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Abstract. A new family of Hamiltonian-minimal Lagrangian tori in the complex Euclidean plane is
constructed. They are the first known unstable ones and are characterized in terms of being the only
Hamiltonian-minimal Lagrangian tori (with non-parallel mean curvature vecto€fiadmitting a
one-parameter group of isometries.
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1. Introduction

Itis known that the onlgtablecompact minimal submanifolds of the complex pro-
jective spaceCP” are the complex ones (see [4]). In particular, compact minimal
Lagrangian submanifolds are unstable. In [7], Oh introduced the notion of Hamil-
tonian stability for Lagrangian minimal submanifolds in Kaehler manifolds, as
those ones such that the second variation of volume is nonnegative for Hamiltonian
deformations. He proved that the totally geod & and the Clifford torus itCcP”

are Hamiltonian stable Lagrangian minimal submanifolds. He also conjectured that
the Clifford torus inCP™ is even volume minimizing under Hamiltonian deforma-
tions, such as it happens wigP”. In this context, the second author proved in [10]
thag the Clifford torus is the only Hamiltonian stable minimal Lagrangian torus in
CP-.

While minimal submanifolds are critical points of the functional volume for any
(compactly supported) variation, motivated by the previous study in [7], Oh intro-
duces in [8] the notion of Hamiltonian-minimal (H-minimal briefly) Lagrangian
submanifolds as critical points of the functional volume for Hamiltonian deforma-
tions, states the Euler—Lagrange Equation of this variational problem and derives
a second variation formula for H-minimal Lagrangian submanifolds, which gen-
eralizes the well-known one for the minimal case. Applying it, he proves that the
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standard toriS*(ry) x --- x S%(r,) in the complex Euclidean spa&® (which
are H-minimal but non minimal, in fact they have parallel mean curvature vector)
are all of them not only Hamiltonian stable but also local minima of volume under
Hamiltonian deformations, so that he extends his above conjecture to all these tori.

Also, Oh comments in [8] Section 2 that H-minimal Lagrangian submanifolds
seem to exist more often than minimal Lagrangian submanifolds do, but no more
examples, after those with parallel mean curvature vector, were known so far.

If we pay our attention in the special case of dimension two, we firstly find out
that Lagrangian minimal surfaces in the complex Euclidean fildmee essentially
(see [1]) complex curves. On the other hand, the result of Minicozzi [5] proving
that the Oh’s Conjecture about the minimizing area property of the Clifford torus
in C? would follow from the well-known Willmore’s Conjecture restricted for
Lagrangian tori, shows the hardness of Oh’s Conjecture.

Our contribution in this paper consists of an Existence and Uniqueness Theorem
about H-minimal Lagrangian tori i62. In fact, we make a construction of a three-
parameter family (Theorem 1)

gjﬁ:R2—>CZ,
with
(6,8,) €[0,5m) x (0,37) x (&3m,37); 0<B, |o| <p,

of new examples of Lagrangian H-minimal (conformal) immersions, all of them
with non-parallel mean curvature vector, such thgt; produces a torugy'; if
and only if

(sina COSa> c Q2

sinB’ cosB

The Lagrangian tori with parallel mean curvature vector can clearly be seen as the
limits 77 ,.

About the construction, we remember that any round circl8%da H-minimal.
In this sense, H-minimal Lagrangian submanifolds can be considered as a high
dimensional symplectic generalization of such curves. Using exactly any parallel
in $, taking its horizontal lift by the Hopf fibration t8° ¢ C @ C (well-defined
up to rotations),y(y) = (y1(y),72(y)), and using a couple of regular curves
gj = sj(z), 5 = 1,2, in C* satisfying certain conditions, we can describe this
family in the following easy way

Fo 5z, y) = (s1(z)n(y), s2(x)v2(y))-

Precisely, the first above rationality condition just means that the horizontal lift
(71(y),v2(y)) is a closed curve iS3.
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We point out that the immersiorf§;' ; with § = « correspond to the particular
casesi(z) = ¢(z), and then this constructlon coincides with the made in ([9],
Prop. 3) by Ros and the second author.

Next, in Theorem 2 we prove that our tdff’; are the only Lagrangian H-

minimal tori (with non-parallel mean curvature vector) @t admitting a one-
parameter group of isometries.

Finally, in Proposition 3 we make a small contribution to Oh’s Conjecture
proving that the torff;"; are Hamiltonian unstable and their Hamiltonian nullity is
positive.

2. Hamiltonian-minimal Lagrangian surfaces

Let C? be the two-dimensional complex Euclidean plane endowed with a canonical
structure of Kahler manifold (, ), J), where we denote by, ) the Euclidean metric
in C?2 = R* and by.J a canonical complex structure. Théler form is defined
by Q(X,Y) = (X, JY), for any tangent vector field& andY".

Let = be an orientable surface apdX — C? a Lagrangian immersion, i.e. an
immersion withy*Q2 = 0. We also denote by, ) the induced metric irt. by the
Euclidean one. The#*TC? = TS @ T'%, whereTE andTX are the tangent
and normal bundles af respectively. Letv denote the connection apT'C?
induced by the Levi—Civita connection 6f, andV = V@ V- the corresponding
decomposition.

The most elementary properties@aire

(a) J defines a bundle-isomorphism from the tangent bundle to the normal bundle
of ¢ such that

JoV =V'ol.

(b) If o is the second fundamental form ¢fand A, is the Weingarten endomor-
phism associated to a normal vector figldhen for any tangent vector fields
X andY

o(X,Y) = JAxY.

So, the trilinear formC(X,Y, Z) = (0(X,Y), JZ) is totally symmetric on
T.

(c) If H denotes the mean curvature vectorgodnd oy is the one-form ork
dual to the tangent vector fiel@lH, i.e.ay = Q(<; H) (up to constantsy
is the well-knownMaslov form see [6]), then from (a), (b) and the Codazzi
Equation ofp, we have thatvy is a closed one-form.

Studying the problem of minimizing volume of Lagrangian submanifolds under
Hamiltonian deformations in Kaehler manifolds, Oh [8] introduced the notion of
Hamiltonian-minimal (abbreviated as #hinimal) Lagrangian submanifold
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(E-minimal Lagrangian submanifolds, in the nomenclature of Chen and Morvan

in [2]).

DEFINITION 1. A Lagrangian immersion: ¥ — C? is said to be Hamiltonian-
minimal (or Hminima) if it is a critical point of the area functional restricted
to (compactly supported) Hamiltonian variationsggfi.e. variations with normal
variational vector field such that the one-form, = Q(«;¢) onX is exact.

The Euler—Lagrange equation for the variational problem of the H-minimal
Lagrangian submanifolds was deduced by Oh in [8] (see (ii) in the following
proposition).

PROPOSITION 1For a Lagrangian immersiog: ¥ — C? the following proper-
ties are equivalent

() ¢isH-minimal

(i) ag is coclosed, i.edag = 0, whered is the codifferential operator ix.

In particular, if ¥ is acompacbrientable surface thefii) is equivalent to thadv
is a harmonicl-form, i.e.Aay = 0, and so the genus &f will be greater than or
equal to one.

The second variation operator for Hamiltonian deformations of a H-minimal
Lagrangian immersior: = — C? can be seen as the quadratic form associated to
an operator acting on the compactly supported exact one-forms on the surface (or
the gradients of functions on the surface) and it is given by (see Theorem 3.4 in

)
QN = [ ATH V12 VAN, V1) 4o(V. ), H),

where f € C§°(X) and Vf and Af denote the gradient and Laplacian of the
function f in the surface: respectively.

H-minimal Lagrangian surfaces i@> can be also characterized in terms of
their Gauss maps. In what follows we will use the notation and ideas of Harvey
and Lawson ([3]). Let Lag= £(C?) be the space of oriented Lagrangian planes
in (C?,Q), whose Riemannian structure is defined by identifying Lag with the
symmetric spacé/(2)/SO(2), whereU(2) (respectively SQ®)) is the unitary
group (respectively special orthogonal group) of order 2.

Let

v:¥—lLag

be the Gauss map of a Lagrangian immersioB — C? of an oriented surfacg.
The determinant map

det: Lag— St
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defines a S(R)/SO(2)-fiber bundle over the circl&!, and so we obtain a map
g=detor:¥ - St cC.
If {21, 2} are standard coordinates 68, theng is written as
9(p) = (dz1 A dz2)(dy (T X))
A straightforward computation shows that for any vector fi€ldn X
X(9) = «Ray(X)ig
and derivating again we obtain
Ag + 4o |’g = <2auig.
So, from the above formulas, we get the following characterization.

PROPOSITION 2Let ¢: = — C? be a Lagrangian immersion of an oriented
surfaceX.. Then

(a) ¢ is minimal if and only ify is a constant maf8, Prop. 2.17].

(b) ¢ is H-minimal if and only ifg is harmonic

Examples of H-minimal Lagrangian surfacesdf are, of course, the minimal
ones and those with parallel mean curvature vector. The standar8@ti) x
Sl(rz) are H-minimal but they are not minimal. But, so far, there were no other
known examples. In this paper, we deal with a particular family of new H-minimal
Lagrangian tori (the easiest possible topology), all of them with non-parallel mean
curvature vector.

3. Existence

We start this section explaining a certain construction that will let us introduce later
a family of H-minimal Lagrangian immersions @f.

LetII: S* —+S? be the Hopf fibration o8? given byll(z, w) = (22w; | z|2<|w|?),
(z,w) €S® C C? and lety € (&5, 37). If we consider the curve;: R —
given by

'Y(S) _ (COSQ[} e tanws’ sim/; e—z’cotzps)’

with o = (37 <) /2, then it is clear thalll(y(s)) = (cosp €%/ ¢ sinyp) and
also we have thaty’, Jv) = 0. This just means that=v(s) is ahorizontal lift of
the parallel of latitude in S2. It is unique up to rotations i8° and reparametriza-
tions (heres is the arc parameter).

We are going to use it joint with a couple of regular curveihin order
to construct Lagrangian immersions in the complex Euclidean plane. We will
sometimes follow the standard notatign= sin¥ andcy = cosdy for the sine and
cosine of an anglé respectively.
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LEMMA 1. Lets; = <1(t), s2 = s2(t): R— C* be regular curves irfC* such that
§131 = 5%z and lety € (<3, 37). If we defineF: R — C? by

F(t,s) = (cosy (t) €7, sing (1) €9%0%), ¢ = (37 59)/2,

then
(1) F: (R?, E dt? + G ds?) — C? is a Lagrangian isometric immersion which is
well-defined up to rotations i62, where
E =gl +silal? and G = silal® + ¢l

(2) X = /G/E 0, (resp.Y = 0s) is a closed and conformdtesp.Killing)
vector field on(R?, E dt? + G ds?).
(3) The second fundamental formBfis determinedsee(b) in Sect2) by

C(01,01,0) = (st J1) + s5(3, T sp),
C (B, 01, 05) = eysy(|s1” ©[<l?),
C’(8 8878) (gla J§1> <§2, J§2>

C (05, 0s,05) = (3¢|§1|2 <:>c¢|§2| )/ Sy

(4) F is H-minimal if and only if the function

m (C(@t,gt,at) i C(at’gs’83)> =2(H,JX)

is constant

Proof. A straightforward computation leads to
B =Gl + il B = shlal® + el
<Ft7 FS> = C¢S¢%(§i§_1 <:>§é§_2), (Fta JFS> = <=)C¢S¢§}E(§i§_1 <:>§é§_2)7

which proves (1).
The proof of (2) follows from

E, G’ Gl
Vatat = E O, Vatas = % 0s, vasas = @Z—E O,

whereV is the Levi—Civita connection of the induced metBat? + G ds?.
Computing the second derivatives 8f it is an easy exercise to obtain the
formulas given in (3).
Finally, using Proposition 1%’ is H-minimal if and only if the divergence of the
vector fieldJH vanishes. From (2) and (3) there exist certain functief$ and
b(t) such that we can writelZ = a(t)JJX +b(t)JY. Then 2divJH = <(X (a) +
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a div X). Using the Christtofel symbols 67 we have that di\X = \/G/EG'/G
and so we conclude thatis H-minimal if and only ifa’ + G’ /G = 0. Using (3),
this last equation is equivalent to the assertion in (4). O

Using the above lemma, we introduce in the following result a three-parameter
family of H-minimal immersions and state their main geometric properties. The
parameter-count in the result below ignores reparametrizations and also congru-
ences ofC?.

THEOREM 1.Let
r={(6,8,0)€[0,3r) x (0,37) x (<}m,3m);0 < B, |o] < B}

For each(0, 3, «) € T, there exists a Lagrangian H-minimal immersievith non-
parallel mean curvature vectpr

5 R?— C?,
that in suitable coordinates can be written as

Fo gz, y) = (sa(@)n(y), s2(x)v2(y)),

whereg; = ¢;(z):R— C*, j = 1,2, are certain regular curves angy1(y), v2(y))

is a horizontal lift toS® ¢ C? by the Hopf fibratioril: S* — S? of the parallel of

& of latitudey = arcsir(sina/sin3) (y is not necessarily the arc paramejer
Fo s satisfies the following properties

(1) The induced metric b ; is given by

co + +/c5 <% cog2cs7)
()= oa)|d=l?, where o(x) = A iy

2
s

(2) The second fundamental foum= og ; of 7 = F' 5 is determined by

g la ei(97a) g la

0(0,,05) = R(EYTF,),

whereR denotes real part an@, = 3(0, <idy), 0z = 3(0y + i0y).

(3) {ps: (z,y) — (z,y+1), t€R}isaone-parameter group of isometries of the
induced metric byFy ; that is the restriction, induced h¥y' ;, of the one-
parameter group of holomorphic isometrieg@fgiven by{diag(e *(ss—sa)t,
glsatsalt) ¢ eR}Y.
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(4) The limit immersionsFy = }'9 0 0<0< 47r have parallel mean curvature
vector.F; 4 is the universal covering of the Clifford torus.
5) Fi s descends to a torus if and only if

(Slna C08a> cQ2

sinB’ cosp

Precisely,sina/sing € Q just means that the lifty1(y),v2(y)) is a closed
curve in

Remark 1In the particular case of the construction described in Theorem 1
with only one curve, i.esi(z) = (), we will obtain the immersionsy ; (see
the proof of the theorem below). Then this construction agrees with the made in
[9, Prop. 3] by Ros and the second author.

Proof. For each(d, 3, «) € T, we define

_ |58 t Sa —i(sg—sa)y
'Yl(y) - 235 e b
1)
— 84 S Sa i(sg+sa)y
r2(y) =4/ 255 e
and lets;(z) = p;(z) €@, j = 1,2, with
/(55 ©sa)olw) @590
pilz) = (8 ©50)\/S3 T Sa
(2)
/(5 +sa)ol@) + 500
pa(z) = (58 + Sa)\/53 ©5a
and
v1(x) = cox < (8¢ <:>s)/m de
BT Rl e T o (55 @sa)olt) 50 "

vo(x) = cqx < (8¢ —{—s)/m dt
ST T o (sp + sa)e() + s0-a

In this way we defineFg ;(z, y) = (s1(z)71(y), s2()72(y))-
First we observe thafl(vyi(y),v2(y)) = (cospe 2489 siny), with ¢ =
arcsir(sina/sin3). This shows thatyi(y),v2(y)) is a lift to S of the parallel

in S? of latitude p, and it is easy to check that it is horizontal We notice that the
arc parametes of (y1(y), v2(y)) is given by &2 = (sﬁ &52) dy?.
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On the other hand, a simple computation lead$3p= p/;p; + il/]'-pjz-,j =12
From (2) and (3), using thatZ < p3 is clearly constant, it is easy to obtain that
151 = <352. S0 we can use Lemma 1. Following its notation, we obtain here that
E = E(z) = o(z) andG = G(z) = o(z)/(s5 < s3) and then Lemma 1 says that
Fo s is a Lagrangian immersion whose induced metric (Lemma 1,1) is given by

()= o) de? + 29 a2 = (o) (da? + 0?)
83 <S4
which proves (1).
Using now Lemma 1,3 it is then straightforward (after some computations) to
arrive at

C(amaamaam) = Ca@(g«') + Co—a C(amaamaay) = 50—a
C(0x, 0y, 0y) = capo(x) SCo—q, C(0y, 0y, 0y) = 2500(T) + Sp—q

and it is easy to check (2). Also we deduce that the mean curvature vedtgr,of
is given by H = (coJFy + saJFy)/0(z) and so(H, JF,) = c, which proves
that]-"gjﬁ is H-minimal using Lemma 1,4.

The paragraph (3) follows from (1) and Lemma 1,2.

If we consider the limit immersions wheéh= 8 = «, we arrive at

1 eZic.g:v eZis.gy
_ b
= = 4
Fo(z,y) = Fyo(z,y) 2\/@< P )a (4)
which proves (4). We notice that in the coordinates cyx + spy, ¥ = cpx <spy,
we rewrite
o 1 g@+y) gi@—9)
f@(l‘ay)_z\/c—0< co ) s .

To prove (5), we look for conditions on the parametersgf, that insure that
Fy: 5 is doubly-periodic.

We first observe that ifA, 1) # (0,0) is a period ofFy' 5, thenA is a period of
o(x) and so, using (1), there exists € Z such that\ = mn/cs.

From (1), (2) and (3), we deduce then tlatr/cs, 1) # (0,0) is a period of
Fy. 5 if and only if it satisfies the system of congruences

2 <cl> m &(sg ©sq)p =0 mod 2r,
B
5)

Vo <1> m+ (sg + sq)p =0 mod 2r.

¢
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Whenz € (em/2c3, m/2c5), the integral functions which appear in (3) are of
the typea; arctar{b; tan(csx)), for certain constants;, b;, j = 1,2, depending on
6,3, o, and the corresponding computation leads or/c3) = 7(cqo <cg)/cs,

j =1,2. Thusitis easy to check from (5) thatx/cg, 1) # (0, 0)) is a period of
Fy: g ifand only if

(k1 + k2) + i—g(kl &ky)

T
dk1, ko € Z/ = (ko k1) — = . 6
Lk €Z/p = (k2 1)5g’ m ol (6)
When writingk = k1 + k2 andn = kp <k, it follows thaty, = nx/sz and (6) is
reduced to
Ca Sa
EIkEZ/(— <:>1>m:k<:>—n. (7)
Cs Sg

Let AG 5 = {(m,n) € Z x Z satisfying(7)} a free subgroup ofZ x Z, +).
We have Just shown th&! 5(z1,y1) = ¢ 5(22, y2) & (cp(2 &21) /7, 85(y2 &
y1)/m) € Ag 5. Hence 7 5 descends to a torus if and only if rang ; = 2. Let
us see that '[hIS is equivalent to that/ sz andc, /cg are rational numbers

Firstly, if rankA§ 6.8 = = 2and(ma,n1), (m2, nz) are the generators af} ;, since
ming <mong # 0 itis easy to see from (7) thag,/sg, ca/cs € Q.

Conversely, ifs,/s3 = /s, (r,s) = Landey/cg = p/q, (p,q) = 1, thenitis
not difficult to check from (7) thaty ; = spar{(0, s), (¢, s)}, takingk = r and
k=r+p<sqin (7) respectively. O

4. Unigueness

If we denote

I* = {(0,3,a) € T; (sina/sin3, cosa/cosp) € Q%},

the immersionsFg' ;: R* — C?, with (6, 3, ) € T'*, are doubly-periodic and then
descend to tori (Theorem 1,5). These new examples of H-minimal Lagrangian tori
can be characterized as follows.

THEOREM 2.Let ¢: % — C? a LagrangianH-minimal (with non-parallel mean
curvature vectoyimmersion of a torus admitting a one-parameter group of iso-
metries. Then the universal covering fwill be congruent taZg';, for some
(0,8,a) €T,

Proof. We also denote by the lift of ¢: £ — C? to the universal covering of
the torust. Theng: C — C?is also a Lagrangian H-minimal immersion admitting
a one-parameter group of isometries.

Let Y be the non-trivial Killing vector field in(C, ( , )) determined by the
one-parameter group of isometries. Then it is easy to checkXhat <iY is a
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holomorphic vector field o&. So, we can normalize it in order to g&t= 9, and
henceY” = 9,. Thus, we can write the induced metric in the coordinate z + iy
of C as a conformal metric to the Euclidean one in the following form

(,)=e"®|dz2. (8)

Then the one-parameter group of isometries associatédgmow given by the
translations in the-direction.

We now denote by, = 3(0, <id,) anddz = 3(9; + i9,) the Cauchy-
Riemann operators i€ and extendC-linearly o, J and( , ) to the complexified
bundles. Using properties (a), (b) and (c) of Section2 and the Coddazi Equation
of ¢, it follows that (Vo)(9;,9.,07) = (e/2)V3 H and, on the other hand,

9. (r (02)) = 2u,ap(9,) ©(Vz H, J9.). Thus we obtain that
0= ((0(9:,0z), J0z)) = & (uz apr (0:) ©30:(an (92))). ©)

Since¢ is H-minimal the (real) 1-fornav;; is harmonic (see Proposition 1) and so
the functionaz (9. ) is holomorphic. A is a torus, it is also bounded and so it is
necessarily constant. We can write thep(d,) = < e, A > 0, a € [&r, 7],
since that\ = 0 implies thatg is minimal, which is impossible becouse of the
compactness of.

In addition, from (8) it follows thate?), = (€®*)s. Thus, using (9), we have
that

0:((0(0s,0.), JO) + AeTe?/2) = 0

and also in the same way, we can conclude théd,, 0.), J0,) + e~ @ e /2 =
p€0=% 1> 0,0 cac e, .

Therefore, since the equality; (0.) = <)\ e~ implies thato(9,,05), J9,) =
e i e2“/2, we deduce that the second fundamental form of written in the
following way

0(9,,0,) = e Jp, + (M SA e—m> J bz,

ex (10)
0(0:,02) = 2AR(ET2),

whereR denotes real part. From the Gauss Equatiohwe deduce that the Gauss

curvatureK of ¢ is given by

K =8u(\coshe * ope ), (11)
from (8) we get that e**u" = <K and so we have proved that= u(z) satisfies
the o.d.e.

u" <8ue ™ + 8 \ucoshe 2 = 0. (12)

https://doi.org/10.1023/A:1000332524827 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000332524827

12 ILDEFONSO CASTRO AND FRANCISCO URBANO

Now we are going to prove that we can normalize the constaantsl. Firstly, it
is not difficult to verify that ify, = 0 thenK = 0 from (11) andp has parallel mean
curvature vector. So, we can consigier 0 and we denote by the corresponding
immersion to the values = i = % Using (12), its induced metric, that we will

continue writting as #(®)|dz|2, satisfies
u" <26 4 2co9e % = 0. (13)

Using (10) and (12), it happens then that our starting immersgieng(z) induces
the metric(u/)\) €*|dz|? (being alreadyu = u(z) solution to (13)) and it is

congruent to the immersioQ/p/4>\3zp(>\z). So, up to dilations, it is enough to

consider the values = i = % and we can work only with the immersiah that
we rename again by, and with the o.d.e. (13).

On the other hand, since is a torus, the induced metric must be periodic. If
cos? < 0, from (13) it would follow that,” > 0 and obviusly. would not can be
periodic. Hence co > 0 and sd € (<3, 37). Note that if we chang@ by <
the o.d.e. (13) remains invariant.

In order to analyze the possible valueg@ndc, it is convenient to denote our
immersiong by ¢ = ¢f(z), whose Frenet Equations (see (10)) are given by

e el e
bz =u, + 2 J¢z+< o2u ~ 2 J ¢z, (14)

$2z = R(ET,).

From (14)itis now easy to check that= ¢§ (=) satisfies the same Frenet Equations
thate_§ (z) andg; ™ (<2); the same happens with) “(z) and$; *(<z). Hence
we can restrict to considére [0, 37) anda € [, 3x].

Now we continue the study of the periodic solutions of (13). The energy integral
for (13) is given by

u'? 4+ e o2 cos e = constant= A. (15)

There is no restriction by imposing the initial conditiai{0) = O (any periodic
solution has critical points) and then it is easy to check from (15)4hat<cos 6,
holding the equality only for the constant solutic#@ = 1/cos#.

Analyzing the nature of the possible solutions of (13), we find out tfat)e
is expressed in terms of hyperbolic functions (respectively polynomial of second
degree) ifA > O (respectively ifA = 0) and we must conclude that it is necessary
thatA < 0 in order to obtain periodic solutions to it. If we pdt= <cos (3, with
B €0, %w) andg > 0 so that=cogd < A < 0, it is an exercise to verify that

the explicit solutions to (13) are given b§€”) = (cg + /cf <c3 cog2cs)) /3,
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that is just the expression f@(x) in Theorem 1,1. Note thai = 0 implies that
u(z) is constant and thefy has parallel mean curvature vector.

We point out that, from (14), the second fundamental form isfalso the same
that in Theorem 1,2.

To finish this proof, it still remains to verify th&®, 3, «) belongs td™*. Let us
see now thale| < 3. It is easy to deduce from the Frenet Equations (14) thfat
¢(<; y) satisfies, using (15), the o.d.e.

by S2siNa ¢, + (co a =cod B)¢ = 0. (16)

If co a < cog S, by integrating (16) we would obtain thatdepends on the
variabley in terms of hyperbolic functions, which is impossibledifis a torus.
Then coda > cog 3, or equivalentlyla| < 3. If the equality holds, from (16)
it follows that ¢, < 2sinaJ¢, = 0. Using this in (14) we arrive at the limit
casea = (3 = 0 with u(z) constant and hence the immersion has parallel mean
curvature vector. Note thgt= 0 impliesd = a = 0, obtaining then a right-circular
cylinder.

As a summary, we have proved that our immersjohas the same first and
second fundamental forms thay' ; and the parametel®, 3, ) associated te
are inT". Moreover, since is a torus, using Theorem 1,5 it is clear tf@ts, «)
are also i, what finishes the proof. |

We will denote byl ; the tori described by the doubly-periodic immersidigs;,

(0, B,) € T and byA§ , the lattice granted b§Fy ;. LetIly ; be afundamental
region (a parallelogram) of the lattidg] ;. In the followmg result we collect some
interesting geometric properties of the topt 5.

PROPOSITION 3. (aYhe area of the torugy’; is equal to

cost o

and the Willmore functional of the tord§’; is equal to
W= A( 3,ﬁ)a

whereA(Ilg ;) is the area of the fundamental parallelograif ;.
(b) The Hamiltonian nullity of the torTO‘ is positive.
(c) The torng‘ﬁ are Hamiltonian unstable

Proof. Since the |mmerS|od-‘gjﬁ is conformal, the area of a constructed torus
15 5 is given by

A= // ) dz dy.
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It is now possible to perform the above integration using the explicit expression
for o(x) in Theorem 1,1 and the generators\gf ; which are given in the proof of
Theorem 1,5.

From Theorem 1,2 it is deduced thdf|?> = 1/o(x) and so the Willmore
functional, W = [ |H|?, is just the area offly 5.

Itis an easy exercise to see that the quadratic fQraf the second variation of
the area (given in Sect. 2) satisfies tgV o) = 0, what proves (b).

Finally, it is not difficult to check that

QAV@) = o= 5B ) [ (crole) 2 edolo) ) do

= ©B4cs(ch c5)A(TTg 4) <O,

which proves (c). O

References

1. Chen, B.-Y. and Morvan, J. M.: &netrie des surfaces lagrangiennesafe J. Math. Pures
Appl.66 (1987) 321-325.

2. Chen, B.-Y. and Morvan, J. M.: Deformations of isotropic submanifolds in Kaehler manifolds,
J. Geom. and Phy4.3 (1994) 79-104.

3. Harvey, R. and Lawson, B.: Calibrated Geometrfeta Math.148 (1982) 47-157.

4. Lawson, B. and Simons, J.: On stable currents and their applications to global problems in real
and complex geometnAnn. Math.98 (1973) 427-450.

5. Minicozzi Il, W. P.: The Willmore functional on Lagrangian tori: its relation to area and existence
of minimizers,Journal A.M.S8 (1995) 761-791.

6. Morvan, J. M.: Classe de Maslov d’'une immersion Lagranienne et minan@litR. Acad. Sc.
Paris 292 (1981) 633—-636.

7. Oh, Y. G.: Second variation and stabilities of minimal Lagrangian submanifolds in Kaehler
manifolds,Invent. Math.101 (1990) 501-519.

8. Oh, Y. G.: Volume minimization of Lagrangian submanifolds under Hamiltonian deformations,
Math. Z.212 (1993) 175-192.

9. Ros, A. and Urbano, F.: Lagrangian submanifold€bfwith conformal Maslov form and the
Whitney sphere, To appear dn Math. SocJapan.

10. Urbano, F.: Index of Lagrangian submanifoldsasf and the Laplacian of 1-form$;eom.

Dedicata48 (1993) 309-318.

https://doi.org/10.1023/A:1000332524827 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000332524827

