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1. Introduction. In this paper G denotes a non-identity ®nite soluble group. If A
is an irreducible G-module, EndGA is a division ring by Schur's Lemma, actually a
®eld, since G ®nite forces A to be ®nite. Moreover A is a vector space over EndGA
with respect to �a :� ��a�; � 2 EndGA; a 2 A. We let 'G�A� :� dimEndGAA. Any chief
factor of G is an irreducible G-module via the conjugation action, and it is central
precisely when it is a trivial G-module. By a re®ned version of the Theorem of Jor-
dan-HoÈ lder [1, p. 33] the number �G�A� of complemented chief factors of G, which
are G-isomorphic to a given A, is constant for any chief series of G. We say that A is
complemented, as a G-module, if �G�A� > 0. Let


�G� :� non-isomorphic; irreducible; complementedG-modules
� 	

:

The following formula, for the minimal number d�G� of generators of G, can be
deduced from the work of GaschuÈ tz [2]:

d�G� � max
A2
�G�

hG�A�;

where

hG�A� :� �G�A� ÿ 1ÿ �G�A�
'G�A�

� �
� 2

and �G�A� :� 1 if A is trivial, �G�A� :� 0 otherwise.
For what follows our reference is [1]. Let X be a Schunck class of characteristic �

in the universe S of ®nite soluble groups. A �-group G is generated by its X-pro-
jectors, which are all conjugate. We let �X�G� be the minimal number of X-projectors
which generate G. In a similar way, if F is a saturated formation in S and the
characteristic of F is the set P of all primes, G is generated by its F-normalizers.
Again, they are all conjugate. We denote by ~�F�G� the minimal number of F-nor-
malizers which generate G. The aim of this paper is to obtain formulas for the
functions �X and ~�F similar to the one of GaschuÈ tz for the function d.

Let H be an X-projector of G and let A 2 
�G�. We show that, if M1=N1 and
M2=N2 are complemented chief factors of G that are G-isomorphic to A, then
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M1 \H � N1 if and only if M2 \H � N2. In this case we say that H avoids A and
de®ne


X�G� :� A 2 
�G�jH avoids A
� 	

:

For a �-group G, we obtain the formula:

�X�G� � max max
A2
X�G�

hG�A�
� 	

; 1

� �
:

In particular, when the Schunck class is a saturated formation F;
F�G� actually
consists of those A's in 
�G� for which every H-chief factor of A is F-eccentric.

Now assume, more generally, that H is a subgroup of G such that HG � G. For
each � 2 EndGA; � CA�H�� � � CA�H�. It follows that CA�H� is a subspace of A, as a
vector space over EndGA, and we put 'G;H�A� :� dimEndGACA�H�. If A is non-trivial,
CA�H� < A as HG � G. Hence 'G�A� ÿ 'G;H�A� 6� 0 and, for such an A, we de®ne

hG;H�A� :� �G�A� ÿ 1� 'G�A�
'G�A� ÿ 'G;H�A�

� �
� 1:

In order to compute ~�F�G�, we let
~
F�G� :� A 2 
�G� A is F-eccentric

�� g;�
and note that any A 2 ~
F�G� is non-trivial. We let H be an F-normalizer and show
that

~�F�G� � max max
A2 ~
F�G�

hG;H�A�
� 	

; 1

( )
:

Since a saturated formation F is a Schunck class and an F-projector contains an F-
normalizer, �F�G� � ~�F�G�. Our formulas give �X�G� � d�G�. The functions d; �X; ~�F

and the gaps in the above inequalities have no upper bounds. For example let G be
the semidirect product �C2 � C2�nSym �3�, where Sym �3� acts on each direct factor
in the natural way. In the ®nal section of the paper, we show that, if U is the for-
mation of supersoluble groups,

�U�G� � d�G� � ~�U�G� � nÿ 1

2

� �
� 2;

on the other hand, if N is the formation of nilpotent groups,

�N�G� � 2; d�G� � nÿ 1

2

� �
� 2; ~�N�G� � n� 2:

2. Preliminary results. We shall make repeated use of the fact that a minimal
normal subgroup N of G is abelian. It follows immediately that, if N has a supple-
ment L 6� G, then L is a complement of N and L is a maximal subgroup of G.
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Lemma 2.1. Let N be a minimal normal subgroup of G and let hH1; . . . ;Hri be a
complement of N, where each Hi is a subgroup. Then the set

M :� �n1; . . . ; nr� 2 NrjhHn1
1 ; . . . ;Hnr

r i is a complement ofN
� 	

is a union of cosets of CN�H1� � . . .� CN�Hr�. Moreover, for �m1; . . . ;mr�;
�m01; . . . ;m0r� 2M we have

hHm1

1 ; . . . ;Hmr
r i � hH

m0
1

1 ; . . . ;Hm0r
r i()mi � m0i modCN �Hi�; for each i � 1; . . . ; r:

Proof. We note that NN�Hi�;Hi� � � N \Hi � 1f g forces NN�Hi� � CN�Hi�,
for each i. Now let �n1; . . . ; nr� 2 Nr be such that hH1; . . . ;Hri � hHn1

1 ; . . . ;Hnr
r i

and assume Hi 6� Hni
i , for some i. It follows that Hi < hHi;H

ni
i i � HiN,

hHi;H
ni
i i \N 6� 1f g, a contradiction. We conclude that ni 2 NN�Hi� � CN�Hi�, for

each i. &

In the following H denotes a subgroup of G such that HG � G and, for each
homomorphism �; � ��H�; ��G�� � denotes the minimal number of conjugates of ��H�
that generate ��G�. We recall that, for a complemented minimal normal subgroup N
of G; Der G=N;N� ��� �� coincides with the number of complements of N in G.

Lemma 2.2. Let N be a minimal normal subgroup of G � HG and let
r :� � NH=N;G=N� �. We have

(i) r � ��H;G� � r� 1;
(ii) if ��H;G� � r� 1;H is contained in a complement of N and

N=CN�H�
�� ��r� Der G=N;N� ��� ��;

(iii) if N is complemented and every complement of N contains a conjugate of H,

N=CN�H�
�� ��r� Der G=N;N� ��� ��

and

��H;G� � r� 1() N=CN�H�
�� ��r� Der G=N;N� ��� ��:

Proof. (i) Clearly r � ��H;G�. Let �1; g2; . . . ; gr� 2 Gr be such that
G � hN;H;Hg2 ; . . . ;Hgri, and assume that r < ��H;G�. Then L :� hH;Hg2 ; . . . ;Hgri
is a complement of N. In particular N does not normalize H, for otherwise N would
normalize L, contrary to the assumption that G is generated by the conjugates of H.
Hence there exists n 2 N such that H < hH;Hni � HN. It follows that
hH;Hni\N 6� 1f g and G � hH;Hn;Hg2 ; . . . ;Hgri. We conclude that ��H;G� � r� 1.

(ii) In the previous notation, L is a complement of N that contains H. Moreover,
for each �n1; n2; . . . ; nr� 2 Nr; hHn1 ;Hg2n2 ; . . . ;Hgrnri is a supplement and hence a
complement of N. By Lemma 2.1 the complements of this form are exactly
N=CN�H�
�� ��r.
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(iii) Let `1 � 1 and let L � hH`1 ;H`2 ; . . . ;H`ri be a complement of N that con-
tains H. The ®rst part of the statement follows from Lemma 2.1 if we show that each
complement Y of N is of the form Y � hHy1 ;Hy2 ; . . . ;Hyri, where yi � `i (mod N),
for each i. For this purpose, we may assume that H � Y. Denote by  : G! Y the
projection such that yi :�  �`i� � `i (mod N), for each i, and hHy1 ;Hy2 ; . . . ;Hyri is a
supplement of N contained in Y. We conclude that Y � hHy1 ;Hy2 ; . . . ;Hyri.
Combining this with (ii) we have that ��H;G� � r� 1 forces
N=CN�H�
�� ��r� Der G=N;N� ��� ��. Conversly let N=CN�H�

�� ��r� Der G=N;N� ��� �� and
assume G � hH;Hg2 ; . . . ;Hgri, for some �1; g2; . . . ; gr� 2 Gr. If L is a complement of
N that contains H and � : G! L is the projection, we have
L � ��G� � hH;H��g2�; . . . ;H��gr�i. By what has been proved above, each comple-
ment of N is of the form hHn1 ;H��g2�n2 ; . . . ;H��gr�nri, for some �n1; n2; . . . ; nr� 2 Nr.
On the other hand, by Lemma 2.1 and our hypothesis, the subgroup
hHn1 ;H��g2�n2 ; . . . ;H��gr�nri must be a complement of N, for each �n1; n2; . . . ; nr� 2 Nr.
From gi � ��gi� (mod N), it follows that G � hH;Hg2 ; . . . ;Hgri is a complement of
N, a contradiction. &

As above we let


�G� :� non-isomorphic; irreducible; complementedG-modules
� 	

and, for each non-trivial G-module A 2 
�G�, we let

hG;H�A� :� �G�A� ÿ 1� 'G�A�
'G�A� ÿ 'G;H�A�

� �
� 1:

Moreover we say that a complemented chief factor M1=N1 of G avoids H when
M1 \H � N1.

Theorem 2.3. Let G � HG and assume that H satis®es the following conditions:
(i) if M1=N1 is a complemented chief factor of G that avoids H, then every

complement of M1=N1 in G=N1 contains a conjugate of N1H=N1;
(ii) if M1=N1 and M2=N2 are G-isomorphic complemented chief factors of G, then

M1=N1 avoids H if and only if M2=N2 avoids H.
Then the set 
H�G� :� A 2 
�G� H avoidsAj g�

is well de®ned and

��H;G� � max max
A2
H�G�

hG;H�A�
� 	

; 1

� �
:

Proof. We note that 
H�G� is well de®ned in virtue of (ii). The result is clear if G
has prime order, and so we argue by induction on the order of G. Let N be a mini-
mal normal subgroup of G and let G :� G=N;H :� NH=N. As H satis®es the
hypothesis above as a subgroup of G, we may assume that

��H;G� � max max
A2


H
�G�

hG;H�A�
n o

; 1

( )
:

Each A 2 
H�G� is, by in¯ation, an irreducible, complemented G-module which
avoids H. Moreover, if A1 and A2 are distinct elements of 
H�G�, they are not
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isomorphic as G-modules. It follows that 
H�G� can be considered as a subset of

H�G�. A chief series of G that includes N gives rise, in a natural way, to a chief
series of G. Considering this fact, it follows easily that for each A 2 
H�G� that is
not G-isomorphic to N, �G�A� � �G�A� and hG;H�A� � hG;H�A�. On the other hand, if
A is G-isomorphic to N, then �G�A� ÿ 1 � �G�A� � �G�A�.

Case 1. N is not complemented or N \H 6� 1f g.
Clearly 
H�G� � 
H�G� and, for each A 2 
H�G�, we have hG;H�A� � hG;H�A�.

Hence, by Lemma 2.2 (ii)

��H;G� � ��H;G� � max max
A2


H
�G�

hG;H�A�
n o

; 1

( )
� max max

A2
H�G�
hG;H�A�
� 	

; 1

� �
:

Case 2. N is complemented and N \H � 1f g.
Each complement of N contains a conjugate of H. In particular, N is not cen-

tral, as HG � G. By Lemma 2.2, ��H;G� � ��H;G� :� r, or ��H;G� � r� 1. Also,
we have

Der G;N
ÿ ��� �� � N=CN�H�

�� ��r� EndGNj j 'G�N�ÿ'G;H�N�� �r

and equality holds if and only if ��H;G� � r� 1. Now, by [2, Satz 3],

Der G;N
ÿ ��� �� � Nj j EndGNj j�G�N�� EndGNj j'G�N���G�N�ÿ1:

It follows that

'G�N� � �G�N� ÿ 1

'G�N� ÿ 'G;H�N� � r;

with equality if and only if ��H;G� � r� 1. Hence either hG;H�N� � r � ��H;G� or
hG;H�N� � ��H;G� � r� 1. In both cases we have

��H;G� � max hG;H�N�; r
� 	

:

We may assume that 
H�G� � 
H�G� [ Nf g. As hG;H�N� � hG;H�N� and, for each
A 2 
H�G� ÿ Nf g; hG;H�A� � hG;H�A�, we obtain

��H;G� � max hG;H�N�; r
� 	 � max hG;H�N�; max

A2

H
�G�

hG;H�A�
n o

; 1

( )

� max hG;H�N�; max
A2


H
�G�ÿ Nf g

hG;H�A�
n o

; 1

( )
� max max

A2
H�G�
hG;H�A�
� 	

; 1

� �
:
&

3. The function �X. Let S be the universe of ®nite soluble groups. A class X in
S is said to be a Schunck class if it consists precisely of those groups whose primitive
epimorphic images are in X. Here, by a primitive group, we mean a group P with a
maximal subgroup M such that CoreP�M� � 1f g. A subgroup H of G is an X-pro-
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jector if ��H� is X-maximal in ��G�, for any homorphism �. In particular ��H� is an
X-projector of ��G�. The X-projectors of G form a unique conjugacy class, denoted
by ProjX�G�. See [1, 3.21]

Lemma 3.1. Let M1=N1 be a complemented chief factor of G. For any
H 2 ProjX�G�, the following conditions are equivalent:

(i) every complement of M1=N1 in G=N1 contains a conjugate of HN1=N1;
(ii) H avoids M1=N1.

Proof. We show that (ii) implies (i), the converse being obvious. Since
HN1=N1 2 ProjX G=N1� �, we may replace G by G=N1;H by HN1=N1 and assume that
N1 � 1f g, M1 is a minimal normal subgroup of G. Let L1 be a complement of M1

and let K be an X-projector of L1. Then HM1=M1 and KM1=M1 are X-projectors of
G=M1, so that up to conjugation, HM1 � KM1. It follows that H is an X-projector
of KM1, by 3.22 (a) of [1]. As M1 is nilpotent, KM1=M1 ' K is in X and H avoids
M1; from 3.23 (c) of [1] we have Kf g � ProjX�K� � ProjX�KM1�. Hence K is an X-
projector of KM1. We conclude that H and K are conjugate in KM1. &

Lemma 3.2. Assume that M1=N1 and M2=N2 are G-isomorphic complemented
chief factors of G. For any H 2 ProjX�G�, H avoids M1=N1 if and only if it avoids
M2=N2.

Proof. Let C :� CG M1=N1� � � CG M2=N2� � and consider the following semidir-
ect products. Relative to the conjugation action, we have

E1 :� M1=N1� � G=C� � ' E2 :� M2=N2� � G=C� �:

Note that Mi=Ni is the unique minimal normal subgroup of Ei as it is self-
centralizing �i � 1; 2�. Let Li=Ni be complements of Mi=Ni in G=Ni, and consider the
homomorphisms

�i : G �MiLi ! Ei such that mi`i 7!ÿ �Nimi;C`i�; �i � 1; 2�:
Clearly

�i�Mi� �Mi=Ni and �i�Li� � CLi=C � G=C as Mi � C:

In particular �1 and �2 are epimorphisms. Suppose that H \M1 � N1. By the pre-
vious lemma we may assume that H � L1 and hence �1�H� � G=C. It follows that
�1�H� intersects trivially the unique minimal normal subgroup M1=N1 of E1. As
�i�H� is an X-projector of Ei �i � 1; 2�, �2�H� also intersects trivially the unique
minimal normal subgroup M2=N2 of E2. On the other hand, �2�H \M2� �M2=N2.
Hence H \M2 � ker�2 � C \ L2. We conclude that H \M2 �M2 \ L2 � N2. &

We recall that, for a class X, the set � of prime numbers p such that Zp is in X is
called the characteristic of the class.

Theorem 3.3. Let X be a Schunck class of characteristic � and let G be a �-group.
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(i) G is generated by the X-projectors;
(ii) For H 2 ProjX�G�, the set 
X�G� :� A 2 
�G� H avoids Aj g�

is well de®ned.
Also

�X�G� � max max
A2
X�G�

hG�A�
� 	

; 1

� �
:

Moreover, for each A 2 
X�G�; �G�A� � 0. Hence hG�A� � �G�A� ÿ 1

'G�A�
� �

� 2.

Proof. The image of H in G=HG is the identity subgroup and it is X-maximal. It
follows that G=HG is a �0-group; i.e. G � HG. Combining this observation with 3.1
and 3.2, we see that H satis®es the hypothesis of Theorem 2.3. For A 2 
X�G�, let
M1=N1 be a complemented chief factor of G that is G-isomorphic to A. Now
HN1=N1 2 ProjX G=N1� � is selfnormalizing in G=N1, by 4.8 of [1]. From this fact and
the conditionH \M1 � N1, it follows easily that CM1=N1

�H� � 1f g � CA�H�. Hence
'G;H�A� � �G�A� � 0, for each A 2 
X�G�. The result is now a special case of 2.3. &

Comparing this Theorem with the result of GaschuÈ tz for the minimal number
d�G� of generators for G, one has immediately the following result.

Corollary 3.4. �X�G� � d�G�.

4. The function ~�F. We need some technical de®nitions and results: for con-
sistency and proofs we refer to [1]. Let F be a saturated formation in S; i.e. a non-
empty class of ®nite soluble groups, closed with respect to epimorphic images and
subdirect products, with the following additional property: whenever F=��F� is in F,
then also F is in F (��F� being the Frattini subgroup). We assume further that F has
characteristic the set P of all primes. Under these assumptions, F is a Schunck class
and there exists a function f : P! formationsf g with the following properties. For
each prime p, (1) f�p� � F consists of those groups which have a normal p-subgroup
with quotient in f�p�; (2) a group F is in F if and only if F=CF L=K� � 2 f�p�, for each
chief factor L=K of F such that p L=K

�� ���� .
A chief factor M1=N1 of G is called F-central if and only if

p M1=N1

�� ��) G=CG M1=N1� � 2 f�p��� . If this is not the case, then M1=N1 is F-eccen-
tric. Since {1} is in f�p�, for each p, any central chief factor is F-central.

Let � be a Hall system of G and, for each prime p dividing the order of G,
denote by Gp0 the Hall p0-subgroup of G in �. An F-normalizer H of G can thus be
de®ned by

H :�
\
pjjGj

NG Gp0 \ Gf�p�ÿ �
;

where Gf�p� denotes the unique normal subgroup of G minimal with respect to
G=Gf�p� in f�p�. The F-normalizers of G form a unique conjugacy class. Moreover, if
H is an F-normalizer of G, then ��H� is an F-normalizer of ��G�, for each homo-
morphism �.

Lemma 4.1. Let H be an F-normalizer of G and let M1=N1 be a complemented
chief factor of G. Then the following conditions are equivalent:
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(i) M1=N1 is F-eccentric;
(ii) H avoids M1=N1;
(iii) every complement of M1=N1 in G=N1 contains a conjugate of HN1=N1.

Proof. (i)() (ii). See [1, p. 401].
(ii) ) (iii). As HN1=N1 is an F-normalizer of G=N1, as usual we may assume

that N1 � 1f g and M1 is a minimal normal subgroup of G. We need a de®nition. A
maximal subgroup K of a group F is called F-critical if F=KF 62 F and F � KFit�F �.
Now let L be a complement of M1 and let T be an F-normalizer of L. Then T 2 F
and there exists a chain

T � Lr < . . . < L1 � L;

where each Li is maximal in Liÿ1 and F-critical by [1, 3.8]. Since the p-group M1 is
F-eccentric, G=CG�M1� 62 f�p�. Now LG � CG�M1� gives

G=LG

CG=LG
LGM1=LG� � '

G

CG�M1� 62 f�p�:

As LGM1=LG 'M1 is a minimal normal subgroup of G=LG, it follows that
G=LG 62 F and L is F-critical in G. Hence the chain T � Lr < . . . < L < G is F-critical
and, again by [1], T is an F-normalizer in G. We conclude that T is conjugate toH.

(iii))(ii). This is clear. &

Theorem 4.2. Let F be a saturated formation of characteristic P.
(i) G is generated by the F-normalizers;

(ii) ~�F�G� � max maxA2 ~
�G� hG;H�A�
� 	

; 1
n o

;

where ~
F�G� :� A 2 
�G�jA isF-eccentric
� 	

and H is an F-normalizer.

Proof. Since F has characteristic P;HG � G by [1, p. 401]. By the previous
Lemma we can apply Theorem 2.3, with 
H�G� � ~
F�G�. &

In the case of a saturated formation, the set 
F�G� of Theorem 3.3 is better
characterized in the following way.

Lemma 4.3. Let H be an F-projector of G. Then


F�G� � A 2 
H�G� everyH-chief factor of A isF-eccentric inAH
�� 	

:
�

Proof. Let A 'M1=N1, a complemented chief factor of G. The H-chief factors
of A coincide with the HM1=N1-chief factors of the normal subgroup M1=N1 of
G=N1. Now HN1=N1 is an F-projector of G=N1 and hence of HM1=N1. As M1=N1 is
a normal nilpotent subgroup of HM1=N1, with quotient H=�H \M1� in F, it follows
that HN1=N1 is an F-normalizer of HM1=N1. (See [1, 4.2].) Hence HN1=N1 covers
the F-central chief factors of HM1=N1 and avoids the F-eccentric ones. By de®nition

A 2 
F�G�()M1 \H � N1() HN1

N1
\M1

N1

���� ���� � 1:
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We conclude that A 2 
F�G� if and only if all the H-chief factors of A are F-
eccentric. &

5. Examples. Denote by N the saturated formation of nilpotent groups. N is
local with respect to the formation function f such that f�p� � 1f g, for each prime p.
It follows that a chief factor is central if and only if it is N-central. The N-projectors
are the Carter subgroups and the N-normalizers are the system normalizers. If
A �M1=N1 is a chief factor and H is a Carter subgroup of G, then H avoids
M1=N1()CA�H� � 1f g. As a matter of fact, H \M1 � N1 implies that
CA�H� � 1f g, since HN1=N1 is selfnormalizing in G=N1. On the other hand,

H \M1 6� N1 ) 1f g < Z
HN1

N1

� �
\M1

N1
� CA�H�:

Hence, in this case, we have


N�G� � A 2 
�G�jCA�H� � 1f g� 	
;

where H is a Carter subgroup of G, and

~
N�G� � A 2 
�G� A non trivialG-modulej g:�
Remark. Let F be a saturated formation of characteristic �;G a �-group and H

an F-projector of G. Then NG�H� � H so that, for each minimal normal subgroup N
of G, we have

H \N � 1f g ) CN�H� � 1f g:

However, the converse is not true in general. For example, if U is the formation of
supersoluble groups, G is the symmetric group Sym (3) and N is the alternating
group Alt (3), then

H � G;CN�H� � 1f g;H \N � N:

Denote by U the saturated formation of supersoluble groups. U is local with respect
to the formation function f such that f�p�={abelian groups of exponent dividing
(pÿ1)}, for each prime p. A chief factor is U-eccentric if and only if it is not cyclic.
By Lemma 4.3


U�G� � A 2 
�G� A has no cyclicH-chief factor
�� 	

;
�

where H is a U-projector. On the other hand we have

~
N�G� � A 2 
�G� A non cyclic
�� 	

:
�

1. Let G be the symmetric group Sym (4). Consider the chief series

N4 � 1f g < N3 � C2 � C2 < N2 � Alt �4� < N1 � Sym �4�;
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and let Ai be a G-module G-isomorphic to the chief factor Ni=Ni�1; 1 � i � 3. The
Carter subgroups of G are the Sylow 2-subgroups and the system normalizers are
the subgroups generated by a 2-cycle. It is easy to see that


�G� � A1;A2;A3f g; 
N�G� � A2f g; ~
N�G� � A2;A3f g;

with hG�A1� � 1; hG�A2� � hG�A3� � 2 and hG;H�A2� � 2; hG;H�A3� � 3, where H is a
system normalizer. It follows that

d�G� � �N�G� � 2; ~�N�G� � 3:

2. Let G be the semidirect product �C2 � C2�nSym �3�, where Sym �3� acts on
each direct factor in the natural way. In this case 
�G� � A1;A2;A3f g, where

A1 isG-isomorphic to �C2 � C2�nSym �3�� �= �C2 � C2�nAlt �3�� �;

A2 isG-isomorphic to �C2 � C2�nAlt �3�� �=�C2 � C2�n

and A3 is G-isomorphic to C2 � C2. Since �G�A1� � �G�A2� � 1 and �G�A3� � n we
have

hG�A1� � 1; hG�A2� � 2; hG�A3� � nÿ 1

2

� �
� 2:

Again the Carter subgroups of G are the Sylow 2-subgroups while the subgroup H1

generated by a 2-cycle of Sym �3� is a system normalizer. In this case we have


N�G� � A2f g; ~
N�G� � A2;A3f g;

and hG;H1
�A2� � 2; hG;H1

�A3� � n� 2. It follows that

�N�G� � 2; d�G� � nÿ 1

2

� �
; ~�N�G� � n� 2:

On the other hand the U-projectors and the U-normalizers coincide and are precisely
the complements in G of the normal subgroup �C2 � C2�n. We have


U�G� � ~
U�G� � A3f g

and hG�A3� � hG;H2
�A3� � nÿ1

2

� �� 2, where H2 is a U-normalizer. It follows that

�U�G� � d�G� � ~�U�G� � nÿ 1

2

� �
� 2:
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