A FINITE ANALOGUE OF THE GOLDBACH PROBLEM

J.D. Dixon

(received September 22, 1959)

E. Cohen [1], [2] has considered an analogue of the famous Goldbach problem in certain finite rings. In the following another analogue is considered in the ring J_n of residue classes over the integers modulo n.

As 'primes' in J_n we take all residue classes coprime to n. That is, all elements $p \in J_n$ which are not factors of zero in J_n . We denote this set by R_n .

We define A(m,n,k) to be the number of sets $\{p_1,\ p_2,\ldots,p_k\}$ with $p_i\in R_n$ which for given m satisfy

$$m \equiv \sum_{i=1}^{k} p_i \pmod{n}$$

where the order of the pi is taken into account.

The object of this paper is to derive an explicit expression for A(m,n,k). We consider the case k=2 first (this is the analogue to the original Goldbach problem) and then the case where $k \ge 2$. Also in the sections 1 and 2 we consider only the restricted case when n is 'squarefree' ($\mu(n) \ne 0$) and extend our results to the case of n with multiple factors in section 3.

1. When k = 1 it is immediate that

(1)
$$A(m,n,1) = \begin{cases} 0 & \text{if } (m,n) > 1 \\ 1 & \text{if } (m,n) = 1. \end{cases}$$

Part of this work was done while the author was receiving a University Research Grant at the University of Melbourne, Australia.

Can. Math. Bull. vol. 3, no. 2, May 1960.

Now consider the case k = 2. We can then show

(2)
$$A(m,n,2) A(m,n',2) = A(m,nn',2)$$

provided (n, n') = 1. That is, A(m, n, 2) is multiplicative in n.

The proof is as follows.

Let
$$m \equiv p_1 + p_2 \pmod{n}$$
 with $p_i \in R_n$
and $m \equiv p_1^i + p_2^i \pmod{n^i}$ with $p_i^i \in R_{n^i}$.

Since (n,n') = 1 there exist integers λ , ν which are coprime to n' and n respectively and such that $\lambda n + \nu n' = 1$.

We then define

(3)
$$p_{i}^{"} \equiv \nu n^{!}p_{i} + \lambda np_{i}^{"} \pmod{nn^{!}}.$$
Clearly
$$p_{1}^{"} + p_{2}^{"} \equiv \nu n^{!}(p_{1} + p_{2}) + \lambda n(p_{1}^{"} + p_{2}^{"})$$

$$\equiv \nu n^{!}(m + an) + \lambda n(m + bn^{!})$$

$$\equiv m \pmod{nn^{!}}$$

where a, b are integers and remembering that $vn' + \lambda n = 1$.

Furthermore (3) defines p_i'' uniquely (mod nn') in terms of p_i , p_i' and conversely p_i , p_i' are uniquely determined (mod n) and (mod n') respectively, by $p_i = p_i''$ (mod n) and $p_i' = p_i''$ (mod n'). There is, therefore, a one-one correspondence between the sets $\{p_1'', p_2''\}$ and the pairs of sets $\{p_1, p_2\}$, $\{p_1', p_2'\}$. Since it can be seen that $(p_i'', nn') = 1$ equation (2) follows.

Under the assumption that n is 'squarefree' we may write $n = q_1 q_2 \dots q_s$ where the q_i are distinct prime numbers. Then applying (2) we may write

(4)
$$A(m,n,2) = \prod_{q|n} A(m,q,2) .$$

By considering the number of solutions to $p_2 \equiv m - p_1 \pmod{q}$ in each of the cases where p_1 takes a particular value from the set $R_q = \{1, 2, \dots, q-1\}$ it is seen that

$$A(m,q,2) = \sum_{p_1 \in R_q} A(m-p_1,q,1) = \sum_{p_1=1}^{q-1} A(m-p_1,q,1)$$

and that therefore

(5)
$$A(m,q,2) = \sum_{r=0}^{q-1} A(r,q,1) - A(m,q,1).$$

For any prime number q (5) and (1) give

$$A(m,q,2) = (q-1) - A(m,q,1)$$
,

(6)
$$A(m,q,2) = \begin{cases} (q-2) & \text{if } q \not | m \\ (q-1) & \text{if } q \mid m \end{cases}$$

So substituting (6) in (4) we finally get (remembering that n is 'squarefree')

(7)
$$A(m,n,2) = \prod_{q \mid (m,n)} (q-1) \prod_{q \mid n/(m,n)} (q-2)$$

where the first product is over primes dividing both n and m and the second over primes dividing n but not m.

2. In the general case of $k \ge 2$ but still restricting $\mu(n) \ne 0$ we find in a similar way the following formulae corresponding to (4) and (5).

(4)*
$$A(m,n,k) = \prod_{q \mid n} A(m,q,k) \text{ when } \mu(n) \neq 0,$$

(5)*
$$A(m,q,k) = \sum_{r=0}^{q-1} A(r,q,k-1) - A(m,q,k-1)$$
 when q is prime.

We now evaluate A(m,q,k) from the recurrence relation

(5)*. Put $S(q,k) = \sum_{r=0}^{q-1} A(r,q,k-1)$. Summing (5)* over m from 0 to q-1,

$$S(q,k) = q S(q,k-1) - S(q,k-1)$$

= $(q-1) S(q,k-1)$.

But from (1) S(q, 1) = q - 1 so by induction on k, $S(q,k) = (q - 1)^k$ which substituted into (5)* gives

(8)
$$A(m,q,s) = (q-1)^{s-1} - A(m,q,s-1).$$

Summing (8) over s

$$\sum_{s=2}^{k} (-1)^{s} A(m,q,s) = \sum_{s=2}^{k} (-1)^{s} (q-1)^{s-1} - \sum_{s=2}^{k} (-1)^{s} A(m,q,s-1).$$

$$\sum_{s=2}^{k} (-1)^{s} A(m,q,s) - \sum_{s=1}^{k-1} (-1)^{s} A(m,q,s) = -\sum_{s=1}^{k-1} (-1)^{s} (q-1)^{s}$$

and hence

$$(-1)^{k}A(m,q,k) + A(m,q,1) = 1 - \frac{1}{q} \{ (-1)^{k}(q-1)^{k} - 1 \}.$$

Therefore

(9)
$$A(m,q,k) = \frac{1}{q} \{ (q-1)^k - (-1)^k \} + (-1)^k (1 - A(m,q,1)) .$$
So applying (1)

(10)
$$A(m,q,k) = \begin{cases} \frac{1}{q} \{(q-1)^k - (-1)^k\} & \text{if } q \nmid m \\ \frac{q-1}{q} \{(q-1)^{k-1} - (-1)^{k-1}\} & \text{if } q \mid m \end{cases}$$

which is the generalisation of (6).

So for n 'squarefree' (4)* and (10) give

$$(11) A(m,n,k)$$

$$= \prod_{q \mid (m,n)} \frac{q-1}{q} \left\{ (q-1)^{k-1} - (-1)^{k-1} \right\} \prod_{q \mid n/(m,n)} \frac{1}{q} \left\{ (q-1)^k - (-1)^k \right\}.$$

3. We now remove the restriction that n is 'squarefree', Write n = hn' where $n' = \prod_{q \mid n} q$ satisfies $\mu(n') \neq 0$.

Since the 'primes' of J_n are simply the residue classes coprime to n' it is seen that $R_n = \{p' + rn' \mid p' \in R_{n'}, r \in \{0, 1, ., h-1\}\}$.

If
$$\{p_1, p_2, \ldots, p_k\}$$
 is a set of $p_i \in R_n$ which satisfies

(12)
$$m \equiv \sum_{i=1}^{k} p_i \pmod{n}$$

we must have

(13)
$$m \equiv \sum_{i=1}^{k} p_i^i \pmod{n^i}$$

where $p_i^! \equiv p_i \pmod{n!}$ and $p_i^! \in R_{n!}$.

$$m \equiv \sum_{i=1}^{k} p_i' + r(m)n' \pmod{n}$$

for some r(m) .

And the number of solutions (12) corresponding to each solution (13) is the number of sets $\{r_1, r_2, ..., r_k\}$ with $r_i \in \{0, 1, ..., h-1\}$ which satisfy

$$r(m)n' \equiv \sum_{i=1}^{k} r_i n^i$$
 (mod n)

and hence

$$r(m) \equiv \sum_{i=1}^{k} r_i \pmod{h}$$

since n = n'h.

But to solve this congruence we may arbitrarily choose r_1 , r_2 , ..., r_{k-1} and then r_k is determined. Therefore for each solution (13) there are h^{k-1} solutions (12),

Therefore we have shown

(14)
$$A(m,n,k) = h^{k-1}A(m,n',k)$$

where n' is the largest 'squarefree' divisor of n and h = n/n'.

4. Finally we ask in what cases A(m,n,k) = 0. Since the cases with k = 1 are already given by (1) we take $k \ge 2$. Then by (11) A(m,n,k) = 0 if and only if for some prime $q \mid n$:

(i)
$$(q-1)^{k-1} = (-1)^{k-1}$$
 when $q \mid m$

or

or (ii)
$$(q-1)^k = (-1)^k$$
 when $q \nmid m$.

Since the left hand sides of these equations are both of magnitude greater than unity for $q \ge 3$ we must have q = 2 in order that A(m,n,k) = 0. Further we require k to be even when $2 \nmid m$ and to be odd when $2 \mid m$. (Cases (ii) and (i) respectively) We can therefore say A(m,n,k) is strictly positive for $k \ge 2$ except when n is even and m and k have opposite parity.

REFERENCES

- 1. E. Cohen, A finite analogue to the Goldbach problem, Proc. Amer. Math. Soc. 5 (1954), 478 483.
- 2. The finite Goldbach problem in algebraic number fields, Proc. Amer. Math. Soc. 7 (1956), 500 506.

McGill University