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Abstract. We classify up to an isomorphism all factors of the classical horocycle
flow on the unit tangent bundle of a surface of constant negative curvature with
finite volume.

Let T={T,teR} and § ={S, t € R} be two measure preserving (m.p.) flows on
probability spaces (X, i) and (Y, v) respectively. We say that § is a factor of T if
there is a measure preserving
¢: X ->Y suchthat ¢(Tx)= Sy (x)
for all te R and u-almost every (a.e.) x € X. ¢ is called a conjugacy between T
and S. T and S are called isomorphic (T ~§) if there is an invertible conjugacy
between T and §, called an isomorphism. We write (T, S)~ (7", S") if T~ T' and
S ~S'. S is called trivial if there is y € Y such that v{y}= 1. Henceforth the word
‘factor’ means non-trivial factor.
Let ®(T') denote the set of all isomorphisms

¢: X »>X suchthat ¢(Tx)=Tp(x)

for all te R and a.e. x € X and let ¥ =W¥(T, S) denote the set of all conjugacies
between T and S. We say that ¢1 € ¥ and ¢, € ¥ are equivalent (¢; ~ ) if there
are ¢, € O(T) and ¢, € D(S) such that ;= po¢1°¢; a.e.

Let w(7, §) denote the set of equivalence classes in W. It is clear that if (T, S)~
(T', S') then there is a natural one-to-one correspondence between 7 (7T, S) and
7(T',S"). So |w(T, S)| is an invariant of the isomorphism class of (T, S).

One would naturally raise the following problems: (1) classifying all possible
factors of a given m.p. flow T up to an isomorphism; (2) describing 7 (7, S) for a
given factor S of T.

In this paper we shall solve these problems for the classical horocycle flow on
the unit tangent bundle of a surface of constant negative curvature with finite
volume.

Let G denote the group SL(2, R) equipped with a left invariant Riemannian
metric and let 7 be the set of all discrete subgroups I' of G such that the quotient
space M =T'\G = {I'g: g € G} has finite volume. M can be viewed as the unit tangent
bundle of a surface of constant negative curvature with finite volume. Let F be an
element of the Lie algebra of of G and let F, =exp (tF)e G. The flow f ={f,, re R}
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on M defined by f,(I'g)=T'g - F,, g€ G, t e R is called the algebraic flow, generated
by F. f preserves the Riemannian volume v on M derived from the Haar measure
on G. v is defined on the Borel o-algebra By, of M and we denote by (%, u) the
normalized completion of (Bay, v), w(M)=1.

The horocycle flow

h={h,tcR}
. . 0 0O\ .
on M is the algebraic flow, generated by ( 1 0), ie.

hr(Fg) = FgNr,
where

10
N,—(t 1), teR,geG.

It is well known that 4 is ergodic and mixing on (M, u), in fact mixing of all
degrees [1].

letFedA, T;€¢T,i=1,2andlet f”) be the algebraic flow on M; =I';\G, generated
by F, i =1,2. It is easy to see that if I'; =T, then £ is a factor of . Indeed, let

Y:M,»>M;
be defined by
y(T1g)=Tg, geG.
Then ¢ is measure preserving and
Uf " (T1g) = (T1gF,) =TogF, = P (T2g) = £ (4 (T'18)).
We shall call f* an algebraic factor of /",

The following theorem shows that every factor of the horocycle flow is algebraic.

THEOREM 1. Let T €T, M, =T\G and let S be a factor of the horocycle R
on (M, p1). Then there is T2€ T such that T'1<T, and § is isomorphic to h'® on

(M2’ Il-z)
It has been proved in [4] that for I';, [’ € 7 the horocycle flows h" and h® are

isomorphic iff I'y and I', are conjugate in G, i.e. ', = CT,C"! for some C e G. For
I'e 7 we denote

aD)={leT: Il

It is well known [6] that «(T') is finite. T is called maximal if a(I")={I'}. We get
the following corollary.

COROLLARY 1. The number of non-isomorphic factors of the horocycle flow h on
M =T\G, I'e T is finite and equals the number of conjugacy classes in a(T').

It was proved in [4] that if [;ea(["1) and ¢: M, > M, is a conjugacy between
k" and £ then there is C € G such that

CTC™'cT; and ¢(Tig)=hPc(Tig)
forsomeo e R anda.e.I';g e My, g € G,where yc(I'1g) =T,Cg. Thissaysthaty ~ ¢
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For I'; e a(I';) we denote

€, T)={CeG:CTC 'aT}={CeG: C ' TL,Cea(T1)}
and
k ([, T2)={T€a(l,): T =C 'T:C for some C € G}.

It follows from [4] that
¢C1~(//C29 Cly CZE%(FI’ F2)

iff C,=CC,D for some C € fz and some D € I.‘l, where T' denotes the normalizer
of I'in G, i.e.

F={CeG:cTC™'=T}.
In this case we write C;~C,. ~ is an equivalence relation in 4(I';, I',). For
I, e« (T, I'y) we write I" ~I" if =D 'I"D for some D el;. It is clear that
Cy~C,in €', Ty) iff C3'T2Co~C1'T,Cy in (T, T'2). We have just proved the
following theorem.

THEOREM 2. Let Ty, T,e Tand Ty <>, Then
m(h", h?)={lyc): Ce €'y, T)},

where [¢] denotes the equivalence class of y € ¥(h'", h®). w(h'", 1) is finite and
Iw(h(”, hm)l equals the number of equivalence classes in x (I'y, I'2).

COROLLARY 2. If T is maximal and S is a factor of h on I'\G, then S is isomorphic
to h and |mw(h, S)|=1.

THEOREM 3. Let S on (Y, v) be a factor of h, (the time-one transformation of the
horocycle flow) on (M =I'\G, w), '€ T with a conjugacy .M > Y, yh(x)=hy(x)
a.e. x e M. Then there exists a m.p. flow {S,te R} on (Y, v) such that $ =5, and
Yh(x)=8S(x) forallteR and a.e. x e M.

COROLLARY 3. If § is a factor of h'" on M, =T\G then there is T'; 2T, such that
S is isomorphic to h'® on M, =T\G. If Ty is maximal then every factor of h{" is
isomorphic to h'".

The geodesic flow g ={g,, t€ R} on M =T'\G, 'e 7 is the algebraic flow, gener-
1 0 )
t .e.
aedby(o _1)eﬂ,1e

exp (t) 0

&(lx)= l"x( 0 exp (—t)

>, xeG.

g and h satisfy the following commutation relation:
gt ° hs = hs exp (2¢t) ° gta t, s € R (*)

(*) shows that A, and hg are isomorphic if @ - 8 > 0 and that the entropy of 4 is zero.
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It is well known that g is Bernoulli [2] and therefore g has uncountably many
non-isomorphic factors. (*) shows that the entropy of g equals 2 for every I'e 7.
This implies that g'¥ is isomorphic to g for any I'y, ;€ 7. One can show that
m(g®, gm) is uncountable.

The proof of theorem 1 consists of three basic steps: (1) We show (§ 3) that if
a flow $ on (Y, v) is a factor of the horocycle flow A on (M, u) with a factor map
¢:M-Y then ¢ '{y} is finite for a.e. y e Y. This uses the basic estimates on
divergence of horocycles (§ 2) to show that ¢ is locally 1-1; (2) using (1) we show
that any factor map of the horocycle flow must be a factor map of the entire action
of SL(2,R) (§4); (3) using (2), we construct a discrete subgroup of SL(2, R) for
which the factor is a horocycle flow (the end of § 4).

Section 1 contains some measure-theoretical background and in § 5 we prove
theorem 3.

I am grateful to Joe Wolf for valuable discussions.

1. Factors and invariant partitions
Henceforth all measure spaces are assumed to be separable and complete.

LetS ={S,tcR}on (Y, v)beafactorof T ={T, t € R}on (X, n) with a conjugacy
U:X->Y

YT, (x)=Sa(x) forallteR and a.e. xeX. (1.1)

We can assume without loss of generality that (1.1) holds for all x € X. ¢ induces
a measurable partition

E=eW) = ykyeY}

of X (see [5)), invariant under T, i.e. for every t € R
Ce¢ fiTCet

Let X/£ be the quotient space, induced by £ and let 7: X - X/¢ be the projection
7 (x)=C(x), where C(x) denotes the atom of ¢, containing x. A set A< X/¢ is
called measurable in X/¢ if 7 '(A) is measurable in X. We define a measure u,
on X/¢&€ by us(A) =p.(7-r“1(A)). m is a conjugacy between T and the m.p. flow T¢
on X/¢ defined by

TSHCx)=C(Tx), xeX, teR.

It is clear, that T¢ is isomorphic to .
It is well known (see [5]) that for a.e. C €¢ there is a probability measure pc
on C such that if A € X is measurable in X then A n C is measurable in C and

wd)= |

X/

fuc(Af\C)dMg(C)- (1.2)

Henceforth it will be clear from the context when C € £ is considered as a subset
of X and when it is considered as a point of X/£. The family of measures {uc} is
unique in the following sense: a family {w ¢} satisfies (1.2) iff wc=puc for a.e.
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C € X/¢. This says that by possibly changing {ic} on a set of u,-measure zero we
can get a set

NcX/E TiQ=Q, teR, w(Q)=1
such that if C € () then

A < C is measurable in C iff T,A is measurable in T,C
and uc(A)=urcT,AforallreR. (1.3)

We can assume without loss of generality that (1.3) holds for all C € X/¢, since T*
restricted on ) is isomorphic to T* on X/¢&.
We say that ¢ is atomic if there is x € C s.t. uc{x}>0.

PROPOSITION 1.1. Suppose that T is ergodic and that there is Z < X/, uZ)>0
such that wc is atomic for every C € Z. Then there are

UcX/¢, TiU=U, teR, u(U)=1,
DcX, T.D=D, teR, uD)=1
and an integer n >0 such that for every C € U, D n C consists of exactly n points

x1(C), ..., x.(C) with

1
MC{xi(C)}=;, i=1,...,n

Proof. Let m: X/£ - R be defined by
m(C)=sup {uci{x}: x e C}.
m is measurable [5] and (1.3) shows that m is constant on orbits of T¢. Since T*
is ergodic, there is
U'cX/¢, TiU'=U', teR, u(U)=1
such that m equals a constant « on U’. Since
welZnUY>0 and m(C)>0

for every C € Z, a must be positive.
Let

D={xeX:Cx)eU'  and uc{x}=a}.

D is measurable [5] and (1.3) shows that D consists of orbits of T. It is clear, that
w(D)>0. Since T is ergodic, u{(D)=1.
Let

U={CeU" uc(CnD)=1},
weU)=1, TiU=U, teR.
If xeCnD then uc{x}=a >0, C e U. This says that C nD, C e U consists of

finite many points x1(C), ..., x,(C) and that a = 1/n, since uc(CnD)=1,Ce U.
This completes the proof. O
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It also follows from [5] that if a.e. C e X/¢ consists of n points of equal
wncmeasure, then there are a measurable

VeX/¢ ne(V)=1, 7 (V)=X, uX)=1
and pairwise disjoint measurable X;<X,i=1,...,n,

n 1
X=UX'U #'(Xl)=;’ i=17---1n
i=1

such that if C € V then
CnXi={x(C)}

consists of exactly one point and the maps ¢.: X onto X; defined by
@i(x) =x:(C(x))

are measurable, i =1, ..., n. The pair (X, ¢;) is called a measurable cross-section
of&i=1,...,n.

2. Properties of the covering horocycle flow in G
Let p: G>M =T'\G, I'e 7 be the covering projection p(g) =T'g. Let

0 10
G:g=g'(; e_,) and H¢g=g~(t 1) geG,teR

be the geodesic and the horocycle flows on G, covering {g,} and {A,} on M respec-
tively. We shall also consider the flow

Hig=g-(, )
on G, covering the flow
hi(Tg)=TH{g
on M. ’
We have
GioHs=H;oxpan° Gy
G.°HY :'H;kexp(—Zr) ° G,
We assume that G is equipped with a left invariant Riemannian metric, in which
the length of the orbit intervals [g, Gg]l, [g, Hg] and [g, H¥g] is ¢, g€ G. Let
d:G X G > R" be the left invariant metric on G, induced by this Riemannian metric

and let ¢ denote the identity element of G.
Denote

, t,sER. 2.1)

b
Alg)=max {|1-al,|bl, e} for g =(* )e G.
It is well known, that there is A >1 such that

A"A(g) =d(e,g)<AA(g) forallge G withd(g, ¢)<1. 2.2)
For x, y € G we have

d(st9Hsy)=d(e,N—s 4 'Ns)
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where g =x -y and NS=(; (1)) It follows from (2.2) that if d(H,x, Hy)=1,
then
AT'AN_, - g - N,)=d(Hx, Hy)<AAN_ - g - N,)
where. (2.3)
A(N_, - g - N,)=max {{1—a —bs|, |b], |bs*+s(a —d)—c|}
g=x_1-y=(a b).
c d

Let 0<¢ =<1 be small and suppose that d(x, y)<<e. We shall now estimate the
length of the time the horocycle orbits Hx and H,y stay within €. (2.3) shows that
d(Hx, H,y) grows polynomially in 5. We have

{seR":dHx,Hy)<e}c{seR":AN_; g N)=A-e}=E(ge) (2.4)

and

where g =x 1. y and A(N_; - g -+ N,) are as in (2.3).
It is easy to compute that:

(1) E(g, ¢) consists of at most two connected components Ey=E(g, £)>50 and
E.=Ei(g,¢);
(2) If

[ =1(g, e) =max {{(Ep), [(E,)} = 1({(I) denotes the length of I),

then for every s € E(g, €) we have

l1—a,l=D(e)/l, |b|=D(e)/I? lcsl=e (2.5)
where

as b,

( >=N_s-g-Ns and e=<D(e)~0

¢, ds
when £ > 0.

It follows from (2.3) and (2.5) that if /=1 then
AN_s—u g "Ns+u)=3D(e) forallseE(g,e)andall0=y=<I.

This implies that
dHvx, Hy . ,y)<3AD () forallseE(g,e)andall0=<u=<I. (2.6)

Henceforth D (¢ ) will always mean a constant depending only on ¢ and converging
to O when ¢ > 0.
Let us observe that if

a b
= , Alg)<
& (c d) (g)<e
and ¢ is sufficiently small then

g=H,H¥G,e where p=loga/(1+bc), r=be”, q=ce’. 2.7
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For g € G and a, B, v =0 we define
Ug;a,B,v)={§€G: § = HH}Gxg for some |p|=a,|r| =B, lq|=v}.
It follows from (2.1) that for every t€ R
GU(g;a,B,v)=U(Gg;a,Be ™, ye™). (2.8)

It follows from (2.4), (2.5) and (2.7) that if s eE(x""'- y,e)and [ = Ix 'y, e)=1
then

2

H,y e U(Hx, D(e)/l, D(e)/1?, D(e)) (2.9)
where D(e)-> 0 when ¢ = 0.
We shall need the following:

LEMMA 2.1. Given 0<8 <1 there are § >0 and § >0 depending only on & such
that if d{x,y)<é6, x,y€G then for every seE(x_l-y,l) and every O=u<
t‘)‘-l(x_l-y, D withs+ueE(x 'y, 1)

either d(H,.x, Hyy y+1y) <8 or d(Hy+ux, Hy vy 1y) <6. (2.10)
Proof. 1t is enough to show that there are 8§ >0 and 8 >0 such that if A(g)<5,
g € G then for every s € E(g, 1) and every
O0<u=6bl(g,1) and s+ueE(g, 1)
we have |c;+,]>1 and
max {|1 = a1y, [Bssul, [Cs4w —sign cssn |} <6,

where

as, b
=N_, - .Ns=(‘ ‘)
b4 g ¢, d.

and sign ¢ =c¢/|c| if ¢ #0.
Let 0 <& <& be so small that if A(g) <& then

A(g)<1 forall0=s<2D(1)/s.
(see (2.5) for the definition of D(1)). This says that
I=1(g, 1)=2D(1)/s.
Let § =8/4D(1) and let s € E(g, 1), 0<u < §I. We have using (2.3) and (2.5)
|bss| =b,]<=D(1)/1*< 5

1-acu|=[1-a,—bu|<D1)/1+5l -D(1)/I’<8 (2.11)

les v+l = b’ +ula, —d;)|<8°D(1)+36D(1)<4D(1)5§ =5.  (2.12)
(2.11) shows that
leseu|>1 if s+ugE(g, 1)

since A(gs+u) > 1fors +ué E(g, 1). Also |c;| < 1 fors € E(g, 1). This and (2.12) imply
that

lcs+u —signceru| =8 if s+ugE(g, 1).

This completes the proof. O
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Denote
W.(g)=U(g;¢,¢0),geG.
We say that x, y € G, y € W, (x) form an g-strip of length ¢ =0 if for every s €{0, t]
there is q(s) =0, q(0) = 0 such that
Hyy € W.(Hx). (2.13)
q(s)=4q(s, x, y) is uniquely defined by (2.13) and is a smooth function of (s, x, y).
It is easy to compute that
lg(s)~s|=D(e)s, (2.14)

where D(e)- 0 when ¢ - 0. It follows from (2.1) that if x, y form an e-strip of

length ¢ then G.x, G.y, 7 =0 form an e-strip of length te°".

3. h-invariant partitions
Let & ={h, t € R} be the horocycle flow on (M =T\G, 1) and let S on (Y, v) be a
factor of , (the time-one transformation of the flow 4,) with a conjugacy .M ->Y

Yhi(x)=Sy(x) forae.xeM. 3.1

LEMMA 3.1. Let { be the partition of M induced by  (see §1). Then there exists
Z =M/{, u(Z)>0 such that uc is atomic for every C € Z.

Proof. We can assume without loss of generality that Y is a compact metric space
and § is a homeomorphism of Y onto itself. Moreover, there exists £y > 0 such that

dy(y,Sy)>ey foreveryyey, 3.2)

where dy denotes the metric in Y (see for instance [3]).

Let 0< 8 <0.01 be fixed.

Since ¢:M > Y is measurable, there is AcM, u(A)>1-6 such that ¢ is
uniformly continuous on A (see lemma 3.1 in [4]).

Let 0 <& <1 be such that

ifd(Wl,W2)<6, Wi, W2€A then dy(lﬁW], l/IW2)<£y.

Let § = 5(5) >0 and §_= 5(8)>0 be as in lemma 2.1. Since 4, is ergodic, there
are V<M, u(V)>1-58/100 and an integer ny>0 such that

if n = no and x € V then the relative frequency of

. (3.3)
Aon{x, hix, ..., h.x}is at least 1 —26.
Let V<M, p,(V)> 1-—6 and an integer n; > ng be such that
if n=n, and x € V then the relative frequency of (3.4)
Von{x,hix,...,h.x}is at least 1 —6_/90. ’
Let 0< 8, <& be so small that if d (x, y) <84, x, y € G then
d(Hx, Hyy)<1 forall 0=<s=2n,/é. (3.5)
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We claim that
d(u,v)=8 (3.6)
for every u,ve C n V,u #v and every C (.
Suppose on the contrary that there are Cye ¢ and uo, vo€ Con V, ug # vo such
that d(uo, Uo) <61.
Let xo=p '(uo), yo=p '(vo), X0, yo€ G be such that d(xo, yo) = d(uo, vo) and let
E=E(x5"' yo,1)=EoUE; be as in (2.5) (E, can be empty), Eo=[0, so), E1=

[s1, 52], 51> s0.
(3.5) implies that

2n4/8 < I(Eo) <max {{(E,), [(E1)}=1.
Denote
Fo=[s0,s0+61/2], F=[0,s0]UF, if s1—s0>8l
and
Fo=[s2,52+81/2), F=[0,s,]JUF, if si—s0=8l.
We have Foc F—E and
\Fl=n, and |Fo|/|F|=§/20. (3.7

where |F| denotes the number of integers in F,

Let
J={meF:misan integer and huoe V, hvoe V}%.

It follows from (3.4) that
\|/IF|=1-5/40
since uo, vo€ V and |F|>n,. This and (3.7) imply that there is an integer m, such

that
mop€ Fo ~J.
Denote

J ={m €[mo, mo+81/2): m is an integer and Ao € A, Hm_100€ A, Apms100€ A}
It follows from (3.3) that
1/|lmo, mo+61/2]| = 1- 66,
since
Pmoléoy Amo00€ V' and  81/2>ny > no.
This implies that there is
my € [mo, mo+81/2]1< [s0, s0+81/21U[s2, 52 +81/2]
such that
Am o€ A, hpm_100€A and A, v0€ A (3.8)

It follows from lemma 2.1 that

either d(hp,uo, hm+100) <8  or  d(hm uo, Bim,-100) <8 3.9)

since d(uo, vo) <81 <8(8).
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Assume for simplicity that the first condition of (3.9) holds. We have by (3.8)
and our choice of §

dy (Yhm, o, Yhm,+100) <€y (3.10)
(3.1) implies that

l/’(hm1+1vo) = Slf/(hmlvo)-
Also

(//(hmluo) =y (Am,00) =y
since ug, vo€ Co€ {. (3.10) implies then that
dy(y, Sy)<ey
which contrgdicts (3.2). So we have proved (3.6).
Since u (V) >0 there is Z c M/{, u(Z)> 0 such that

pel(Cn ‘7)>0 forevery Ce Z. (3.11)
(3.6) implies that C n V is at most countable. This implies via (3.11) that uc is
atomic for every C € Z. This completes the proof. O

Note 3.1. It follows from the proof of lemma 3.1 that given 0 <4 <0.01 there are
a compact K <M, u(K)>1-6 and §, >0 such that

du,v)=6, foreveryu,veCnK,u#v and every C €.

4. Algebraicity of ¢
From now on our discussion will be similar to [4].

LetS ={S,te R}on(Y, v)beafactorof h ={h, t € R} on (M, u) with a conjugacy
yM->Y

Yh(x)=Sa(x) forallteR anda.e.xeM,

and let £ be the A-invariant partition of M, induced by . It follows from proposition
1.1 and lemma 3.1, that there are D<M, h.D=D, teR, u(D)=1, UcM/¢,
héU =U, teR, n{U)=1 and an integer n >0 such that for every Ce U the
intersection D N C consists of exactly n points with ucmeasure 1/n.

We assume without loss of generality that D =M and U = M/£. Thus each C e ¢
consists of n distinct points of u~measure 1/n.

Let 0<6 <0.01 be given. Using the discreteness of 'e 7, M =T'\G and note
3.1, wecan getacompact K< M, u(K)>1 —6%*/n* and p >0 such that

(1) if x € p~'(K) then the projection p: G > M, p(g)=Tg
is an isometry on the ball of radius p centered at x. 4.1)
2) du,v)=p foreveryu,veCnK,u#v,Cet.

Let
6
K'= W‘I{CeM/gz we(CnK)> 1—;},

where 7: M - M/ ¢ is the projection 7w (x) = £(x), x € M. K' consists of atoms of £,
We have

uw(K)>1-6/n and K'cK, 4.2)
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since w(K)>1-6%/n” and every C € ¢ consists of n points of ucmeasure 1/n.
Let 0<e <p/2 be so small that

e<1l(see(2.2)) and 3AD(e)<p/2in (2.6). (4.3)
Let 0 <80 <€ be so small that if d(x, y) <8y, x, y € G then
dHx,Hy)<e forallO=s=<]1. 4.4)

LetueK,veM andd(u, v) <8 <8g. Letx,y € G besuch that p(x)=u, p(y)=v
and d(x, y) <é8. Denote

E(u,v,e)=Eo(x™"*y,¢)
where Eo(x~'-y,e) is defined in (2.5). E(u,v,¢) is well defined and does
not depend on the choice of xep_l(u),yep_l(v), since ueK and 6 <p. It

follows from (4.4) that I(E(u, v, €))=1. Henceforth ¢£(v) denotes the atom of &,
containing v.

LEMMA 4.1. Let 0<8 <8, u,veM and A, =A,(u,v,8)={s €0, t]: there exists
v(s)e &(v) such that ho(s)eK' and d(hwu, ho(s)) <8}, t=1. If I(A,)>0.9¢ then
there is s € A, such that [(E(hgu, hop(s), §))=0.2t.

Proof. The proof is similar to that of lemma 2.1 in [4]. Let
E,=s+E(hu,ho(s),8), seA,.
We claim that
ifs;eA, and v(sq)#v(s) thens gE,. (4.5)
Indeed, suppose on the contrary that s; € E;. Then
d(hs,u, hs,v(s))<3AD(c)<p/2
by (2.6) and (4.3). Also we have
d(hs,v(s1), ho,u) <8 <p/2,
since 51 € A,. This implies that
d(hs,v(s1), hs,v(s)) <p. (4.6)
We have
hs,v(s) € E(hs,v(s1)),
since v (s), v(sy) € £(v). Also
hgv(s1)eK',
since s, € A, and therefore
hs,v(s)eK',
since K’ consists of atoms of £ This and (4.6) imply that
h,v(s) = hs,v(s1)

which contradicts v(s) # v (sq) in (4.5).
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Let B={E,,...,E,} be the collection of pairwise disjoint intervals E;=
[s, 7:1<=[0, 1), s;>7;, j>1i, such that E;=E, for some s€A, i=1,...,m and
A,cUL, E; and let d(E;, E;) =s; — .

Letx € Gbesuchthatp(x)=u,x; = H,;x,p(x;) = hsu = u; andlet y; € G besuch that
d(x;, y;) <8 and p(y;) = hsv(s;) = v.. We have

Ei=s;+Eox;' -y, 8)=s;i+E(x;' -y, 8)
and
UE)=I(x7""y;,8)=1I
(see (2.5)). Suppose that s; —s; =q and v (s;) = v(s;). We have
(hsu, hsp(s))) = (), v;) = (halti, hqvi).
Thoughd (x;, yi) <8, p(x;) = u;, p(y:) = v; and d (u;, v;) <8, itis not necessarily true that
d(Hgx;, Hay:) <8,
but there is a unique & T such that

d(Hgxiy @ - Hgy:) <8. 4.7)

We write E; —EE,- if v(s;)=v(s;) and @ # ¢ in (4.7), E; ~5E,~ if v(s;))=v(s;) and D =¢
in (4.7) and E; iEi if v(s;) # v (s;). It follows from (2.6) and (4.3) that

d(Hq,-+sxi’ Hq.-+syi) =3AD (E) < P/2 (4'8)
for all 0=s <[, where q; =1, —s;, i =1, ..., m. This implies via (4.1) that

sj—=d(E, E) =l if E,~E, (4.9)
since y; ep_l(K). (4.8) also shows that
A (Priestty P50 (50)) = d (hgprsthis hgesvi) <p/2
for all 0 =s </, This implies that
si—m=d(E, E)=l if E;~E, (4.10)
since otherwise we would have
d(hsp(si), hsv(si) <p

which contradicts (4.1), since v (s;) # v(s;), h,v(s;) € K' and h v (s;) € é(hp(s;)) =K.
Let us now define a new collection 8 ={E;, ..., E,} by the following procedure.
We set E;=E; unless E,<E; and d(E., E;)<I(E1). In this last case we set
E,=[s1, 2] E1UE,. Suppose E;, k =1, .. ., p have been defined. To define E, .,
we apply the same construction to the first E € 8, which has not been included in any
Eok=1,...,p.
It follows from the construction of 3 that

d(Ek, Ek+l)ZI(E_k) if E_'k’f'E_kH (4.11)
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and for each E, € 8 there is E;,_e 8 such that
either E, =E;, or E.> (Eiy, UE; +1) and I(E-k)53l,~k. (4.12)
This, (4.9) and (4.10) imply
d(Ek, E-k+l) =, = l(E_k)/3
o= T = - .
if Ex ~Ej1 or Ex ~Ej.;. This and (4.11) give
d(Ei, Exr1)=1(E)/3 forallk=1,...,m—1. (4.13)
Denote
I(B)= Y UE).
k=1
We have
1(3)>0.9¢,
since A, <\;_, E..
This and (4.13) imply that there is E € 8 such that
I(E)=0.6t.
This implies via (4.12) that there is E € 8 such that /(E)=0.2¢. This completes the
proof. O

COROLLARY 4.1. Let u,veM and let [(A,)>0.9¢ for all t=1t,>1, where A, =
A,(u,v,8) as in lemma 4.1. Then there is ¢ €£(v) such that 0 = hgu for some
q=q(u,v,8),|ql<é.

Proof. It follows from the proof of lemma 4.1 that there is s = 0 such that
I(E(hu, ho(s), 8))=0.2t for all t =¢,.

(2.5) shows that this may happen only if Aw(s)=hshu for some |q|<8. We get
b =v(s)=hau, 0 €&(v). O]

For A < M we shall write A <¢ if A consists of atoms of &
According to § 1 there are X <¢, u(X) =1 and pairwise disjoint measurable sets

n 1
XiCX’i=1,---n, UX,=X,[L(X,)=;
i=1

such that for every x € X the intersection
E(x)n X = {xi(x)}

consists of exactly one point and the map ¢;: X onto X; defined by ¢;(x) = x;(x)
is measurable, i =1, ..., n.
Let K’ be the set defined in (4.2) and let

5 5 5 6
K=K'nX, IL(K)=IL(K’)>1—;, K <&
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Since ¢;: X » X is measurable, i =1, ..., n thereis A< X, u(A)>1-46 such that
A<¢andeach ¢, i=1,...,n is uniformly continuous on A (see lemma 3.1 in [4]).
Let

Q=AnK, p(Q)>1-20, Q<¢
and let () be the generic set of Q for A,

hQ=Q, teR, u(d)=1, Q<&
LEMMA 4.2, Forevery 0 <8 <8y thereisw = w(8)>0such thatifui, vi€Q, v, = guu,

for some |p| <w, then for every u, € &(u,) there is vy € £(v1) such that va = hygyu, for
some b =b(uy, ua, p), |b| <6 and b(huy, hitz, p) =b(ur, us, p) forallteR.

Proof. Since ¢;, i=1,...,n are uniformly continuous on A there is 0<w <§/2
such that

if d(W], W2)<a), Wiy, W2€A then d(¢, Wi, ¢,’ . W2)<6/2, [ = 1, [ (B (414)
Let uq, v1€Q, v; = g,u, for some |p|<w. Let A,> 0 be such that

if A = A, then the relative length measure of Q on

4.15
[u1, haui] and on [vy, havi] is at least 1—346. ( )

Letx, y € G, y = G,x be such that p(x) = uy, p(y) =v:. x and y form an w-strip of
length A for every A > 0. We have

H,y=G,H, (see(2.13))and hgev1=gohu1 foralls=0.
Denote
F,={s€[0,A}: hau,€ Q, hyyv1€ Q}.
It follows from (4.15) that
I(F\)>(1-76)A (4.16)

if w >0 is sufficiently small and A = A, g(A) = Ao (see (2.14)).
Let u,e &(uy). We write j(ry=ie{l,...,n} ifhueX,
We have

¢j(s)(hsul) = hsulexi(s)
Dis)has)v1) € €£(hg(sy01) = hg()€ (1)
or
¢i(s)(hq(s)v 1) = hq(s)vl(q (s))a
where v1(q(s)) € é(vy) and if s € F, then

haur,eK', hgs e’
and Uz € asU1(g(s)) @.17)
d(hsuz, hqisyv1(q(s))) <8/2
by (4.14). Let w = gu,. We have
hasyw = gphsus
and therefore

d(hsuz, hq(s)W) <w.
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This and (4.17) imply that
d(hgsyW, has01(q(s))) <w +8/2<8 (4.18)

for all s e F), and all A = Aq, g(A)=A,.
Let A,=A,(w, v,,8) be as in lemma 4.1. (4.16) and (4.18) show that there is
to>1 such that

[(A)>0.9¢ forall t=¢t,.

It follows then from corollary 4.1 that there is v, € £(vy) such that v, = h,w = huq, >

for some b =b(uy, uz, p), |b|<8. It is clear, that b(hu1, huta, p) = b(uy, us, p) for

allteR, |p|<w. O
It follows from lemma 4.2 that there exists wo >0 such that

gweliff guel

for every u € Q, w € £(u), |pl <wy, since Q is hA-invariant and Q <¢,
Let

Q, ={ueQ: guel},|p|<wo
Q, is h-invariant, u(Q,) =1 and Q, <&
LEMMA 4.3, Thereis an h-invariant Q, < O, Q, <& u (Q,) = Lsuchthatb (u, w,p) =0
forallueQ,, weéw), |pl<wo.
Proof. It follows from the definition of b (u, w, p) that it is measurable and
b(u’ w, p) = —b(W, u, p)
b(x,w,p)=b(u,w,p)—bu,x,p), x,weé&u), (4.19)
ue Qp, Ip] <wg.
Define f,:Q, >R and f,: Q, > R by
folu)=max {b(u, w,p): w € £(u)}
fo(u)=min {b(u, w, p): w € £(u)}.
The functions f, and f, are measurable and constant on orbits of h. Since_ h is
ergodic, there are Q,<Q,, u(Q,)=1, Q,<¢ and constants &, o such that f, =5
and f, =& on (Q,. e
We claim that ¢ = ¢ = 0. Indeed, suppose on the contrary that ¢ > 0. Lpt/ ue,
and w € ¢é(u) be such that

Wwy P) = 0-',
/

,fb(W,u’P)="0_'<0

Then

and therefore o <0.
Let x € £(u) be such that

b(u,x,p)=a.
Then

b(x,w,p)=6d—-0>c
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by (4.19) which contradicts the fact that ¢ = max {b(x, w, p): w € £(x)}. Therefore

g =0 =0. This completes the proof. O
Let .
Q= N Q.
p is rational
|pl<wo

Qs h-invariant, p,(f)) =1 and fl<§. We have
8p (&(u))= ‘f(gpu)

for all u € ) and all rational |p| < wo.
Let O = {u € M: Q) is dense on the geodesic orbit of u}. {) is h-invariant, u () =1
and Qn Q< £ Lemma 4.2 shows that b (u, w, p) is continuous in p. This implies that

gp(€(u)) = £(gpu) (4.20)

for all u e 2N and all p € R with g,u € Q.
Let g,u e M —Q for some u e 2N}, pe R. We have

E(gu)=M —Q, since Q< ¢;
&) =M —-Q by (4.20).
Let us define a partition £ on () by

Egu)=¢(gu) ifucQn), gueQ
E(gou) = 8,(¢)) fueQn, gue.
We have
E=tonQnQ<¢ héEw)=E&hu) géu)=Egu) @.21)

forallueQandallteR.
Let QcM, n(Q)>1-20, Q <¢ be as in lemma 4.2. Since & is ergodic, there
are Z <), Z<¢& w(Z)>1—0 and 1 >0 such that
if z € Z, t >1 then the relative length measure of Q 4.22)
on [z, hz]is at least 1 —34. '

Let Z < () be the generic set of Z for the geodesic flow g, Z <&, u(Z)=1.
LEMMA 4.4. There exists v >0 such that if u, v € Z and v = h}u for some |r| <y then
£)=hFEw).

Proof. The proof is similar to that of lemma 4.2. Since ¢;, i = 1, ..., n are uniformly
continuous on @, given 0<§ <§, there is 0 <w = w(§) <&/2 such that

ifdwy, wa)<w, wy,wr€Q thend(dwy, diw;)<8/2 foralli=1,...,n.
(4.23)

Let 0<y <w be such that if x,ye G, y e W,(x) then x,y form an w-strip of
length 1 (see (2.13)). Let

u,veZ,v=h¥u forsome |r|<y.
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We shall show that
h¥u e £(v) for every use (u).

Letx,ye€G, p(x)=u,p(y)=v,y=H}x. x and y form an w-strip of length 1.
Since u, v € Z, there is a sequence 0 <7, -, k - such that exp (27, )>1 and

WegueZ v¥=guveZk=12,....

Let x(k)=Grk , y(k)=G-rkYo We have p(x(k))=u(k)’ p(y(k))=v(k) and x(k)’y(k)
form an w-strip of length ¢, =exp (27:)>r. This means (see (2.13)) that

Hyy® e W,(Hx®) forallse[0, 4]
or
o™ € Wo(ha™), se[0, 1.
Let
Bi={se[0, ] hu“e Q, hop™' e Q}.
k=1,2,...(4.22) implies that
B)>(1-T8)t, k=1,2,... (4.24)

if w is sufficiently small, #; >, q(t;)>1.
Let u,€£(u). Then
(k))

uf® =gnuieé(u
by (4.21). We write ji (s)=ie{l,. n} if hau'® € X.. We have that if s € B, then
sul ¢]k(s)hsu )
¢1k(3)hq(S)U ef(hq(S)U ) hq(s)(f( * )))
or
b hasv" = haep(q(s))
for some
v (q(s)) e €™ = E™),
since v e Z <, and
dhu'l, hasp©(qs))<8/2 k=1,2,... (4.25)
by (4.23). Let
w=h¥u; and w®=g.w, k=1,2,...
We have
dhu, hyoyw)<w, sel0,t], k=1,2,...

This and (4.25) imply that
d(hgw'™, hasv®(q(s)) <w +8/2<8.

Also
hasv®(q(s))eK’ if seBu. (4.26)
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Let
A =Agyw™, v®, 8)<[0, q(1)]
be as in lemma 4.1. We have
[(A)=09q (1), k=12,...
by (4.24) and (4.26), if w is sufficiently small. This implies via lemma 4.1 that there
is s; €[0, g(t)] such that

E(hyw™, ho v (s), 8)202qt), k=1,2,....
This implies via (2.9) that
hov“(si) € Ulhow™, D(e)/ti, D(e)/tk, D(€))
and therefore
8-rhe 0 (5k) = Py exp (<2508 -0 (sk)
=N exp(—2n0)0(K) € Ul exp (—2m9)W, D(€)/ti, D)/ te, D(€)/te),

k=1,2,... (4.27)

where §(k) = g_,.v™(si) € £(v) by (4.21). (4.27) may happen only if

w=h ;kul € f(v)
since s, exp (—27.)€[0,q(1)], k=1,2,..., and £(v) is finite. This completes the

proof. O
For w e M we denote

W™ w)={w'e M: w'=h,g,w for some p, r€ R}.

W™ (w), w e M form the unstable foliation W for the geodesic flow g. The set
) consists of leaves of W, It follows from (4.21) that if w, € W™ (w), w € Q} and
wi - w in the topology of W*“)(w), then

Ewi)>E(w), k->oo.
Let
Z ={w e{): Z is dense on the i *-orbit of w},
#(Z)=1and let

W={we: ZnZ isdense in W*(w)}, u(W)=1.
It follows from lemma 4.4 and (4.21) that W <¢£ and
if u,ve W,v=hsht*gu forsomep,q,reR then £(v)=hh¥*q,t(u). (4.28)
This implies that if
wieeW, wieW, wioweM, wi-ow

when k = 00 then

lim &(wi) = lim £(wk)
and this limit equals £(w), if w € W. This implies that

fweM-W, wiow, wieW thenklimg(wk)cM—W.
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Let us define a partition é on M by
Ew)=€&w) ifueW and

€)= lim &), e € W, ux > u, k> 0.

£ is well defined and
E=ton WnOnQby @4.21) and if v =hh¥gu, ue M
then £(v) = hoh¥g,£(u) by (4.28).

(4.29) shows that ¢ on M/¢ and h on M/E are isomorphic, since W QN Q is
h-invariant and w (W nQn Q) = 1.

Proof of theorem 1. Denote
Pw)=p~'¢w),ueM and ['=I(,),

where uo=p(e). We shall show that " is a subgroup of G.
We say that Je G isachainin G if J =J, - - - J, where

Jf:H“H:':G"f”=e'<exp(pi) exp(~pi))'((1) ;)(ql (1))

(4.29)

for some p;, qi, i €R, i =1, - -+, k. Itis clear, that for any g1, g € G there is a chain
JeG suchthatg, =g J.
Let g, gl and let

g=e"J, §=e'i
for some chains
J=T Ty Ji=H,H'G,e, i=1,...,k

and

F=Jii- b Ji=H;H*Gse, i=1,...,k
We write

pU) =hohiigp(e)=(hh*g)i(uo), i=1,..., k.
We have

p(g)=(hh*g)i - - - (hh*g)1(uo) € £(uo)
p(@) = (Rh¥g)i - - - (Rh*g)1(uo) € E(uo)
since g, g € I". This implies by (4.29) that
(Rh*g)i - - - (hh*g)1(€(uo)) = E(uo)
and (4.30)
(hh¥g) - - (h*g)1(E (o) = E(uo).
We have
g-g=e-J- J
and
pig - &)= (hh¥g)c - - - (hhFR)u(hh*g) -+ (hh*g)1(uo) € £(uo)
by (4.30).
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This implies that g - g el and that T is a subgroup of G. It is clear that I is
discrete and =T,
Letgel'(u), ue M and let g = ¢ - J for some chain J € G. (4.29) shows that then

f‘(u)=f‘-]=fg.
Define (/7: I'/G onto M/f by
G(Tg)=£€(p ()
It is clear that ¢ is measure preserving and
dh(Fg)=d (g - N)=E&(p(g - N))=E(hg) = h¥(g).

This shows that :/7 is an isomorphism between k and ['/G and h¢ on M/f. This
implies via (4.29) that A is isomorphic to h® on M/¢. ]

S. Proof of theorem 3
Let S on (Y, v) be a factor of h, on (M =I'\G, u) with a conjugacy y:M >Y

Yhi(x)=8Sy(x) fora.e.xeM,

and let ¢ be the 4,-invariant partition of M, induced by ¢. It follows from proposition
1.1 and lemma 3.1 that there are D =M, h,D =D, u(D)=1, U cM/{, hiU = U,
w:(U)=1 and an integer n >0 such that for every C € U the intersection C "D
consists of exactly n points each of u~measure 1/n.

We assume without loss of generality that D =M and U =M/{. So each Ce¢
consists of n distinct points of yuc-measure 1/n.

Let 9, K, p, K', ¢ and 8o be as in § 4 for ¢{.

We omit the proof of the following lemma, since it is fully analogous to the proof
of lemma 4.1 and corollary 4.1.

LEMMA 5.1. Let 0 <8 <8¢, u, v e M and let
Ac,={me{0,1,...,k}: there exists v(m)e (v)
such that hp,v(m)e K' and d(h,u, h,v(m)) <8}
If |Ai|/k > 0.9 for all integers k > ko >0 then there is © € { (v) such that
0 =hau forsomeq=qu,uv,8),q|<s.
Let X< uX)=1land X;cX,i=1,...,n.
XinX; =0, i#j,

" 1
UX"=X, #'(Xl)=’—1—’ i=17-"’n
i=1

be such that for every x € X the intersection {(x)n X consists of a single point
xi(x) and the map ¢;: X onto X; defined by ¢ (x) = x;(x), is measurable.
As in § 4 we denote
K=K'nX, K<{, wK)=nK")>1-6/n,
pick
AcX, A<¢, p(A)>1-9¢
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such that each ¢, i =1, ..., is uniformly continuous on A and take
Q=AnK, p(@Q)>1-20, Q<.
Let F < M be the generic set of Q for A;. We have

hF=F, F<{¢ and u(F)=1.
LEMMA 5.2. For every 0 <8 <8¢ there is B = 3(8) such that if u,, vi€ F, v1 = hu, for
some |t| < then for every us € {(u,) there is vo€ {(v1) such that v, = h.u, for some
a=alu, ust), la|<6 and a(huy, huz, t)=aluy, ua, t).
Proof. The proof is similar to that of lemma 4.2. Let 8 >0 be such that

ifd(wi, wa)<B, wi, wo€ A then

dpw, dw2)<é8, i=1,...,n. (5.1

Let

u,vi€F and ov,=hu, forsome |t|<pg.
Since uq, v; € F there is ko> 0 such that if Xk =k, and
B.={me{0,1,... .k} hpt: € Q, h,,v:€ Q}

then
|Bel/k>1-76 (5.2)
where |B| denotes the number of points in B.
Letuse{(u1). Wewrite jim)=ie{l,...,n}if hue X, m=1,2,.... We have
biim)y(Bmtt1) = Atz € Xj(m)
bjim)(mv1) € {(Am1) = hm{ (1)
or
iim)(Amv1) = hpv1(m)
for some v(m)e {(v,) and if m € B, then
haueK’', h,viim)eK’
and
d(hmtz, hv1(m)) <8

by (5.1). This and (5.2) imply via lemma 5.1 that there is v, € £{v) such that
v2=hal>
for some a = a(uy, ust), |a| <8. It is clear that
alhiuy, haus, t)=alui, us, t). 4
Let T(x) denote the A,-orbit of x € M and let
F={xeM:FnT()isdense in T(x)}.
F is h~invariant, te R and u(F)=1. )
It follows from lemma 5.2 thatif x e F, x; e T(x)nF,i=1,2,...and x; > x,{ >©

in the topology of T'(x) then the lim;.. ¢(x;) exists and does not depend on the
sequence x; € T(x)NF, x; > x, i »0. If x € F A F then this limit equals to ¢ (x).
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We define { on F by
{x)=¢(x) ifxeFnF
and
{_(x)='l£rg (xi) ifxeF-F
where x; e T(x)nF,i=1,2,...and x; > x, i >0 in T(x).
{ is well defined and
[(x)=¢(x) forae.xeM.

Proof of theorem 3. In order to prove the theorem it is enough to show that there
exists an h-invariant set
F'cF, uF)=1, F'<¢
such that
h(l(x))={(hx) forallxeF' andallteR.
It follows from lemma 5.2 that for every xeF, f€f(x) and teR there is
a =al(x, x,t)€ R such that
hoitel(hx)
alhix, hix,ty=a(x, x,t) (5.3)
alx,x,t)=t, a(x,x,0=0, a(x,x,1)=1.
The function a(x, £, t) is uniformly continuous in ¢ for every x € F, ¥ € £ (x).
Denote
r(x,t)=min{a(x, %, t): £ € £(x)}
ri(x,t)=max{a(x, %,1): ¥ ef(x)},xeF,teR.
r~(x,t) and r*(x, t) are continuous in ¢ and are constant on the k-orbit of x. Since
h, is ergodic, there is F, < F, F, < ¢ hiF,=F, u(F,)=1suchthatr"(x,¢) and r (x, 1)
equal constants 7" (¢) and r(¢) respectively on F,.
Let

F= F, wF)=1, nEF=F F<{

t is rational

We have
r(x,t)y=r ()

5.4
rix, )=r*(t) (5.4)

for every x eF and every rational ¢. Since r*(x, t) and r (x, r) are continuous in ¢,
(5.4) holds for all t € R.
Let

F'={xeF: Fn T (x) is dense in T'(x)},

hF'=F' teR,F'<{ and u(F")=1. (5.4) implies that
rrx0=r @), rien=r@
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for all x e F' and all ¢ e R, since

() =Hm (), r(x, ) =1lim r(x;, 1)

if x;€ T(x)F and x; > x in T(x).
Take x € F' and let X € {(x) be such that
bk € (hx).
We have
alx, %, t)=r (t)=alx, %,t) forevery ¥ e {(x).
This implies that
a(£, %, r (t))=r (¢t) forallxel(x)
and therefore
r(r(t))y=r(t) forallzteR. (5.5)

We claim that
r(t)=r"(t)=¢t forallteR. (5.6)
Indeed, it follows from (5.3) and the definition of ™ and r~ that
r (0)=r"0)=0

r()=r"1)=1 - (5.7)
and

r+rrd-0=1.
Let us first show that

Since r™ (¢) is continuous, there is fo€ (0, 1) such that

r(to)=3.
This and (5.5) imply that
=1
and therefore
+.1 1
r=z:

by (5.7). We have shown that if x € F’ then

huzf(x) ={_(h1/2x).
This implies that
r@®)+r*G—1)=5 forallteR.

Arguing as above we get that (5.6) holds for ¢ = § and ¢ = 3. Proceeding by induction,
we get that (5.6) holds for all € R of the form k/2", k,n=1,2,.... Since r~ and
r* are continuous, (5.6) holds for all t € R. (5.6) implies that

hi(x)={(hx) forallxeF'andallteR.
This completes the proof. 0
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