
Compositio Mathematica111: 1–14, 1998. 1
c
 1998Kluwer Academic Publishers. Printed in the Netherlands.

Examples of unstable Hamiltonian-minimal
Lagrangian tori inC2

ILDEFONSO CASTRO1? and FRANCISCO URBANO2?
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Abstract. A new family of Hamiltonian-minimal Lagrangian tori in the complex Euclidean plane is
constructed. They are the first known unstable ones and are characterized in terms of being the only
Hamiltonian-minimal Lagrangian tori (with non-parallel mean curvature vector) inC2 admitting a
one-parameter group of isometries.
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1. Introduction

It is known that the onlystablecompact minimal submanifolds of the complex pro-
jective spaceCPn are the complex ones (see [4]). In particular, compact minimal
Lagrangian submanifolds are unstable. In [7], Oh introduced the notion of Hamil-
tonian stability for Lagrangian minimal submanifolds in Kaehler manifolds, as
those ones such that the second variation of volume is nonnegative for Hamiltonian
deformations. He proved that the totally geodesicRPn and the Clifford torus inCPn

are Hamiltonian stable Lagrangian minimal submanifolds. He also conjectured that
the Clifford torus inCPn is even volume minimizing under Hamiltonian deforma-
tions, such as it happens withRPn. In this context, the second author proved in [10]
that the Clifford torus is the only Hamiltonian stable minimal Lagrangian torus in
CP2.

While minimal submanifolds are critical points of the functional volume for any
(compactly supported) variation, motivated by the previous study in [7], Oh intro-
duces in [8] the notion of Hamiltonian-minimal (H-minimal briefly) Lagrangian
submanifolds as critical points of the functional volume for Hamiltonian deforma-
tions, states the Euler–Lagrange Equation of this variational problem and derives
a second variation formula for H-minimal Lagrangian submanifolds, which gen-
eralizes the well-known one for the minimal case. Applying it, he proves that the
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2 ILDEFONSO CASTRO AND FRANCISCO URBANO

standard toriS1(r1) � � � � � S1(rn) in the complex Euclidean spaceCn (which
are H-minimal but non minimal, in fact they have parallel mean curvature vector)
are all of them not only Hamiltonian stable but also local minima of volume under
Hamiltonian deformations, so that he extends his above conjecture to all these tori.

Also, Oh comments in [8] Section 2 that H-minimal Lagrangian submanifolds
seem to exist more often than minimal Lagrangian submanifolds do, but no more
examples, after those with parallel mean curvature vector, were known so far.

If we pay our attention in the special case of dimension two, we firstly find out
that Lagrangian minimal surfaces in the complex Euclidean planeC2 are essentially
(see [1]) complex curves. On the other hand, the result of Minicozzi [5] proving
that the Oh’s Conjecture about the minimizing area property of the Clifford torus
in C2 would follow from the well-known Willmore’s Conjecture restricted for
Lagrangian tori, shows the hardness of Oh’s Conjecture.

Our contribution in this paper consists of an Existence and Uniqueness Theorem
about H-minimal Lagrangian tori inC2. In fact, we make a construction of a three-
parameter family (Theorem 1)

F�
�; �: R2!C2;

with

(�; �; �) 2 [0; 1
2�)� (0; 1

2�)� (�1
2�;

1
2�); � < �; j�j < �;

of new examples of Lagrangian H-minimal (conformal) immersions, all of them
with non-parallel mean curvature vector, such thatF�

�; � produces a torusT��;� if
and only if

�
sin�
sin�

;
cos�
cos�

�
2 Q2:

The Lagrangian tori with parallel mean curvature vector can clearly be seen as the
limits T ��;�.

About the construction, we remember that any round circle onS2 is H-minimal.
In this sense, H-minimal Lagrangian submanifolds can be considered as a high
dimensional symplectic generalization of such curves. Using exactly any parallel
in S2, taking its horizontal lift by the Hopf fibration toS3 � C� C (well-defined
up to rotations),
(y) = (
1(y); 
2(y)), and using a couple of regular curves
&j = &j(x), j = 1;2, in C� satisfying certain conditions, we can describe this
family in the following easy way

F�
�; �(x; y) = (&1(x)
1(y); &2(x)
2(y)):

Precisely, the first above rationality condition just means that the horizontal lift
(
1(y); 
2(y)) is a closed curve inS3.
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EXAMPLES OF UNSTABLE HAMILTONIAN-MINIMAL LAGRANGIAN TORI IN C2 3

We point out that the immersionsF�
�; � with � = � correspond to the particular

case&1(x) = &2(x), and then this construction coincides with the made in ([9],
Prop. 3) by Ros and the second author.

Next, in Theorem 2 we prove that our toriT��;� are the only Lagrangian H-

minimal tori (with non-parallel mean curvature vector) inC2 admitting a one-
parameter group of isometries.

Finally, in Proposition 3 we make a small contribution to Oh’s Conjecture
proving that the toriT��;� are Hamiltonian unstable and their Hamiltonian nullity is
positive.

2. Hamiltonian-minimal Lagrangian surfaces

LetC2 be the two-dimensional complex Euclidean plane endowed with a canonical
structure of K̈ahler manifold(h ; i; J), where we denote byh ; i the Euclidean metric
in C2 � R4 and byJ a canonical complex structure. The Kähler form
 is defined
by
 (X;Y ) = hX;JY i, for any tangent vector fieldsX andY .

Let� be an orientable surface and�:�! C2 a Lagrangian immersion, i.e. an
immersion with��
 = 0. We also denote byh ; i the induced metric in� by the
Euclidean one. Then��TC2 = T�� T?�, whereT� andT?� are the tangent
and normal bundles of� respectively. Leter denote the connection on��TC2

induced by the Levi–Civita connection ofC2, ander = r�r? the corresponding
decomposition.

The most elementary properties of� are

(a) J defines a bundle-isomorphism from the tangent bundle to the normal bundle
of � such that

J � r = r? � J:

(b) If � is the second fundamental form of� andA� is the Weingarten endomor-
phism associated to a normal vector field�, then for any tangent vector fields
X andY

� (X;Y ) = JAJXY:

So, the trilinear formC(X;Y;Z) = h�(X;Y ); JZi is totally symmetric on
T�.

(c) If H denotes the mean curvature vector of� and�H is the one-form on�
dual to the tangent vector fieldJH, i.e.�H = 
(�;H) (up to constants,�H
is the well-knownMaslov form, see [6]), then from (a), (b) and the Codazzi
Equation of�, we have that�H is a closed one-form.

Studying the problem of minimizing volume of Lagrangian submanifolds under
Hamiltonian deformations in Kaehler manifolds, Oh [8] introduced the notion of
Hamiltonian-minimal (abbreviated as H-minimal) Lagrangian submanifold
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4 ILDEFONSO CASTRO AND FRANCISCO URBANO

(E-minimal Lagrangian submanifolds, in the nomenclature of Chen and Morvan
in [2]).

DEFINITION 1. A Lagrangian immersion�:� ! C2 is said to be Hamiltonian-
minimal (or H-minimal) if it is a critical point of the area functional restricted
to (compactly supported) Hamiltonian variations of�, i.e. variations with normal
variational vector field� such that the one-form�� = 
(�; �) on� is exact.

The Euler–Lagrange equation for the variational problem of the H-minimal
Lagrangian submanifolds was deduced by Oh in [8] (see (ii) in the following
proposition).

PROPOSITION 1.For a Lagrangian immersion�:�! C2 the following proper-
ties are equivalent:

(i) � is H-minimal.
(ii) �H is coclosed, i.e.��H = 0, where� is the codifferential operator in�.

In particular, if� is acompactorientable surface then(ii) is equivalent to that�H
is a harmonic1-form, i.e.4�H = 0, and so the genus of� will be greater than or
equal to one.

The second variation operator for Hamiltonian deformations of a H-minimal
Lagrangian immersion�:�! C2 can be seen as the quadratic form associated to
an operator acting on the compactly supported exact one-forms on the surface (or
the gradients of functions on the surface) and it is given by (see Theorem 3.4 in
[8])

Q(rf) =
Z
�

4hJH;rfi2 � hr(4f);rfi � 4h�(rf;rf);Hi;

wheref 2C10 (�) andrf and4f denote the gradient and Laplacian of the
functionf in the surface� respectively.

H-minimal Lagrangian surfaces inC2 can be also characterized in terms of
their Gauss maps. In what follows we will use the notation and ideas of Harvey
and Lawson ([3]). Let Lag= L(C2) be the space of oriented Lagrangian planes
in (C2;
), whose Riemannian structure is defined by identifying Lag with the
symmetric spaceU(2)=SO(2), whereU(2) (respectively SO(2)) is the unitary
group (respectively special orthogonal group) of order 2.

Let

�:�!Lag

be the Gauss map of a Lagrangian immersion�:�! C2 of an oriented surface�.
The determinant map

det: Lag! S1
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defines a SU(2)=SO(2)-fiber bundle over the circleS1, and so we obtain a map

g = det� �:�! S1 � C:

If fz1; z2g are standard coordinates onC2, theng is written as

g(p) = (dz1 ^ dz2)(d�p(Tp�)):

A straightforward computation shows that for any vector fieldX on�

X(g) = �2�H(X)ig

and derivating again we obtain

�g + 4j�H j2g = �2��H ig:

So, from the above formulas, we get the following characterization.

PROPOSITION 2.Let �:� ! C2 be a Lagrangian immersion of an oriented
surface�. Then
(a) � is minimal if and only ifg is a constant map[3, Prop. 2.17].
(b) � is H-minimal if and only ifg is harmonic.

Examples of H-minimal Lagrangian surfaces inC2 are, of course, the minimal
ones and those with parallel mean curvature vector. The standard toriS1(r1) �
S1(r2) are H-minimal but they are not minimal. But, so far, there were no other
known examples. In this paper, we deal with a particular family of new H-minimal
Lagrangian tori (the easiest possible topology), all of them with non-parallel mean
curvature vector.

3. Existence

We start this section explaining a certain construction that will let us introduce later
a family of H-minimal Lagrangian immersions inC2.

Let�: S3!S2 be the Hopf fibration ofS2 given by�(z; w) = (2zw; jzj2�jwj2),
(z; w)2S3 � C2 and let'2 (�1

2�;
1
2�). If we consider the curve
: R!S3

given by


(s) = (cos ei tan s; sin e�i cot s);

with  =(1
2� � ')=2, then it is clear that�(
(s)) = (cos'e2is= cos'; sin') and

also we have thath
0; J
i= 0. This just means that
= 
(s) is ahorizontal lift of
the parallel of latitude' in S2. It is unique up to rotations inS3 and reparametriza-
tions (heres is the arc parameter).

We are going to use it joint with a couple of regular curves inC� in order
to construct Lagrangian immersions in the complex Euclidean plane. We will
sometimes follow the standard notations# = sin# andc# = cos# for the sine and
cosine of an angle# respectively.
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6 ILDEFONSO CASTRO AND FRANCISCO URBANO

LEMMA 1. Let &1 = &1(t); &2 = &2(t): R!C� be regular curves inC� such that
& 01&1 = & 02&2 and let'2 (�1

2�;
1
2�). If we defineF : R2!C2 by

F (t; s) = (cos &1(t)ei tan s; sin &2(t)e�i cot s);  = (1
2� � ')=2;

then

(1) F : (R2; E dt2 + Gds2)!C2 is a Lagrangian isometric immersion which is
well-defined up to rotations inC2, where

E = c2
 j& 01j2 + s2

 j& 02j2 and G = s2
 j&1j2 + c2

 j&2j2:

(2) X =
p
G=E @t (resp.Y = @s) is a closed and conformal(resp.Killing )

vector field on(R2; E dt2 +Gds2).
(3) The second fundamental form ofF is determined(see(b) in Sect.2) by

C(@t; @t; @t) = c2
 h& 001 ; J& 01i+ s2

 h& 002 ; J& 02i;

C(@t; @t; @s) = c s (j& 01j2 � j& 02j2);
C(@t; @s; @s) = h& 01; J&1i = h& 02; J&2i;
C(@s; @s; @s) = (s4

 j&1j2 � c4
 j&2j2)=c s :

(4) F is H-minimal if and only if the function

q
G=E

�
C(@t; @t; @t)

E
+
C(@t; @s; @s)

G

�
= 2hH;JXi

is constant.

Proof.A straightforward computation leads to

jFtj2 = c2
 j& 01j2 + s2

 j& 02j2; jFsj2 = s2
 j&1j2 + c2

 j&2j2;
hFt; Fsi = c s =(& 01&1 � & 02&2); hFt; JFsi = �c s <(& 01&1 � & 02&2);

which proves (1).
The proof of (2) follows from

r@t@t =
E0

2E
@t; r@t@s =

G0

2G
@s; r@s@s = � G0

2E
@t;

wherer is the Levi–Civita connection of the induced metricE dt2 +Gds2.
Computing the second derivatives ofF , it is an easy exercise to obtain the

formulas given in (3).
Finally, using Proposition 1,F is H-minimal if and only if the divergence of the

vector fieldJH vanishes. From (2) and (3) there exist certain functionsa(t) and
b(t) such that we can write 2H = a(t)JX+ b(t)JY . Then 2 divJH = �(X(a)+
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adivX). Using the Christtofel symbols ofr we have that divX =
p
G=E G0=G

and so we conclude thatF is H-minimal if and only ifa0+ aG0=G = 0. Using (3),
this last equation is equivalent to the assertion in (4). 2

Using the above lemma, we introduce in the following result a three-parameter
family of H-minimal immersions and state their main geometric properties. The
parameter-count in the result below ignores reparametrizations and also congru-
ences ofC2.

THEOREM 1.Let

� =
n
(�; �; �)2 [0; 1

2�)� (0; 1
2�)� (�1

2�;
1
2�); � < �; j�j < �

o
:

For each(�; �; �)2�, there exists a Lagrangian H-minimal immersion(with non-
parallel mean curvature vector)

F�
�; �: R2!C2;

that in suitable coordinates can be written as

F�
�; �(x; y) = (&1(x)
1(y); &2(x)
2(y));

where&j = &j(x): R!C�, j = 1;2, are certain regular curves and(
1(y); 
2(y))
is a horizontal lift toS3 � C2 by the Hopf fibration�: S3!S2 of the parallel of
S2 of latitude' = arcsin(sin�=sin�) (y is not necessarily the arc parameter).
F�
�; � satisfies the following properties

(1) The induced metric byF�
�; � is given by

h ; i = %(x)jdzj2; where %(x) =
c� +

q
c2
� � c2

� cos(2c�x)

c2
�

:

(2) The second fundamental form� = ���;� ofF = F�
�; � is determined by

�(@z ; @z) =
e�i�

2
JFz +

 
ei(���)

%(x)
� e�i�

2

!
JFz ;

�(@z ; @z) = <(ei�JFz);

where< denotes real part and@z = 1
2(@x � i@y), @z = 1

2(@x + i@y).
(3) f't: (x; y) 7! (x; y+ t); t2Rg is a one-parameter group of isometries of the

induced metric byF�
�; � that is the restriction, induced byF�

�; � , of the one-

parameter group of holomorphic isometries ofC2 given byfdiag(e�i(s��s�)t;
ei(s�+s�)t); t2Rg.
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(4) The limit immersionsF� = F�
�;�, 0 < � 6 1

4�, have parallel mean curvature
vector.F�=4 is the universal covering of the Clifford torus.

(5) F�
�; � descends to a torus if and only if

�
sin�
sin�

;
cos�
cos�

�
2Q2:

Precisely,sin�=sin� 2Q just means that the lift(
1(y); 
2(y)) is a closed
curve inS3.

Remark 1.In the particular case of the construction described in Theorem 1
with only one curve, i.e.&1(x) = &2(x), we will obtain the immersionsF�

�;� (see
the proof of the theorem below). Then this construction agrees with the made in
[9, Prop. 3] by Ros and the second author.

Proof.For each(�; �; �)2�, we define


1(y) =

s
s� + s�

2s�
e�i(s��s�)y;


2(y) =

s
s� � s�

2s�
ei(s�+s�)y

(1)

and let&j(x) = �j(x)ei�j(x), j = 1;2, with

�1(x) =

q
(s� � s�)%(x)� s���

(s� � s�)
p
s� + s�

;

�2(x) =

q
(s� + s�)%(x) + s���

(s� + s�)
p
s� � s�

(2)

and

�1(x) = c�x� (s�c��� � s�)

Z x

0

dt
(s� � s�)%(t)� s���

;

�2(x) = c�x� (s�c��� + s�)

Z x

0

dt
(s� + s�)%(t) + s���

:

(3)

In this way we defineF�
�; �(x; y) = (&1(x)
1(y); &2(x)
2(y)).

First we observe that�(
1(y); 
2(y)) = (cos'e�2is�y; sin'), with ' =
arcsin(sin�=sin�). This shows that(
1(y); 
2(y)) is a lift to S3 of the parallel
in S2 of latitude', and it is easy to check that it is horizontal. We notice that the
arc parameters of (
1(y); 
2(y)) is given by ds2 = (s2

� � s2
�)dy2.
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EXAMPLES OF UNSTABLE HAMILTONIAN-MINIMAL LAGRANGIAN TORI IN C2 9

On the other hand, a simple computation leads to& 0j&j = �0j�j+ i�
0

j�
2
j , j = 1;2.

From (2) and (3), using that�2
1 � �2

2 is clearly constant, it is easy to obtain that
& 01&1 = & 02&2. So we can use Lemma 1. Following its notation, we obtain here that
E = E(x) = %(x) andG = G(x) = %(x)=(s2

� � s2
�) and then Lemma 1 says that

F�
�; � is a Lagrangian immersion whose induced metric (Lemma 1,1) is given by

h ; i = %(x)dx2 +
%(x)

s2
� � s2

�

ds2 = %(x)(dx2 + dy2);

which proves (1).
Using now Lemma 1,3 it is then straightforward (after some computations) to

arrive at

C(@x; @x; @x) = c�%(x) + c���; C(@x; @x; @y) = �s���;
C(@x; @y; @y) = c�%(x)� c���; C(@y; @y; @y) = 2s�%(x) + s���

and it is easy to check (2). Also we deduce that the mean curvature vector ofF�
�; �

is given byH = (c�JFx + s�JFy)=%(x) and sohH;JFxi = c� which proves
thatF�

�; � is H-minimal using Lemma 1,4.
The paragraph (3) follows from (1) and Lemma 1,2.
If we consider the limit immersions when� = � = �, we arrive at

F�(x; y) � F�
�;�(x; y) =

1
2
p
c�

 
e2ic�x

c�
;

e2is�y

s�

!
; (4)

which proves (4). We notice that in the coordinates~x = c�x+ s�y, ~y = c�x� s�y,
we rewrite

F�(~x; ~y) =
1

2
p
c�

 
ei(~x+~y)

c�
;

ei(~x�~y)

s�

!
:

To prove (5), we look for conditions on the parameters ofF�
�; � that insure that

F�
�; � is doubly-periodic.

We first observe that if(�; �) 6= (0;0) is a period ofF�
�; �, then� is a period of

%(x) and so, using (1), there existsm 2 Z such that� = m�=c� .
From (1), (2) and (3), we deduce then that(m�=c� ; �) 6= (0;0) is a period of

F�
�; � if and only if it satisfies the system of congruences

�1

 
�

c�

!
m� (s� � s�)� � 0 mod 2�;

�2

 
�

c�

!
m+ (s� + s�)� � 0 mod 2�:

(5)
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Whenx2 (��=2c� ; �=2c�), the integral functions which appear in (3) are of
the typeaj arctan(bj tan(c�x)), for certain constantsaj , bj, j = 1;2, depending on
�; �; �, and the corresponding computation leads to�j(�=c�) = �(c� � c�)=c� ,
j = 1;2. Thus it is easy to check from (5) that(m�=c� ; �) 6= (0;0)) is a period of
F�
�; � if and only if

9k1; k2 2 Z=� = (k2 � k1)
�

s�
; m =

(k1 + k2) +
s�
s�
(k1 � k2)

c�
c�
� 1

: (6)

When writingk = k1 + k2 andn = k2 � k1, it follows that� = n�=s� and (6) is
reduced to

9k2Z
� 

c�

c�
� 1

!
m = k � s�

s�
n: (7)

Let ���;� = f(m;n) 2 Z � Z satisfying (7)g a free subgroup of(Z � Z;+).
We have just shown thatF�

�; �(x1; y1) = F�
�; �(x2; y2), (c�(x2 � x1)=�; s�(y2 �

y1)=�)2���;�. Hence,F�
�; � descends to a torus if and only if rank���;� = 2. Let

us see that this is equivalent to thats�=s� andc�=c� are rational numbers.
Firstly, if rank���;� = 2 and(m1; n1), (m2; n2) are the generators of���; �, since

m1n2 �m2n1 6= 0 it is easy to see from (7) thats�=s�, c�=c� 2Q.
Conversely, ifs�=s� = r=s, (r; s) = 1 andc�=c� = p=q, (p; q) = 1, then it is

not difficult to check from (7) that���; � = spanf(0; s); (q; s)g, takingk = r and
k = r + p� q in (7) respectively. 2

4. Uniqueness

If we denote

�� = f(�; �; �) 2 �; (sin�=sin�; cos�=cos�)2Q2g;

the immersionsF�
�;�: R2!C2, with (�; �; �)2��, are doubly-periodic and then

descend to tori (Theorem 1,5). These new examples of H-minimal Lagrangian tori
can be characterized as follows.

THEOREM 2.Let�:� ! C2 a LagrangianH-minimal (with non-parallel mean
curvature vector) immersion of a torus admitting a one-parameter group of iso-
metries. Then the universal covering of� will be congruent toF�

�;�, for some
(�; �; �)2��.

Proof.We also denote by� the lift of �:� ! C2 to the universal covering of
the torus�. Then�: C!C2 is also a Lagrangian H-minimal immersion admitting
a one-parameter group of isometries.

Let Y be the non-trivial Killing vector field in(C; h ; i) determined by the
one-parameter group of isometries. Then it is easy to check thatX = �iY is a
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EXAMPLES OF UNSTABLE HAMILTONIAN-MINIMAL LAGRANGIAN TORI IN C2 11

holomorphic vector field onC. So, we can normalize it in order to getX = @x and
henceY = @y. Thus, we can write the induced metric in the coordinatez = x+ iy
of C as a conformal metric to the Euclidean one in the following form

h ; i = e2u(x)jdzj2: (8)

Then the one-parameter group of isometries associated to� is now given by the
translations in they-direction.

We now denote by@z = 1
2(@x � i@y) and @z = 1

2(@x + i@y) the Cauchy–
Riemann operators inC and extendC-linearly �, J andh ; i to the complexified
bundles. Using properties (a), (b) and (c) of Section 2 and the Coddazi Equation
of �, it follows that (r�)(@z ; @z ; @z) = (e2u=2)r?

@z
H and, on the other hand,

@z(�H(@z)) = 2uz�H(@z)� hr?

@z
H;J@zi. Thus we obtain that

@z
�
h�(@z ; @z); J@zi

�
= e2u(uz �H(@z)� 1

2@z(�H(@z))): (9)

Since� is H-minimal the (real) 1-form�H is harmonic (see Proposition 1) and so
the function�H(@z) is holomorphic. As� is a torus, it is also bounded and so it is
necessarily constant. We can write then�H(@z) = ��e�i�, � > 0, �2 [��; �],
since that� = 0 implies that� is minimal, which is impossible becouse of the
compactness of�.

In addition, from (8) it follows that(e2u)z = (e2u)z . Thus, using (9), we have
that

@z(h�(@z ; @z); J@zi+ �e�i� e2u=2) = 0

and also in the same way, we can conclude thath�(@z ; @z); J@zi+�e�i� e2u=2 =
�ei(���), � > 0, � � �2 [��; �].

Therefore, since the equality�H(@z) = ��e�i� implies thath�(@z; @z); J@zi =
�e�i� e2u=2, we deduce that the second fundamental form of� is written in the
following way

�(@z; @z) = �e�i�J�z +

 
2�ei(���)

e2u � �e�i�
!
J�z;

�(@z; @z) = 2�<(ei�J�z);
(10)

where< denotes real part. From the Gauss Equation of�we deduce that the Gauss
curvatureK of � is given by

K = 8�(� cos� e�4u � �e�6u); (11)

from (8) we get that e�2uu00 = �K and so we have proved thatu = u(x) satisfies
the o.d.e.

u00 � 8�2 e�4u + 8�� cos� e�2u = 0: (12)
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12 ILDEFONSO CASTRO AND FRANCISCO URBANO

Now we are going to prove that we can normalize the constants�and�. Firstly, it
is not difficult to verify that if� = 0 thenK � 0 from (11) and� has parallel mean
curvature vector. So, we can consider� > 0 and we denote by the corresponding
immersion to the values� = � = 1

2. Using (12), its induced metric, that we will
continue writting as e2u(x)jdzj2, satisfies

u00 � 2 e�4u + 2 cos� e�2u = 0: (13)

Using (10) and (12), it happens then that our starting immersion� = �(z) induces
the metric(�=�)e2ujdzj2 (being alreadyu = u(x) solution to (13)) and it is

congruent to the immersion
q
�=4�3 (�z). So, up to dilations, it is enough to

consider the values� = � = 1
2 and we can work only with the immersion , that

we rename again by�, and with the o.d.e. (13).
On the other hand, since� is a torus, the induced metric must be periodic. If

cos� 6 0, from (13) it would follow thatu00 > 0 and obviuslyu would not can be
periodic. Hence cos� > 0 and so�2 (�1

2�;
1
2�). Note that if we change� by��

the o.d.e. (13) remains invariant.
In order to analyze the possible values of� and�, it is convenient to denote our

immersion� by � � ��� (z), whose Frenet Equations (see (10)) are given by

�z z = u0�z +
e�i�

2
J�z +

 
ei(���)

e2u � e�i�

2

!
J�z;

�z z = <(ei�J�z):
(14)

From (14) it is now easy to check that�� ��� (z) satisfies the same Frenet Equations
that���

�� (z) and��+�� (�z); the same happens with���� (z) and����� (�z). Hence
we can restrict to consider�2 [0; 1

2�) and�2 [�1
2�;

1
2�].

Now we continue the study of the periodic solutions of (13). The energy integral
for (13) is given by

u0 2 + e�4u � 2 cos� e�2u = constant= A: (15)

There is no restriction by imposing the initial conditionu0(0) = 0 (any periodic
solution has critical points) and then it is easy to check from (15) thatA > � cos2 �,
holding the equality only for the constant solution e2u(x) � 1=cos�.

Analyzing the nature of the possible solutions of (13), we find out that e2u(x)

is expressed in terms of hyperbolic functions (respectively polynomial of second
degree) ifA > 0 (respectively ifA = 0) and we must conclude that it is necessary
thatA < 0 in order to obtain periodic solutions to it. If we putA = � cos2�, with
� 2 [0; 1

2�) and� > � so that� cos2 � 6 A < 0, it is an exercise to verify that

the explicit solutions to (13) are given by e2u(x) = (c�+
q
c2
� � c2

� cos(2c�x))=c2
� ,
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EXAMPLES OF UNSTABLE HAMILTONIAN-MINIMAL LAGRANGIAN TORI IN C2 13

that is just the expression for%(x) in Theorem 1,1. Note that� = � implies that
u(x) is constant and then� has parallel mean curvature vector.

We point out that, from (14), the second fundamental form of� is also the same
that in Theorem 1,2.

To finish this proof, it still remains to verify that(�; �; �) belongs to��. Let us
see now thatj�j < �. It is easy to deduce from the Frenet Equations (14) of� that
�(�; y) satisfies, using (15), the o.d.e.

�yy � 2 sin�J�y + (cos2�� cos2�)� = 0: (16)

If cos2� < cos2 �, by integrating (16) we would obtain that� depends on the
variabley in terms of hyperbolic functions, which is impossible if� is a torus.
Then cos2� > cos2�, or equivalentlyj�j 6 �. If the equality holds, from (16)
it follows that �yy � 2 sin�J�y = 0. Using this in (14) we arrive at the limit
case� = � = � with u(x) constant and hence the immersion has parallel mean
curvature vector. Note that� = 0 implies� = � = 0, obtaining then a right-circular
cylinder.

As a summary, we have proved that our immersion� has the same first and
second fundamental forms thatF�

�; � and the parameters(�; �; �) associated to�
are in�. Moreover, since� is a torus, using Theorem 1,5 it is clear that(�; �; �)
are also in��, what finishes the proof. 2

We will denote byT��; � the tori described by the doubly-periodic immersionsF�
�; � ,

(�; �; �) 2 �� and by���; � the lattice granted byF�
�; �. Let���; � be a fundamental

region (a parallelogram) of the lattice���; �. In the following result we collect some
interesting geometric properties of the toriT��; �.

PROPOSITION 3. (a)The area of the torusT��;� is equal to

A =
cos�
cos2 �

A(���; �)

and the Willmore functional of the torusT��;� is equal to

W = A(���;�);

whereA(���;�) is the area of the fundamental parallelogram���; �.
(b) The Hamiltonian nullity of the toriT��;� is positive.
(c) The toriT��;� are Hamiltonian unstable.
Proof.Since the immersionF�

�; � is conformal, the area of a constructed torus
T��; � is given by

A =

Z Z
��
�;�

%(x)dxdy:
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14 ILDEFONSO CASTRO AND FRANCISCO URBANO

It is now possible to perform the above integration using the explicit expression
for %(x) in Theorem 1,1 and the generators of���; � which are given in the proof of
Theorem 1,5.

From Theorem 1,2 it is deduced thatjHj2 = 1=%(x) and so the Willmore
functional,W =

R
jHj2, is just the area of���;�.

It is an easy exercise to see that the quadratic formQ of the second variation of
the area (given in Sect. 2) satisfies thatQ(r%) = 0, what proves (b).

Finally, it is not difficult to check that

Q(r%0(x)) = �64
�
(c2
� � c2

�)A(�
�
�; �)

Z �

0
(c�%(x)

�2 � c2
�%(x)

�1)dx

= �64c�(c
2
� � c2

�)
2A(���; �) < 0;

which proves (c). 2
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