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Abstract
In this paper, we consider the friendship paradox in the context of random walks and paths. Among our results, we
give an equality connecting long-range degree correlation, degree variability, and the degree-wise effect of addi-
tional steps for a random walk on a graph. Random paths are also considered, as well as applications to acquaintance
sampling in the context of core-periphery structure.

1. Introduction

The friendship paradox, introduced by Feld in [15], states roughly that your friends have more friends
than you do on average (for an explicit statement, see Theorem 1.1). Following the work of [24], extend-
ing the friendship paradox to multiple steps (i.e., iterated friendships), here we quantify an explicit
connection between long-range degree correlation, degree variability, and the degree-wise effect of
additional steps for random walks on a graph. Results for random paths are also considered.

Throughout, we suppose G = (V , E) is a connected graph with node set V = {v1, v2, . . . , vn} and
undirected edge set E and define the degree function d, so that for v ∈ V , d(v) is the degree of v (i.e.,
the number of neighbors of v) in G. Moreover, we denote by A = [Ai,j] the associated n × n adjacency
matrix; the degree of a node vi can then be computed via

d(vi) =
n∑

j=1
Ai,j .

As we will be interested in the expected degree over random sequences of nodes in the graph, it will
be convenient to consider a time-homogeneous random walk X = (X0, X1, . . .) dictated by a transition
matrix, P = [Pi,j], with

Pi,j
def
= P(Xk+1 = vj | Xk = vi) =

Ai,j

d(vi)
,

for 1 ≤ i, j ≤ n, and k ≥ 0. Importantly, we will assume throughout that X0 is uniformly selected from
V.

We first restate the friendship paradox formalized in [15].

Theorem 1.1. ([15]) Suppose X0 is a node selected uniformly at random from V , and E = {V , W} is
an edge pair selected uniformly at random from E . Then, selecting Y1 from the nodes in E, each with
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half chance,

E(d(Y1)) ≥ E(d(X0)). (1)

Similarly, several authors have employed the following counterpart for random walks with a uniformly
selected initial node X0 (see for instance [3, 6, 21]).

Theorem 1.2. Suppose X = (X0, X1, X2, . . .) is a simple random walk on the graph G, where X0 is
selected uniformly at random from V . Then

E(d(X1)) ≥ E(d(X0)). (2)

The following two results regarding multiple step walks and paths can be found in [24].

Theorem 1.3. ([24]) Suppose X = (X0, X1, X2, . . .) is a simple random walk on the graph G, where X0
is selected uniformly at random from V . Then, for k ≥ 0,

E(d(Xk)) ≥ E(d(X0)). (3)

Theorem 1.4. ([24]) Suppose k ≥ 1 is odd, X0 is selected uniformly at random from V , and W =

{Y0, Y1, . . . , Yk} is a path selected uniformly at random from the set of all length-k paths on G. Then,
we have

E(d(Yk)) ≥ E(d(X0)). (4)

For further recent theoretical results regarding the friendship paradox, see for instance [4, 5, 12, 31].
In place of comparisons with E(d(X0)), as in the results above, the primary concern of this paper

is the study of the degree-wise benefit of additional steps on the graph (for both random walks and
random paths). Motivation for such considerations is provided by the recent success of applications of
the one-step friendship paradox (see [8, 9, 14, 18, 20, 23, 34]).

Several authors have alluded to weakness in expression of the friendship paradox in networks exhibit-
ing positive degree correlation over edges (see for instance [5, 25, 28, 31]). Before formally stating our
results, it will be convenient to consider longer-range degree correlation. It is common for networks
to exhibit sharing of similar characteristics across edges (i.e., “homophily,” “birds of a feather flock
together,” “assortativity”; see [29]). In social networks, in particular, individuals may prefer to be asso-
ciated with others sharing, for instance, similar age, education, or occupations. In the case where the
characteristic of interest is nodal degree, Pearson correlation d = d(G) refers to the tendency of nodes
in a network to be associated with others sharing similar (or different) degrees. Specifically, for the
graph G, suppose E = {V , W} is an edge selected uniformly at random, then

d
def
= cor(d(V), d(W)) = cov(d(V), d(W))

sd(d(V)) sd(d(W)) . (5)

A positive degree correlation, d > 0, indicates a tendency for high-degree nodes in the graph to connect
to other high-degree nodes and similarly for low-degree nodes.

Values of d have been studied in various classes of networks (see [7, 16, 26, 33]). For connections
between assortativity and other topological network properties, see [11, 13, 36, 37]. For work consid-
ering assortativity in the context of the friendship paradox, see for instance [22, 25, 28, 31]. See [30]
and the references therein for some further work on assortativity.
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Although much previous research has focused on degree correlation among nearest neighbors, some
recent considerations of the concept of assortative mixing beyond first neighbors can be found in [1, 2,
17, 27] and can in a general sense be referred to as long-range degree correlation (see [2]).

Assortativity, as defined in [29], can be interpreted as a measure of the correlation between nodal
degrees based on the first-order adjacency matrix. Here, we define the kth-order path-based degree
correlation as the Pearson coefficient, measuring the correlation between degrees for the two end points
of a randomly chosen path with length k.

Definition 1.5. For k ≥ 0, let Y−
k and Y+

k be the beginning and terminal nodes for a path selected uni-
formly at random from the set of all length-k paths on G. The kth-order (path-based) degree correlation
d0,k is given by

d0,k
def
= cor(d(Y−

k ), d(Y
+
k )) =

cov(d(Y−
k ), d(Y

+
k ))

sd(d(Y−
k )) sd(d(Y+

k ))
.

In parallel with the definition above, we also consider the walk-based degree correlation as that for
the starting node, X0, of a random walk X = (X0, X1, X2, . . .) (with uniform initial distribution) and the
node reached at the walk’s kth step, Xk. Note that the use of the uniform distribution here is motivated
by the desired applications. This is in contrast to recent work regarding long-range correlation, wherein
the initial distribution is stationary for the corresponding Markov chain (see [2, 19, 32]).

Definition 1.6. Consider a random walk, X = {X0, X1, X2, . . .}, on the graph G (with uniform initial
distribution). The kth-order (walk-based) degree correlation, q0,k = q0,k (X), is given by

q0,k
def
= cor(d(X0), d(Xk)) =

cov(d(X0), d(Xk))
sd(d(X0)) sd(d(Xk))

.

Note. As an aside, it may be of some value to consider applications for which q0,1 as in Definition 1.6
may be of interest. The correlation computed involves the same node pairs as in (5) but with weighting
in a manner that places equal emphases on each node regardless of degree. Ties in a sense are weaker
(or diluted) for nodes of large degree. �

Now, for the random walk X = (X0, X1, . . . ), let X∞ be a node selected according to the stationary
distribution c = (c1, . . . , cn) of the random walk X, that is, ci = d(vi)/

∑
j d(vj). A main quantity of

interest will be what we term the proportional residual benefit at time k for the walk, which measures
the degree-wise (remaining) benefit of additional steps of a random walk.

Definition 1.7. The proportional residual benefit for the walk X at time k, gk = gk (X) is given by

gk
def
=
E(d(X∞)) − E(d(Xk))

E(d(Xk))
.

We now have the following quantitative relationship between the walk-based long-range degree cor-
relation and the proportional residual benefit. The proof is provided in Section 2. Throughout, for a
random variable U with finite second moment, we denote by cv(U), the coefficient of variation of U,
that is,

cv(U) def
=

sd(U)
E(U) . (6)
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Theorem 1.8. Suppose X = (X0, X1, . . .) is a random walk on the graph G. The proportional residual
benefit gk can be written as the product of the kth-order degree correlation q0,k and the two coefficients
of variation, cv (d(X0)) and cv (d(Xk)), that is

gk = cor(d(X0), d(Xk)) ·
sd(d(X0))
E(d(X0))

· sd(d(Xk))
E(d(Xk))

= q0,k cv (d(X0))cv (d(Xk)). (7)

Now, as in Definition 1.5, for k ≥ 0, let Y−
k and Y+

k be the beginning and terminal nodes for a path
selected uniformly at random from the set of all length-k paths. We have the following definition and
result.

Definition 1.9. Suppose k ≥ 0. The proportional one-step benefit at length k, Wk, is given by

Wk
def
=
E(d(Y+

k+1)) − E(d(Y
+
k ))

E(d(Y+
k )))

.

Theorem 1.10. The proportional one-step benefit, Wk, at length k can be written as the product of the
kth-order degree correlation d0,k and the two coefficients of variation, cv (d(Y−

k )) and cv (d(Y+
k )), that

is,

Wk = cor(d(Y−
k ), d(Y

+
k )) ·

sd(d(Y−
k ))

E(d(Y−
k ))

·
sd(d(Y+

k ))
E(d(Y+

k ))
= d0,k cv (d(Y−

k )) cv (d(Y+
k )). (8)

In terms of residual benefit, in the case of random paths, we will also prove the following.

Theorem 1.11. Suppose G is a non-bipartite (and connected) graph. If (a) k ≥ 0 is even or (b) k ≥ 1
is odd and the corresponding kth-order path-based degree correlation d0,k is nonnegative, then the
limiting expected degree of Y+

i is no less than that of Y+
k , that is,

lim
i→∞
E(d(Y+

i )) ≥ E(d(Y+
k )). (9)

Note. (Disparity persistence and core-periphery structure) Theorems 1.8, 1.10, and 1.11 provide insight
into when it may be beneficial in acquaintance sampling and elsewhere to continue on to neighbors
of neighbors in an iterated fashion. In fact, the benefit can be high in networks wherein the degree
correlation is positive out to a longer range, but, globally, the degree variability is high. We refer to such
a phenomenon as disparity-persistence, since disparity in degree persists over extended neighborhoods.
A prime example wherein such behavior can occur is social networks exhibiting strong core-periphery
structure, with a large core of high-degree nodes and a periphery of loosely connected nodes, with low
degree. �

The remainder of the paper proceeds as follows. In Section 2, we prove Theorem 1.8, while
in Section 3, we prove Theorems 1.10 and 1.11.

2. Proof of Theorem 1.8 (The random walk case)

In this section, we will prove Theorem 1.8.
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Proof of Theorem 1.8 Set di = d(vi), d = (d1, d2, . . . , dn)′, and 1 = (1, 1, . . . , 1)′. Let P be the transition
matrix for the random walk, X, and note that d = A1. Now, note that

E (d(X0) d(Xk)) =
1
n

∑
i

∑
j

didj (Pk)i,j =
d′Pkd
1′1

.

Hence, letting D be the diagonal matrix with diagonal d and noting that P = D−1A gives

d′Pkd = d′D−1APk−1d = 1′APk−1d = d′Pk−1d
= · · · = d′d.

Thus,

E(d(X0) d(Xk)) = (d′d)/(1′1).

Now,

E(d(X∞)) =
∑

i

(
di∑
j dj

)
di =

d′d
1′A1

,

E(d(X0)) =
1
n

∑
i

di =
1′A1
1′1

,

and hence

E(d(X∞)) · E(d(X0)) =
d′d

1′A1
1′A1
1′1

=
d′d
1′1

= E (d(X0) d(Xk)) .

Thus,

gk =
E(d(X∞)) − E(d(Xk))

E(d(Xk))
,

=
1

E(d(Xk))

(
E(d(X0) d(Xk))
E(d(X0))

− E(d(Xk))
)

,

=
cov(d(X0), d(Xk))
E(d(Xk)) · E(d(X0))

,

= q0,k

(
sd(d(X0))
E(d(X0))

)
·
(
sd(d(Xk))
E(d(Xk))

)
= q0,k cv (d(X0))cv (d(Xk)). �

We easily derive the following corollary.

Corollary 2.1. Suppose X = (X0, X1, . . .) is a random walk on the graph G = (V , E). For k ≥ 1, the
expected degree of X∞ is no less than that of Xk if and only if the kth-order degree correlation q0,k is
nonnegative, that is,
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E(d(X∞)) ≥ E(d(Xk)) if and only if q0,k = cor(d(X0), d(Xk)) ≥ 0. (10)

3. Proof of Theorems 1.10 and 1.11 (The random path case)

In this section, we will prove Theorem 1.10 and further discuss the relationship between the proportional
one-step benefit Wk and the path-based degree correlation d0,k in parallel with the random-walk case,
(Xk)k≥0. As per convention, throughout, we will take the zeroth power of the adjacency matrix, A, of
a graph G (i.e., A0) to be the n × n identity matrix, and hence for k ≥ 0, the entry (Ak)i,j counts the
number of distinct paths of length k connecting nodes vi and vj.

As before, suppose for i ≥ 0, Y−
i and Y+

i are the beginning and terminal nodes of a path selected
uniformly at random from the set of all length-i paths on G. We have the following lemma (see also
Lemma 4 in [24]).

Lemma 3.1. Suppose k ≥ 0. The expected degree of Y+
k can be written in terms of successive entries

in the sequence (N0, N1, . . .), where Nj is the number of length j paths on G, that is,

E(d(Y+
k )) =

Nk+1

Nk
. (11)

Proof. We have

E(d(Y+
k )) =

n∑
j=1

dj

∑n
i=1 Ak

i,j

Nk
=

d′ (Ak)′1
Nk

=
1′AAk1

Nk
=

Nk+1

Nk
,

where the third equality follows from the symmetry of the adjacency matrix, A. �

Now we turn to a proof of Theorem 1.10.

Proof of Theorem 1.10 Suppose k ≥ 0 and Y−
k and Y+

k are two nodes connected by a randomly chosen
path with length k. We have

E(d(Y−
k ) d(Y+

k )) =
n∑

i=1

n∑
j=1

didj
Ak

i,j

Nk
=

d′Akd
Nk

=
Nk+2

Nk
. (12)

Note that by Lemma 3.1 and symmetry,

E(d(Y−
k )) =

Nk+1

Nk
= E(d(Y+

k )). (13)

Hence, using Eqs. (12) and (13),

cov(d(Y−
k ), d(Y

+
k )) =

Nk+2

Nk
−
(
Nk+1

Nk

)2
=

Nk+1

Nk

(
Nk+2

Nk+1
− Nk+1

Nk

)
,

= E(d(Y+
k )) · (E(d(Y

+
k+1)) − E(d(Y

+
k ))), (14)

and hence by the definition of Wk, and Eqs. (13) and (14),

Wk =
E(d(Y+

k+1)) − E(d(Y
+
k ))

E(d(Y+
k ))

·
E(d(Y+

k ))
E(d(Y−

k ))
·

sd(d(Y−
k ))

sd(d(Y−
k ))

·
sd(d(Y+

k ))
sd(d(Y+

k ))
,
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=
cov(d(Y−

k ), d(Y
+
K ))

sd(d(Y−
k )) sd(d(Y+

k ))
·

sd(d(Y−
k )

E(d(Y−
k ))

·
sd(d(Y+

k )
E(d(Y+

k ))
,

= d0,k cv (d(Y−
k )) cv(d(Y+

k )).
(15)
�

Therefore, the proportional increase in relative expected degree for an increase of one in the length
of our random path can be determined by the corresponding path-based degree correlation, along with
the two coefficients of variation. We have the following corollary.

Corollary 3.2. Suppose k ≥ 0. The expected degree of Y+
k+1 is no less than that of Y+

k if and only if the
kth-order degree correlation d0,k is nonnegative, that is,

E(d(Y+
k+1)) ≥ E(d(Y

+
k )) if and only if d0,k = cor(d(Y−

k ), d(Y
+
k )) ≥ 0. (16)

Note that employing an inequality on the number of paths, developed by [35] (with c= 1 and b= 0),
we have

N2a+1

N2a
≤ N2a+2

N2a+1
(17)

for a ≥ 0, and hence by Lemma 3.1, when k is even, E(d(Y+
k+1)) ≥ E(d(Y+

k )). In the case k = 0, this
is simply the result of Feld in Theorem 1.1. In addition, by Corollary 3.2, for any network G, G is
assortative (i.e., d0,1 > 0) if and only if E(d(Y+

2 )) > E(d(Y
+
1 )). For consideration of degree comparison

for X1 and X2 under a random graph model, see [4].
The following lemma follows directly from eigen decomposition of the matrix A and Lemma 3.1

(see for instance [10]).

Lemma 3.3. ([10]) Suppose k ≥ 0 and the graph G is non-bipartite. The expected degree of Y+
k tends

to _1, the largest eigenvalue of the adjacency matrix, A, as k tends to infinity, that is,

lim
k→∞

E(d(Y+
k )) = _1. (18)

We now turn to a proof of Theorem 1.11

Proof of Theorem 1.11 Suppose m ≥ 0. From Rayleigh’s inequality, we have

E(d(Y+
2m)) =

N2m+1

N2m
=

(Am1)′ A (Am1)
(Am1)′ · (Am1)

≤ _1. (19)

The result for k even follows by Lemma 3.3. Now, suppose k is odd and d0,k ≥ 0. Employing
Corollary 3.2 and Eq. (19) then gives

E(d(Y+
k )) ≤ E(d(Y

+
k+1)) ≤ _1,

and the result follows. �
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