C \cap \tilde{V}$ is at most countable. This implies via (3.11) that μ_C is atomic for every $C \in Z$. This completes the proof.

Note 3.1. It follows from the proof of lemma 3.1 that given $0 < \theta < 0.01$ there are a compact $K \subset M$, $\mu(K) > 1 - \theta$ and $\delta_1 > 0$ such that

$$d(u, v) \ge \delta_1$$
 for every $u, v \in C \cap K$, $u \ne v$ and every $C \in \zeta$.

4. Algebraicity of &

From now on our discussion will be similar to [4].

Let $S = \{S_t, t \in R\}$ on (Y, ν) be a factor of $h = \{h_t, t \in R\}$ on (M, μ) with a conjugacy $\psi: M \to Y$

$$\psi h_t(x) = S_t \psi(x)$$
 for all $t \in R$ and a.e. $x \in M$,

and let ξ be the *h*-invariant partition of M, induced by ψ . It follows from proposition 1.1 and lemma 3.1, that there are $D \subseteq M$, $h_tD = D$, $t \in R$, $\mu(D) = 1$, $U \subseteq M/\xi$, $h_t^{\xi}U = U$, $t \in R$, $\mu_{\xi}(U) = 1$ and an integer n > 0 such that for every $C \in U$ the intersection $D \cap C$ consists of exactly n points with μ_C -measure 1/n.

We assume without loss of generality that D = M and $U = M/\xi$. Thus each $C \in \xi$ consists of n distinct points of μ_C -measure 1/n.

Let $0 < \theta < 0.01$ be given. Using the discreteness of $\Gamma \in \mathcal{F}$, $M = \Gamma \backslash G$ and note 3.1, we can get a compact $K \subseteq M$, $\mu(K) > 1 - \theta^2 / n^2$ and $\rho > 0$ such that

(1) if
$$x \in p^{-1}(K)$$
 then the projection $p: G \to M$, $p(g) = \Gamma g$ is an isometry on the ball of radius ρ centered at x . (4.1)

(2) $d(u, v) \ge \rho$ for every $u, v \in C \cap K$, $u \ne v$, $C \in \xi$.

Let

$$K' = \pi^{-1} \left\{ C \in M/\xi : \mu_C(C \cap K) > 1 - \frac{\theta}{n} \right\},$$

where $\pi: M \to M/\xi$ is the projection $\pi(x) = \xi(x)$, $x \in M$. K' consists of atoms of ξ . We have

$$\mu(K') > 1 - \theta/n$$
 and $K' \subset K$, (4.2)

since $\mu(K) > 1 - \theta^2/n^2$ and every $C \in \xi$ consists of n points of μ_C -measure 1/n. Let $0 < \varepsilon < \rho/2$ be so small that

$$\varepsilon < 1 \text{ (see (2.2))} \quad \text{and} \quad 3AD(\varepsilon) < \rho/2 \text{ in (2.6)}.$$
 (4.3)

Let $0 < \delta_0 < \varepsilon$ be so small that if $d(x, y) < \delta_0, x, y \in G$ then

$$d(H_s x, H_s y) < \varepsilon$$
 for all $0 \le s \le 1$. (4.4)

Let $u \in K$, $v \in M$ and $d(u, v) < \delta < \delta_0$. Let $x, y \in G$ be such that p(x) = u, p(y) = v and $d(x, y) < \delta$. Denote

$$E(u, v, \varepsilon) = E_0(x^{-1} \cdot v, \varepsilon)$$

where $E_0(x^{-1} \cdot y, \varepsilon)$ is defined in (2.5). $E(u, v, \varepsilon)$ is well defined and does not depend on the choice of $x \in p^{-1}(u)$, $y \in p^{-1}(v)$, since $u \in K$ and $\delta < \rho$. It follows from (4.4) that $l(E(u, v, \varepsilon)) \ge 1$. Henceforth $\xi(v)$ denotes the atom of ξ , containing v.

LEMMA 4.1. Let $0 < \delta < \delta_0$, $u, v \in M$ and $A_t = A_t(u, v, \delta) = \{s \in [0, t]: \text{ there exists } v(s) \in \xi(v) \text{ such that } h_s v(s) \in K' \text{ and } d(h_s u, h_s v(s)) < \delta\}, t \ge 1$. If $l(A_t) > 0.9t$ then there is $s \in A_t$ such that $l(E(h_s u, h_s v(s), \delta)) \ge 0.2t$.

Proof. The proof is similar to that of lemma 2.1 in [4]. Let

$$E_s = s + E(h_s u, h_s v(s), \delta), \quad s \in A_t$$

We claim that

if
$$s_1 \in A_t$$
 and $v(s_1) \neq v(s)$ then $s_1 \notin E_s$. (4.5)

Indeed, suppose on the contrary that $s_1 \in E_s$. Then

$$d(h_s, u, h_s, v(s)) < 3AD(\varepsilon) < \rho/2$$

by (2.6) and (4.3). Also we have

$$d(h_s, v(s_1), h_s, u) < \delta < \rho/2$$

since $s_1 \in A_t$. This implies that

$$d(h_s, v(s_1), h_s, v(s)) < \rho.$$
 (4.6)

We have

$$h_{s_1}v(s) \in \xi(h_{s_1}v(s_1)),$$

since v(s), $v(s_1) \in \xi(v)$. Also

$$h_s, v(s_1) \in K'$$

since $s_1 \in A_t$ and therefore

$$h_s, v(s) \in K'$$

since K' consists of atoms of ξ . This and (4.6) imply that

$$h_{s_1}v(s)=h_{s_1}v(s_1)$$

which contradicts $v(s) \neq v(s_1)$ in (4.5).

Let $\beta = \{E_1, \ldots, E_m\}$ be the collection of pairwise disjoint intervals $E_i = [s_i, \tau_i] \subset [0, t], s_j > \tau_i, j > i$, such that $E_i = E_s$ for some $s \in A_i$, $i = 1, \ldots, m$ and $A_i \subset \bigcup_{i=1}^m E_i$ and let $d(E_i, E_j) = s_j - \tau_i$.

Let $x \in G$ be such that p(x) = u, $x_i = H_{s_i}x$, $p(x_i) = h_{s_i}u = u_i$ and let $y_i \in G$ be such that $d(x_i, y_i) < \delta$ and $p(y_i) = h_{s_i}v(s_i) = v_i$. We have

$$E_i = s_i + E_0(x_i^{-1} \cdot y_i, \delta) \subset s_i + E(x_i^{-1} \cdot y_i, \delta)$$

and

$$l(E_i) \leq l(x_i^{-1} \cdot y_i, \delta) = l_i$$

(see (2.5)). Suppose that $s_i - s_i = q$ and $v(s_i) = v(s_i)$. We have

$$(h_{s_i}u, h_{s_i}v(s_j)) = (u_j, v_j) = (h_qu_i, h_qv_i).$$

Though $d(x_i, y_i) < \delta$, $p(x_i) = u_i$, $p(y_i) = v_i$ and $d(u_i, v_j) < \delta$, it is not necessarily true that

$$d(H_qx_i, H_qy_i) < \delta,$$

but there is a unique $\mathcal{D} \in \Gamma$ such that

$$d(H_a x_i, \mathcal{D} \cdot H_a y_i) < \delta. \tag{4.7}$$

We write $E_i \stackrel{\Gamma}{\sim} E_j$ if $v(s_i) = v(s_j)$ and $\mathscr{D} \neq e$ in (4.7), $E_i \stackrel{\epsilon}{\sim} E_j$ if $v(s_i) = v(s_j)$ and $\mathscr{D} = e$ in (4.7) and $E_i \stackrel{\epsilon}{\sim} E_j$ if $v(s_i) \neq v(s_j)$. It follows from (2.6) and (4.3) that

$$d(H_{a,+s}x_i, H_{a,+s}v_i) \le 3AD(\varepsilon) < \rho/2 \tag{4.8}$$

for all $0 \le s \le l_i$, where $q_i = \tau_i - s_i$, i = 1, ..., m. This implies via (4.1) that

$$s_j - \tau_i = d(E_i, E_j) \ge l_i \text{ if } E_i \stackrel{\Gamma}{\sim} E_j$$

$$\tag{4.9}$$

since $y_i \in p^{-1}(K)$. (4.8) also shows that

$$d(h_{\tau_i+s}u, h_{\tau_i+s}v(s_i)) = d(h_{a_i+s}u_i, h_{a_i+s}v_i) < \rho/2$$

for all $0 \le s \le l_i$. This implies that

$$s_j - \tau_i = d(E_i, E_j) \ge l_i \quad \text{if } E_i \stackrel{\epsilon}{\sim} E_j, \tag{4.10}$$

since otherwise we would have

$$d(h_{s_i}v(s_i), h_{s_i}v(s_i)) < \rho$$

which contradicts (4.1), since $v(s_i) \neq v(s_j)$, $h_{s_i}v(s_j) \in K'$ and $h_{s_i}v(s_i) \in \xi(h_{s_i}v(s_j)) \subseteq K'$.

Let us now define a new collection $\bar{\beta} = \{\bar{E}_1, \dots, \bar{E}_{\bar{m}}\}$ by the following procedure. We set $\bar{E}_1 = E_1$ unless $E_1 \stackrel{\epsilon}{\sim} E_2$ and $d(E_1, E_2) \leq l(E_1)$. In this last case we set $\bar{E}_1 = [s_1, \tau_2] \supset E_1 \cup E_2$. Suppose \bar{E}_k , $k = 1, \dots, p$ have been defined. To define \bar{E}_{p+1} we apply the same construction to the first $E \in \beta$, which has not been included in any \bar{E}_k , $k = 1, \dots, p$.

It follows from the construction of $\bar{\beta}$ that

$$d(\bar{E}_k, \bar{E}_{k+1}) \ge l(\bar{E}_k) \quad \text{if } \bar{E}_k \stackrel{e}{\sim} \bar{E}_{k+1} \tag{4.11}$$

and for each $\vec{E}_k \in \vec{\beta}$ there is $E_{i_k} \in \beta$ such that

either
$$\bar{E}_k = E_{i_k}$$
 or $\bar{E}_k \supset (E_{i_k} \cup E_{i_{k+1}})$ and $l(\bar{E}_k) \le 3l_{i_k}$. (4.12)

This, (4.9) and (4.10) imply

$$d(\bar{E}_k, \bar{E}_{k+1}) \ge l_{i_k} \ge l(\bar{E}_k)/3$$

if $\bar{E}_k \stackrel{\Gamma}{\sim} \bar{E}_{k+1}$ or $\bar{E}_k \stackrel{\xi}{\sim} \bar{E}_{k+1}$. This and (4.11) give

$$d(\tilde{E}_k, \bar{E}_{k+1}) \ge l(\bar{E}_k)/3$$
 for all $k = 1, ..., \bar{m} - 1$. (4.13)

Denote

$$l(\bar{\beta}) = \sum_{k=1}^{\tilde{m}} l(\bar{E}_k).$$

We have

$$l(\bar{\beta}) > 0.9t$$

since $A_t \subset \bigcup_{k=1}^m \bar{E}_k$.

This and (4.13) imply that there is $\bar{E} \in \bar{\beta}$ such that

$$l(\bar{E}) \ge 0.6t$$
.

This implies via (4.12) that there is $E \in \beta$ such that $l(E) \ge 0.2t$. This completes the proof.

COROLLARY 4.1. Let $u, v \in M$ and let $l(A_t) > 0.9t$ for all $t \ge t_0 > 1$, where $A_t = A_t(u, v, \delta)$ as in lemma 4.1. Then there is $\tilde{v} \in \xi(v)$ such that $\tilde{v} = h_q u$ for some $q = q(u, v, \delta), |q| < \delta$.

Proof. It follows from the proof of lemma 4.1 that there is $s \ge 0$ such that

$$l(E(h_s u, h_s v(s), \delta)) \ge 0.2t$$
 for all $t \ge t_0$.

(2.5) shows that this may happen only if $h_s v(s) = h_q h_s u$ for some $|q| < \delta$. We get $\tilde{v} = v(s) = h_q u$, $\tilde{v} \in \xi(v)$.

For $A \subseteq M$ we shall write $A < \xi$ if A consists of atoms of ξ .

According to § 1 there are $X < \xi$, $\mu(X) = 1$ and pairwise disjoint measurable sets

$$X_i \subset X, i = 1, \ldots n, \bigcup_{i=1}^n X_i = X, \mu(X_i) = \frac{1}{n}$$

such that for every $x \in X$ the intersection

$$\xi(x) \cap X_i = \{x_i(x)\}\$$

consists of exactly one point and the map ϕ_i : X onto X_i defined by $\phi_i(x) = x_i(x)$ is measurable, i = 1, ..., n.

Let K' be the set defined in (4.2) and let

$$\tilde{K} = K' \cap X$$
, $\mu(\tilde{K}) = \mu(\tilde{K}') > 1 - \frac{\theta}{n}$, $\tilde{K} < \xi$.

Since $\phi_i: X \to X_i$ is measurable, $i = 1, \ldots, n$ there is $\Lambda \subset X$, $\mu(\Lambda) > 1 - \theta$ such that $\Lambda < \xi$ and each ϕ_i , $i = 1, \ldots, n$ is uniformly continuous on Λ (see lemma 3.1 in [4]). Let

$$Q = \Lambda \cap \tilde{K}, \quad \mu(Q) > 1 - 2\theta, \quad Q < \xi$$

and let Ω be the generic set of Q for h,

$$h_t\Omega = \Omega$$
, $t \in \mathbb{R}$, $\mu(\Omega) = 1$, $\Omega < \xi$.

LEMMA 4.2. For every $0 < \delta < \delta_0$ there is $\omega = \omega(\delta) > 0$ such that if $u_1, v_1 \in \Omega$, $v_1 = g_p u_1$ for some $|p| < \omega$, then for every $u_2 \in \xi(u_1)$ there is $v_2 \in \xi(v_1)$ such that $v_2 = h_b g_p u_2$ for some $b = b(u_1, u_2, p), |b| < \delta$ and $b(h_i u_1, h_i u_2, p) = b(u_1, u_2, p)$ for all $t \in R$.

Proof. Since ϕ_i , i = 1, ..., n are uniformly continuous on Λ there is $0 < \omega < \delta/2$ such that

if
$$d(w_1, w_2) < \omega$$
, $w_1, w_2 \in \Lambda$ then $d(\phi_i \cdot w_1, \phi_i \cdot w_2) < \delta/2$, $i = 1, ..., n$. (4.14)

Let $u_1, v_1 \in \Omega$, $v_1 = g_p u_1$ for some $|p| < \omega$. Let $\lambda_0 > 0$ be such that

if
$$\lambda \ge \lambda_0$$
 then the relative length measure of Q on $[u_1, h_\lambda u_1]$ and on $[v_1, h_\lambda v_1]$ is at least $1 - 3\theta$. (4.15)

Let $x, y \in G$, $y = G_p x$ be such that $p(x) = u_1$, $p(y) = v_1$. x and y form an ω -strip of length λ for every $\lambda > 0$. We have

$$H_{q(s)}y = G_p H_s$$
 (see (2.13)) and $h_{q(s)}v_1 = g_p h_s u_1$ for all $s \ge 0$.

Denote

$$F_{\lambda} = \{ s \in [0, \lambda] : h_s u_1 \in Q, h_{\alpha(s)} v_1 \in Q \}.$$

It follows from (4.15) that

$$l(F_{\lambda}) > (1 - 7\theta)\lambda \tag{4.16}$$

if $\omega > 0$ is sufficiently small and $\lambda \ge \lambda_0$, $q(\lambda) \ge \lambda_0$ (see (2.14)).

Let $u_2 \in \xi(u_1)$. We write $j(t) = i \in \{1, \ldots, n\}$ if $h_i u_2 \in X_i$.

We have

$$\phi_{j(s)}(h_s u_1) = h_s u_2 \in X_{j(s)}$$

$$\phi_{j(s)}(h_{a(s)} v_1) \in \xi(h_{a(s)} v_1) = h_{a(s)} \xi(v_1)$$

or

$$\phi_{i(s)}(h_{a(s)}v_1) = h_{a(s)}v_1(q(s)),$$

where $v_1(q(s)) \in \xi(v_1)$ and if $s \in F_{\lambda}$ then

$$h_{s}u_{2} \in K', \quad h_{q(s)}v_{1}(q(s)) \in K'$$

$$d(h_{s}u_{2}, h_{q(s)}v_{1}(q(s))) < \delta/2$$
(4.17)

and

by (4.14). Let $w = g_p u_2$. We have

$$h_{a(s)}w = g_p h_s u_2$$

and therefore

$$d(h_s u_2, h_{a(s)} w) < \omega$$
.

This and (4.17) imply that

$$d(h_{q(s)}w, h_{q(s)}v_1(q(s))) < \omega + \delta/2 \le \delta$$

$$(4.18)$$

for all $s \in F_{\lambda}$ and all $\lambda \ge \lambda_0$, $q(\lambda) \ge \lambda_0$.

Let $A_t = A_t(w, v_1, \delta)$ be as in lemma 4.1. (4.16) and (4.18) show that there is $t_0 > 1$ such that

$$l(A_t) > 0.9t$$
 for all $t \ge t_0$.

It follows then from corollary 4.1 that there is $v_2 \in \xi(v_1)$ such that $v_2 = h_b w = h_b q_p u_2$ for some $b = b(u_1, u_2, p), |b| < \delta$. It is clear, that $b(h_t u_1, h_t u_2, p) = b(u_1, u_2, p)$ for all $t \in R$, $|p| < \omega$.

It follows from lemma 4.2 that there exists $\omega_0 > 0$ such that

$$g_p w \in \Omega \text{ iff } g_p u \in \Omega$$

for every $u \in \Omega$, $w \in \xi(u)$, $|p| < \omega_0$, since Ω is h-invariant and $\Omega < \xi$. Let

$$\Omega_p = \{u \in \Omega \colon g_p u \in \Omega\}, |p| < \omega_0.$$

 Ω_p is h-invariant, $\mu(\Omega_p) = 1$ and $\Omega_p < \xi$.

LEMMA 4.3. There is an h-invariant $\Omega_p' \subset \Omega_p$, $\Omega_p' < \xi$, $\mu(\Omega_p') = 1$ such that b(u, w, p) = 0 for all $u \in \Omega_p'$, $w \in \xi(u)$, $|p| < \omega_0$.

Proof. It follows from the definition of b(u, w, p) that it is measurable and

$$b(u, w, p) = -b(w, u, p)$$

$$b(x, w, p) = b(u, w, p) - b(u, x, p), x, w \in \xi(u),$$

$$u \in \Omega_{p}, |p| < \omega_{0}.$$
(4.19)

Define $\bar{f}_p: \Omega_p \to R$ and $\tilde{f}_p: \Omega_p \to R$ by

$$\bar{f}_p(u) = \max \{b(u, w, p) : w \in \xi(u)\}\$$

 $\tilde{f}_p(u) = \min \{b(u, w, p) : w \in \xi(u)\}.$

The functions \bar{f}_p and \tilde{f}_p are measurable and constant on orbits of h. Since h is ergodic, there are $\Omega_p' \subset \Omega_p$, $\mu(\Omega_p') = 1$, $\Omega_p' < \xi$ and constants $\bar{\sigma}$, $\tilde{\sigma}$ such that $\bar{f}_p = \bar{\sigma}$ and $\tilde{f}_p = \bar{\sigma}$ on Ω_p' .

We claim that $\bar{\sigma} = \tilde{\sigma} = 0$. Indeed, suppose on the contrary that $\bar{\sigma} > 0$. Let $u \in \Omega_p'$ and $w \in \xi(u)$ be such that

$$b(u, w, p) = \bar{\sigma}.$$

Then

$$b(w, u, p) = -\bar{\sigma} < 0$$

and therefore $\tilde{\sigma} < 0$.

Let $x \in \xi(u)$ be such that

$$b(u, x, p) = \tilde{\sigma}$$
.

Then

$$b(x, w, p) = \bar{\sigma} - \bar{\sigma} > \bar{\sigma}$$

by (4.19) which contradicts the fact that $\bar{\sigma} = \max \{b(x, w, p) : w \in \xi(x)\}$. Therefore $\bar{\sigma} = \tilde{\sigma} = 0$. This completes the proof.

Let

$$\tilde{\Omega} = \bigcap_{\substack{p \text{ is rational} \\ |p| < \omega_0}} \Omega'_p.$$

 $\tilde{\Omega}$ is h-invariant, $\mu(\tilde{\Omega}) = 1$ and $\tilde{\Omega} < \xi$. We have

$$g_p(\xi(u)) = \xi(g_p u)$$

for all $u \in \tilde{\Omega}$ and all rational $|p| < \omega_0$.

Let $\bar{\Omega} = \{u \in M : \tilde{\Omega} \text{ is dense on the geodesic orbit of } u\}$. $\bar{\Omega}$ is h-invariant, $\mu(\bar{\Omega}) = 1$ and $\bar{\Omega} \cap \tilde{\Omega} < \xi$. Lemma 4.2 shows that b(u, w, p) is continuous in p. This implies that

$$g_p(\xi(u)) = \xi(g_p u) \tag{4.20}$$

for all $u \in \overline{\Omega} \cap \widetilde{\Omega}$ and all $p \in R$ with $g_p u \in \Omega$.

Let $g_p u \in M - \Omega$ for some $u \in \overline{\Omega} \cap \widetilde{\Omega}$, $p \in R$. We have

$$\xi(g_p u) \subset M - \Omega$$
, since $\Omega < \xi$;
 $g_p(\xi(u)) \subset M - \Omega$ by (4.20).

Let us define a partition $\bar{\xi}$ on $\bar{\Omega}$ by

$$\bar{\xi}(g_p u) = \xi(g_p u) \quad \text{if } u \in \bar{\Omega} \cap \tilde{\Omega}, g_p u \in \Omega$$

$$\bar{\xi}(g_p u) = g_p(\xi(u)) \quad \text{if } u \in \bar{\Omega} \cap \tilde{\Omega}, g_p u \notin \Omega.$$

We have

$$\bar{\xi} = \xi \text{ on } \bar{\Omega} \cap \Omega < \xi \quad h_t \bar{\xi}(u) = \bar{\xi}(h_t u) \quad g_t \bar{\xi}(u) = \bar{\xi}(g_t u)$$
 (4.21)

for all $u \in \overline{\Omega}$ and all $t \in R$.

Let $Q \subseteq M$, $\mu(Q) > 1 - 2\theta$, $Q < \xi$ be as in lemma 4.2. Since h is ergodic, there are $Z \subseteq \Omega$, $Z < \xi$, $\mu(Z) > 1 - \theta$ and $\tilde{t} > 0$ such that

if
$$z \in \mathbb{Z}$$
, $t > \overline{t}$ then the relative length measure of Q on $[z, h_t z]$ is at least $1 - 3\theta$. (4.22)

Let $\bar{Z} \subset \bar{\Omega}$ be the generic set of Z for the geodesic flow $g, \bar{Z} < \bar{\xi}, \mu(\bar{Z}) = 1$.

LEMMA 4.4. There exists $\gamma > 0$ such that if $u, v \in \overline{Z}$ and $v = h_r^* u$ for some $|r| < \gamma$ then

$$\bar{\xi}(v) = h_r^* \bar{\xi}(u).$$

Proof. The proof is similar to that of lemma 4.2. Since ϕ_i , i = 1, ..., n are uniformly continuous on Q, given $0 < \delta < \delta_0$ there is $0 < \omega = \omega(\delta) < \delta/2$ such that

if
$$d(w_1, w_2) < \omega$$
, $w_1, w_2 \in Q$ then $d(\phi_i w_1, \phi_i w_2) < \delta/2$ for all $i = 1, ..., n$.

(4.23)

Let $0 < \gamma < \omega$ be such that if $x, y \in G$, $y \in W_{\gamma}(x)$ then x, y form an ω -strip of length 1 (see (2.13)). Let

$$u, v \in \overline{Z}, v = h_r^* u$$
 for some $|r| < \gamma$.

We shall show that

$$h_r^* u_1 \in \bar{\xi}(v)$$
 for every $u_1 \in \bar{\xi}(u)$.

Let $x, y \in G$, p(x) = u, p(y) = v, $y = H_r^* x$. x and y form an ω -strip of length 1. Since $u, v \in \overline{Z}$, there is a sequence $0 < \tau_k \to \infty$, $k \to \infty$ such that $\exp(2\tau_k) > \overline{\iota}$ and

$$u^{(k)} = g_{\tau_k} u \in \mathbb{Z}, \quad v^{(k)} = g_{\tau_k} v \in \mathbb{Z}, k = 1, 2, \ldots$$

Let $x^{(k)} = G_{\tau_k} x$, $y^{(k)} = G_{\tau_k} y$. We have $p(x^{(k)}) = u^{(k)}$, $p(y^{(k)}) = v^{(k)}$ and $x^{(k)}$, $y^{(k)}$ form an ω -strip of length $t_k = \exp(2\tau_k) > \overline{t}$. This means (see (2.13)) that

$$H_{a(s)} v^{(k)} \in W_{\omega}(H_s x^{(k)})$$
 for all $s \in [0, t_k]$

or

$$h_{q(s)}v^{(k)} \in W_{\omega}(h_su^{(k)}), \quad s \in [0, t_k].$$

Let

$$B_k = \{ s \in [0, t_k] : h_s u^{(k)} \in Q, h_{q(s)} v^{(k)} \in Q \}.$$

k = 1, 2, ... (4.22) implies that

$$l(B_k) > (1 - 7\theta)t_k, \quad k = 1, 2, \dots$$
 (4.24)

if ω is sufficiently small, $t_k > \bar{t}$, $q(t_k) > \bar{t}$.

Let $u_1 \in \bar{\xi}(u)$. Then

$$u_1^{(k)} = g_{\tau_k} u_1 \in \tilde{\xi}(u^{(k)})$$

by (4.21). We write $j_k(s) = i \in \{1, ..., n\}$ if $h_s u_1^{(k)} \in X_i$. We have that if $s \in B_k$ then $h_s u_1^{(k)} = \phi_{i_1(s)} h_s u_1^{(k)}$

$$\phi_{j_k(s)}h_{q(s)}v^{(k)} \in \xi(h_{q(s)}v^{(k)}) = h_{q(s)}(\xi(v^{(k)}))$$

or

$$\phi_{j_k(s)}h_{q(s)}v^{(k)} = h_{q(s)}v^{(k)}(q(s))$$

for some

$$v^{(k)}(q(s)) \in \xi(v^{(k)}) = \bar{\xi}(v^{(k)}),$$

since $v^{(k)} \in Z \subseteq \Omega$, and

$$d(h_s u_1^{(k)}, h_{q(s)} v^{(k)}(q(s))) < \delta/2 \quad k = 1, 2, ...$$
 (4.25)

by (4.23). Let

$$w = h_r^* u_1$$
 and $w^{(k)} = g_{\tau_k} w$, $k = 1, 2, ...$

We have

$$d(h_s u_1^{(k)}, h_{q(s)} w^{(k)}) < \omega, \quad s \in [0, t_k], \quad k = 1, 2, ...$$

This and (4.25) imply that

$$d(h_{q(s)}w^{(k)},h_{q(s)}v^{(k)}(q(s))) < \omega + \delta/2 < \delta.$$

Also

$$h_{q(s)}v^{(k)}(q(s)) \in K' \quad \text{if } s \in B_k.$$
 (4.26)

Let

$$A_k = A_{q(t_k)}(w^{(k)}, v^{(k)}, \delta) \subset [0, q(t_k)]$$

be as in lemma 4.1. We have

$$l(A_k) \ge 0.9q(t_k), \quad k = 1, 2, \dots$$

by (4.24) and (4.26), if ω is sufficiently small. This implies via lemma 4.1 that there is $s_k \in [0, q(t_k)]$ such that

$$E(h_{s_k}w^{(k)}, h_{s_k}v^{(k)}(s_k), \delta) \ge 0.2q(t_k), \quad k = 1, 2, \ldots$$

This implies via (2.9) that

$$h_{s_k}v^{(k)}(s_k) \in U(h_{s_k}w^{(k)}, D(\varepsilon)/t_k, D(\varepsilon)/t_k^2, D(\varepsilon))$$

and therefore

$$g_{-\tau_{k}}h_{s_{k}}v^{(k)}(s_{k}) = h_{s_{k} \exp(-2\tau_{k})}g_{-\tau_{k}}v^{(k)}(s_{k})$$

$$= h_{s_{k} \exp(-2\tau_{k})}\tilde{v}(k) \in U(h_{s_{k} \exp(-2\tau_{k})}w, D(\varepsilon)/t_{k}, D(\varepsilon)/t_{k}),$$

$$k = 1, 2, \dots (4.27)$$

where $\tilde{v}(k) = g_{-\tau_k} v^{(k)}(s_k) \in \bar{\xi}(v)$ by (4.21). (4.27) may happen only if

$$w = h_r^* u_1 \in \tilde{\xi}(v)$$

since $s_k \exp(-2\tau_k) \in [0, q(1)], k = 1, 2, ...,$ and $\bar{\xi}(v)$ is finite. This completes the proof.

For $w \in M$ we denote

$$W^{(u)}(w) = \{w' \in M : w' = h_r g_p w \text{ for some } p, r \in R\}.$$

 $W^{(u)}(w)$, $w \in M$ form the unstable foliation $W^{(u)}$ for the geodesic flow g. The set $\bar{\Omega}$ consists of leaves of $W^{(u)}$. It follows from (4.21) that if $w_k \in W^{(u)}(w)$, $w \in \bar{\Omega}$ and $w_k \to w$ in the topology of $W^{(u)}(w)$, then

$$\bar{\xi}(w_k) \to \bar{\xi}(w), \quad k \to \infty.$$

Let

$$\tilde{Z} = \{ w \in \bar{\Omega} : \bar{Z} \text{ is dense on the } h^* \text{-orbit of } w \},$$

 $\mu(\tilde{Z}) = 1$ and let

$$\overline{W} = \{ w \in \overline{\Omega} : \overline{Z} \cap \overline{Z} \text{ is dense in } W^{(u)}(w) \}, \ \mu(\overline{W}) = 1.$$

It follows from lemma 4.4 and (4.21) that $\bar{W} < \bar{\xi}$ and

if
$$u, v \in \overline{W}, v = h_q h_r^* g_p u$$
 for some $p, q, r \in R$ then $\overline{\xi}(v) = h_q h_r^* q_p \overline{\xi}(u)$. (4.28)

This implies that if

$$w_k \in \bar{W}, \quad w_k' \in \bar{W}, \quad w_k \to w \in M, \quad w_k' \to w$$

when $k \to \infty$ then

$$\lim_{k\to\infty}\bar{\xi}(w_k)=\lim_{k\to\infty}\bar{\xi}(w_k')$$

and this limit equals $\bar{\xi}(w)$, if $w \in \bar{W}$. This implies that

if
$$w \in M - \overline{W}$$
, $w_k \to w$, $w_k \in \overline{W}$ then $\lim_{k \to \infty} \overline{\xi}(w_k) \subset M - \overline{W}$.

Let us define a partition $\tilde{\xi}$ on M by

$$\tilde{\xi}(u) = \bar{\xi}(u)$$
 if $u \in \bar{W}$ and $\tilde{\xi}(u) = \lim_{k \to \infty} \bar{\xi}(u_k), u_k \in \bar{W}, u_k \to u, k \to \infty$.

 $\tilde{\xi}$ is well defined and

$$\tilde{\xi} = \xi$$
 on $\bar{W} \cap \bar{\Omega} \cap \Omega$ by (4.21) and if $v = h_q h_r^* g_p u$, $u \in M$
then $\tilde{\xi}(v) = h_q h_r^* g_p \tilde{\xi}(u)$ by (4.28). (4.29)

(4.29) shows that h^{ξ} on M/ξ and $h^{\tilde{\xi}}$ on $M/\tilde{\xi}$ are isomorphic, since $\bar{W} \cap \bar{\Omega} \cap \Omega$ is h-invariant and $\mu(\bar{W} \cap \bar{\Omega} \cap \Omega) = 1$.

Proof of theorem 1. Denote

$$\tilde{\Gamma}(u) = p^{-1}(\tilde{\xi}(u)), u \in M \text{ and } \tilde{\Gamma} = \tilde{\Gamma}(u_o),$$

where $u_0 = p(e)$. We shall show that $\tilde{\Gamma}$ is a subgroup of G.

We say that $J \in G$ is a chain in G if $J = J_1 \cdot \cdot \cdot J_k$ where

$$J_{i} = H_{q_{i}}H_{r_{i}}^{*}G_{p_{i}}e = e \cdot \begin{pmatrix} \exp(p_{i}) & \\ & \exp(-p_{i}) \end{pmatrix} \cdot \begin{pmatrix} 1 & r_{i} \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ q_{i} & 1 \end{pmatrix}$$

for some p_i , q_i , $r_i \in R$, $i = 1, \dots, k$. It is clear, that for any $g_1, g_2 \in G$ there is a chain $J \in G$ such that $g_2 = g_1 \cdot J$.

Let $g, \tilde{g} \in \tilde{\Gamma}$ and let

$$g = e \cdot J, \quad \tilde{g} = e \cdot \tilde{J}$$

for some chains

$$J = J_1 \cdots J_k$$
, $J_i = H_a H_a^* G_{n_i} e$, $i = 1, \ldots, k$

and

$$\tilde{J} = \tilde{J}_1 \cdot \cdot \cdot \tilde{J}_k, \quad \tilde{J}_i = H_{\tilde{q}_i} H_{\tilde{t}_i}^* G_{\tilde{p}_i} e, \qquad i = 1, \ldots, \tilde{k}.$$

We write

$$p(J_i) = h_{q_i} h_{r_i}^* g_{p_i} p(e) = (hh^*g)_i(u_0), \quad i = 1, \ldots, k.$$

We have

$$p(g) = (hh^*g)_k \cdots (hh^*g)_1(u_0) \in \tilde{\xi}(u_0)$$
$$p(\tilde{g}) = (hh^*g)_k \cdots (hh^*g)_1(u_0) \in \tilde{\xi}(u_0)$$

since $g, \tilde{g} \in \tilde{\Gamma}$. This implies by (4.29) that

$$(hh^*g)_k \cdots (hh^*g)_1(\tilde{\xi}(u_0)) = \tilde{\xi}(u_0)$$

$$(hh^*g)_{\tilde{\xi}} \cdots (hh^*g)_1(\tilde{\xi}(u_0)) = \tilde{\xi}(u_0).$$

$$(4.30)$$

and

We have

$$g \cdot \tilde{g} = e \cdot J \cdot \tilde{J}$$

and

$$p(g \cdot \tilde{g}) = (\widetilde{hh * g})_{\tilde{k}} \cdot \cdot \cdot (\widetilde{hh * g})_{1} (hh * g)_{k} \cdot \cdot \cdot (hh * g)_{1} (u_{0}) \in \tilde{\xi}(u_{0})$$

by (4.30).

This implies that $g \cdot \tilde{g} \in \tilde{\Gamma}$ and that $\tilde{\Gamma}$ is a subgroup of G. It is clear that $\tilde{\Gamma}$ is discrete and $\Gamma \subset \tilde{\Gamma}$.

Let $g \in \tilde{\Gamma}(u)$, $u \in M$ and let $g = e \cdot J$ for some chain $J \in G$. (4.29) shows that then

$$\tilde{\Gamma}(u) = \tilde{\Gamma} \cdot J = \tilde{\Gamma}g.$$

Define $\tilde{\psi}$: $\tilde{\Gamma}/G$ onto $M/\tilde{\xi}$ by

$$\tilde{\psi}(\tilde{\Gamma}g) = \tilde{\xi}(p(g)).$$

It is clear that $\tilde{\psi}$ is measure preserving and

$$\tilde{\psi}\tilde{h}_t(\tilde{\Gamma}g) = \tilde{\psi}(\tilde{\Gamma}g \cdot N_t) = \tilde{\xi}(p(g \cdot N_t)) = \tilde{\xi}(h_tg) = h_t^{\tilde{\xi}}\tilde{\xi}(g).$$

This shows that $\tilde{\psi}$ is an isomorphism between \tilde{h} and $\tilde{\Gamma}/G$ and $h^{\tilde{\xi}}$ on $M/\tilde{\xi}$. This implies via (4.29) that \tilde{h} is isomorphic to h^{ξ} on M/ξ .

5. Proof of theorem 3

Let S on (Y, ν) be a factor of h_1 on $(M = \Gamma \backslash G, \mu)$ with a conjugacy $\psi: M \to Y$

$$\psi h_1(x) = S\psi(x)$$
 for a.e. $x \in M$,

and let ζ be the h_1 -invariant partition of M, induced by ψ . It follows from proposition 1.1 and lemma 3.1 that there are $D \subset M$, $h_1D = D$, $\mu(D) = 1$, $U \subset M/\zeta$, $h_1^{\zeta}U = U$, $\mu_{\zeta}(U) = 1$ and an integer n > 0 such that for every $C \in U$ the intersection $C \cap D$ consists of exactly n points each of μ_C -measure 1/n.

We assume without loss of generality that D = M and $U = M/\zeta$. So each $C \in \zeta$ consists of n distinct points of μ_C -measure 1/n.

Let θ , K, ρ , K', ε and δ_0 be as in § 4 for ζ .

We omit the proof of the following lemma, since it is fully analogous to the proof of lemma 4.1 and corollary 4.1.

LEMMA 5.1. Let $0 < \delta < \delta_0$, $u, v \in M$ and let

$$A_k = \{ m \in \{0, 1, \dots, k\} : \text{ there exists } v(m) \in \zeta(v)$$
such that $h_m v(m) \in K'$ and $d(h_m u, h_m v(m)) < \delta \}.$

If $|A_k|/k > 0.9$ for all integers $k > k_0 > 0$ then there is $\tilde{v} \in \zeta(v)$ such that

$$\tilde{v} = h_q u$$
 for some $q = q(u, v, \delta), |q| < \delta$.

Let $X < \zeta$, $\mu(X) = 1$ and $X_i \subset X$, $i = 1, \ldots, n$.

$$X_i \cap X_j = \emptyset, \quad i \neq j,$$

$$\bigcup_{i=1}^n X_i = X, \quad \mu(X_i) = \frac{1}{n}, \quad i = 1, \dots, n$$

be such that for every $x \in X$ the intersection $\zeta(x) \cap X_i$ consists of a single point $x_i(x)$ and the map $\phi_i : X$ onto X_i defined by $\phi(x) = x_i(x)$, is measurable.

As in § 4 we denote

$$\tilde{K} = K' \cap X, \quad \tilde{K} < \zeta, \quad \mu(\tilde{K}) = \mu(K') > 1 - \theta/n,$$

$$\Lambda \subset X, \quad \Lambda < \zeta, \quad \mu(\Lambda) > 1 - \theta$$

pick

such that each ϕ_i , i = 1, ..., is uniformly continuous on Λ and take

$$Q = \Lambda \cap \tilde{K}, \quad \mu(Q) > 1 - 2\theta, \quad Q < \zeta.$$

Let $F \subset M$ be the generic set of Q for h_1 . We have

$$h_1F = F$$
, $F < \zeta$ and $\mu(F) = 1$.

LEMMA 5.2. For every $0 < \delta < \delta_0$ there is $\beta = \beta(\delta)$ such that if $u_1, v_1 \in F$, $v_1 = h_1 u_1$ for some $|t| < \beta$ then for every $u_2 \in \zeta(u_1)$ there is $v_2 \in \zeta(v_1)$ such that $v_2 = h_a u_2$ for some $a = a(u_1, u_2, t), |a| < \delta$ and $a(h_1 u_1, h_1 u_2, t) = a(u_1, u_2, t)$.

Proof. The proof is similar to that of lemma 4.2. Let $\beta > 0$ be such that

if
$$d(w_1, w_2) < \beta$$
, $w_1, w_2 \in \Lambda$ then
 $d(\phi_i w_1, \phi_i w_2) < \delta$, $i = 1, ..., n$. (5.1)

Let

$$u_1, v_1 \in F$$
 and $v_1 = h_t u_1$ for some $|t| < \beta$.

Since $u_1, v_1 \in F$ there is $k_0 > 0$ such that if $k \ge k_0$ and

$$B_k = \{m \in \{0, 1, \ldots, k\}: h_m u_1 \in Q, h_m v_1 \in Q\}$$

then

$$|B_k|/k > 1 - 7\theta \tag{5.2}$$

where |B| denotes the number of points in B.

Let $u_2 \in \zeta(u_1)$. We write $j(m) = i \in \{1, ..., n\}$ if $h_m u_2 \in X_i$, m = 1, 2, ... We have

$$\phi_{j(m)}(h_m u_1) = h_m u_2 \in X_{j(m)}$$

$$\phi_{j(m)}(h_m v_1) \in \zeta(h_m v_1) = h_m \zeta(v_1)$$

or

$$\phi_{j(m)}(h_m v_1) = h_m v_1(m)$$

for some $v_1(m) \in \zeta(v_1)$ and if $m \in B_k$ then

$$h_m u_2 \in K'$$
, $h_m v_1(m) \in K'$

and

$$d(h_m u_2, h_m v_1(m)) < \delta$$

by (5.1). This and (5.2) imply via lemma 5.1 that there is $v_2 \in \zeta(v_1)$ such that

$$v_2 = h_a u_2$$

for some $a = a(u_1, u_2t), |a| < \delta$. It is clear that

$$a(h_1u_1, h_1u_2, t) = a(u_1, u_2, t).$$

Let T(x) denote the h_t -orbit of $x \in M$ and let

$$\bar{F} = \{x \in M : F \cap T(x) \text{ is dense in } T(x)\}.$$

 \bar{F} is h_t -invariant, $t \in R$ and $\mu(\bar{F}) = 1$.

It follows from lemma 5.2 that if $x \in \overline{F}$, $x_i \in T(x) \cap F$, $i = 1, 2, \ldots$ and $x_i \to x$, $i \to \infty$ in the topology of T(x) then the $\lim_{i \to \infty} \zeta(x_i)$ exists and does not depend on the sequence $x_i \in T(x) \cap F$, $x_i \to x$, $i \to \infty$. If $x \in \overline{F} \cap F$ then this limit equals to $\zeta(x)$.

We define $\bar{\zeta}$ on \bar{F} by

$$\vec{\zeta}(x) = \zeta(x)$$
 if $x \in \vec{F} \cap F$

and

$$\bar{\zeta}(x) = \lim_{i \to \infty} \zeta(x_i)$$
 if $x \in \bar{F} - F$

where $x_i \in T(x) \cap F$, i = 1, 2, ... and $x_i \to x$, $i \to \infty$ in T(x).

 $\bar{\zeta}$ is well defined and

$$\bar{\zeta}(x) = \zeta(x)$$
 for a.e. $x \in M$.

Proof of theorem 3. In order to prove the theorem it is enough to show that there exists an h_t -invariant set

$$F' \subset \overline{F}$$
, $\mu(F') = 1$, $F' < \zeta$

such that

$$h_t(\bar{\zeta}(x)) = \bar{\zeta}(h_t x)$$
 for all $x \in F'$ and all $t \in R$.

It follows from lemma 5.2 that for every $x \in \overline{F}$, $\tilde{x} \in \overline{\zeta}(x)$ and $t \in R$ there is $a = a(x, \tilde{x}, t) \in R$ such that

$$h_{a}\tilde{x} \in \overline{\zeta}(h_{t}x)$$

$$a(h_{1}x, h_{1}\tilde{x}, t) = a(x, \tilde{x}, t)$$

$$a(x, x, t) = t, \quad a(x, \tilde{x}, 0) = 0, \quad a(x, \tilde{x}, 1) = 1.$$

$$(5.3)$$

The function $a(x, \tilde{x}, t)$ is uniformly continuous in t for every $x \in \overline{F}$, $\tilde{x} \in \overline{\zeta}(x)$.

Denote

$$r^{-}(x,t) = \min \left\{ a(x, \tilde{x}, t) \colon \tilde{x} \in \overline{\zeta}(x) \right\}$$
$$r^{+}(x,t) = \max \left\{ a(x, \tilde{x}, t) \colon \tilde{x} \in \overline{\zeta}(x) \right\}, x \in \overline{F}, t \in R.$$

 $r^-(x, t)$ and $r^+(x, t)$ are continuous in t and are constant on the h_1 -orbit of x. Since h_1 is ergodic, there is $F_t \subset \overline{F}$, $F_t \subset \overline{C}$, $h_1F_t = F_t$, $\mu(F_t) = 1$ such that $r^+(x, t)$ and $r^-(x, t)$ equal constants $r^+(t)$ and $r^-(t)$ respectively on F_t .

Let

$$\tilde{F} = \bigcap_{\text{t is rational}} F_{\text{t}}, \quad \mu(\tilde{F}) = 1, \quad h_1 \tilde{F} = \tilde{F}, \quad \tilde{F} < \bar{\zeta}.$$

We have

$$r^{-}(x, t) = r^{-}(t)$$

 $r^{+}(x, t) = r^{+}(t)$ (5.4)

for every $x \in \tilde{F}$ and every rational t. Since $r^+(x, t)$ and $r^-(x, t)$ are continuous in t, (5.4) holds for all $t \in R$.

Let

$$F' = \{x \in \overline{F} : \widetilde{F} \cap T(x) \text{ is dense in } T(x)\},\$$

$$h_t F' = F'$$
, $t \in R$, $F' < \overline{\zeta}$ and $\mu(F') = 1$. (5.4) implies that

$$r^{-}(x, t) = r^{-}(t), \quad r^{+}(x, t) = r^{+}(t)$$

for all $x \in F'$ and all $t \in R$, since

$$r^{+}(x, t) = \lim_{i \to \infty} r^{+}(x_i, t), r^{-}(x, t) = \lim_{i \to \infty} r^{-}(x_i, t)$$

if $x_i \in T(x) \cap \tilde{F}$ and $x_i \to x$ in T(x).

Take $x \in F'$ and let $\tilde{x} \in \bar{\zeta}(x)$ be such that

$$h_{r^{-}(t)}\tilde{x} \in \bar{\zeta}(h_t x).$$

We have

$$a(x, \bar{x}, t) \ge r^{-}(t) = a(x, \bar{x}, t)$$
 for every $\bar{x} \in \bar{\zeta}(x)$.

This implies that

$$a(\bar{x}, \bar{x}, r^{-}(t)) \ge r^{-}(t)$$
 for all $\bar{x} \in \bar{\zeta}(x)$

and therefore

$$r^{-}(r^{-}(t)) = r^{-}(t)$$
 for all $t \in \mathbb{R}$. (5.5)

We claim that

$$r^{-}(t) = r^{+}(t) = t$$
 for all $t \in \mathbb{R}$. (5.6)

Indeed, it follows from (5.3) and the definition of r^+ and r^- that

$$r^{-}(0) = r^{+}(0) = 0$$

 $r^{-}(1) = r^{+}(1) = 1$ (5.7)

and

$$r^{-}(t) + r^{+}(1-t) = 1.$$

Let us first show that

$$r^{-}(\frac{1}{2}) = r^{+}(\frac{1}{2}) = \frac{1}{2}.$$

Since $r^{-}(t)$ is continuous, there is $t_0 \in (0, 1)$ such that

$$r^{-}(t_0) = \frac{1}{2}$$
.

This and (5.5) imply that

$$r^{-}(\frac{1}{2})=\frac{1}{2}$$

and therefore

$$r^{+}(\frac{1}{2}) = \frac{1}{2}$$

by (5.7). We have shown that if $x \in F'$ then

$$h_{1/2}\bar{\zeta}(x) = \bar{\zeta}(h_{1/2}x).$$

This implies that

$$r^{-}(t) + r^{+}(\frac{1}{2} - t) = \frac{1}{2}$$
 for all $t \in \mathbb{R}$.

Arguing as above we get that (5.6) holds for $t = \frac{1}{4}$ and $t = \frac{3}{4}$. Proceeding by induction, we get that (5.6) holds for all $t \in R$ of the form $k/2^n$, k, $n = 1, 2, \ldots$ Since r^- and r^+ are continuous, (5.6) holds for all $t \in R$. (5.6) implies that

$$h_t \overline{\zeta}(x) = \overline{\zeta}(h_t x)$$
 for all $x \in F'$ and all $t \in R$.

This completes the proof.

This work was partially supported by NSF grant MCS-74-19388.

REFERENCES

- [1] B. Marcus. The horocycle flow is mixing of all degrees. Inventiones Math. 46 (1978), 201-209.
- [2] D. Ornstein & B. Weiss. Geodesic flows are Bernoullian. Israel J. Math. 14 (1973), 184-197.
- [3] M. Ratner. Horocycle flows are loosely Bernoulli. Israel J. Math. 31 (1978), 122-131.
- [4] M. Ratner. Rigidity of horocycle flows. Ann. Math. 115 (1982), 597-614.
- [5] V. A. Rohlin. On basic concepts of measure theory. Mat. Sbornik 67 (1949), 107-150. (In Russian.)
- [6] H. C. Wang. On a maximality property of discrete subgroups with fundamental domain of finite measure. Amer. J. Math. 89 (1967), 124-132.