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Abstract

We prove Zhang’s dynamical Manin–Mumford conjecture and dynamical Bogomolov
conjecture for dominant endomorphisms Φ of (P1)n. We use the equidistribution
theorem for points of small height with respect to an algebraic dynamical system,
combined with an analysis of the symmetries of the Julia set for a rational function.

1. Introduction

1.1 Notation
As always in algebraic dynamics, given a self-map f on a variety X, we denote by fn its nth
iterate (for any non-negative integer n, where f0 denotes the identity map). We say that x ∈ X
is periodic if there exists n ∈ N such that fn(x) = x; we call x preperiodic if there exists m ∈ N
such that fm(x) is periodic. Also, for a subvariety V ⊂ X, we say that V is periodic if fn(V )
equals V for some n ∈ N; similarly, we say that V is preperiodic if fm(V ) is periodic.

1.2 The dynamical Manin–Mumford conjecture
Motivated by the classical Manin–Mumford conjecture (proved by Laurent [Lau84] in the case
of tori, by Raynaud [Ray83] in the case of abelian varieties and by McQuillan [McQ95] in the
general case of semi-abelian varieties), Zhang formulated a dynamical analogue of this conjecture
(see [Zha06, Conjecture 1.2.1]) for polarizable endomorphisms of any projective variety. We say
that an endomorphism Φ of a projective variety X is polarizable if there exists an ample line
bundle L on X such that Φ∗L is linearly equivalent to L⊗d for some integer d > 2. As initially
conjectured by Zhang, one might expect that if X is defined over a field K of characteristic 0 and
Φ is a polarizable endomorphism of X, and the subvariety V ⊆ X contains a Zariski dense set of
preperiodic points, then V is preperiodic. We prove that Zhang’s conjecture holds for dynamical
systems ((P1)n,Φ), where Φ is given by the coordinatewise action

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)), (1.2.1)

where each rational function fi is not a Lattés map. A Lattés map f : P1 −→ P1 is a rational
function coming from the quotient of an affine map L(z) = az + b on a torus T (elliptic curve),
i.e. f = Θ ◦ L ◦ Θ−1 with Θ : T → P1 a finite-to-one holomorphic map; see [Mil04] by Milnor.
We prove the following result.
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Theorem 1.1. Let f1, . . . , fn ∈ C(x) be rational functions of degree d > 2, and let Φ : (P1)n −→
(P1)n be given by their coordinatewise action as in (1.2.1). Assume that none of the rational

functions fi is a Lattés map. If a subvariety V ⊆ (P1)n contains a Zariski dense set of preperiodic

points under the action of Φ, then V is preperiodic.

We will prove Theorem 1.1 as a consequence of a more general statement, which we will state

in § 1.3.

1.3 Statement of our main results

We first need to introduce the notion of exceptional rational functions; they are rational functions

which commute with more functions of degree larger than one than a generic rational function

does (note that generic rational functions commute only with their iterates). The first examples

of such exceptional functions are the monomials xd, and then related to them we have the

Chebyshev polynomials. The Chebyshev polynomial of degree d is the unique polynomial Td
with the property that for each z ∈ C, we have Td(z + 1/z) = zd + 1/zd. For two rational

functions f and g, we say they are (linearly) conjugate if there exists an automorphism η of P1

such that f = η−1◦g ◦ η. We call exceptional any rational map of degree d > 1 which is conjugate

either to z±d, or to ±Td(z), or to a Lattés map.

We prove the following result.

Theorem 1.2. Let n be a positive integer, let fi ∈ C(x) (for i = 1, . . . , n) be non-exceptional

rational functions of degree di > 2, and let V ⊂ (P1)n be an irreducible subvariety defined over C.

Assume:

(1) either that V contains a Zariski dense set of preperiodic points under the action of

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)) and that d1 = d2 = · · · = dn;

(2) or that f1, . . . , fn ∈ Q̄(x), that V is defined over Q̄, and that there exists a Zariski dense

sequence of points (x1,i, . . . , xn,i) ∈ V (Q̄) such that limi→∞
∑n

j=1 ĥfj (xj,i) = 0, where ĥfj
is the canonical height with respect to the rational function fj .

Then there exists a finite set S of tuples

(i, j) ∈ {1, . . . , n} × {1, . . . , n}

along with (`i, `j) ∈ N × N and curves Ci,j ⊂ P1 × P1 which are preperiodic under the

coordinatewise action (xi, xj) 7→ (f `ii (xi), f
`j
j (xj)) such that:

(i) deg(f `ii ) = deg(f
`j
j ); and

(ii) V is an irreducible component of ⋂
(i,j)∈S

π−1
i,j (Ci,j), (1.3.1)

where πi,j : (P1)n −→ (P1)2 is the projection on the (i, j)th coordinate axes for each

(i, j) ∈ S.

Our Theorem 1.2 answers Zhang’s dynamical Manin–Mumford conjecture (over C) and

a slightly more general form of Zhang’s dynamical Bogomolov conjecture (over Q̄) for
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endomorphisms of (P1)n (see [Zha06, Conjectures 1.2.1 and 4.1.7]). Note that any dominant
(regular) endomorphism of (P1)n has an iterate which is of the form

Φ := (f1, . . . , fn) : (P1)n −→ (P1)n;

see also [GNY17, Remark 1.2]. Our result is slightly stronger than the one conjectured in [Zha06]
since in part (2) of Theorem 1.2 we do not assume the endomorphism Φ = (f1, . . . , fn) is
necessarily polarizable (i.e., the rational maps fi might have different degrees). On the other hand,
we exclude the case when functions fi are conjugate to monomials, ±Chebyshev polynomials,
or Lattés maps since in those cases there are counterexamples to a formulation when Φ is not
polarizable (see [GTZ11] and [GNY17, Remark 1.2]). Moreover, if at least two of the maps fi
are Lattés, then even assuming Φ is polarizable, one would still have to impose an additional
condition in order to get that the subvariety V is preperiodic (see [GTZ11, Theorem 1.2]). In our
next result (see Theorem 1.3) we prove the appropriately modified statement of the dynamical
Manin–Mumford conjecture (as formulated in [GTZ11, Conjecture 2.4]) for all polarizable
endomorphisms of (P1)n.

Theorem 1.3. Let n ∈ N, let fi ∈ C(x) (for i = 1, . . . , n) be rational functions of degree d > 1,
let Φ : (P1)n −→ (P1)n be defined by

Φ(x1, . . . , xn) = (f1(x1), . . . , fn(xn))

and let V ⊂ (P1)n be an irreducible subvariety. Assume there exists a Zariski dense set of smooth
points P = (a1, . . . , an) ∈ V (C) which are preperiodic under Φ and moreover such that the
tangent space TV,P of V at P is preperiodic under the induced action of Φ on Grdim(V )(T(P1)n,P ),
where Grdim(V )(T(P1)n,P ) is the corresponding Grassmannian. Then the subvariety V must be
preperiodic under the action of Φ.

1.4 Brief history of previous results towards the dynamical Manin–Mumford
conjecture and the dynamical Bogomolov conjecture

Motivated by the classical Bogomolov conjecture (proved by Ullmo [Ull98] in the case of curves
embedded in their Jacobian and by Zhang [Zha98] in the general case of abelian varieties),
Zhang formulated a dynamical analogue also for this conjecture (see [Zha06, Conjecture 4.1.7])
for polarizable endomorphisms Φ of any projective variety X. So, if X is defined over a number
field K then one can construct the canonical height ĥΦ for all points in X(Q̄) with respect to the
action of Φ (see [CS93] and also our § 3.4) and then Zhang’s dynamical version of the Bogomolov
conjecture asks that if a subvariety V ⊆ X is not preperiodic, then there exists ε > 0 with the
property that the set of points x ∈ V (Q̄) such that ĥΦ(x) < ε is not Zariski dense in V . Since
all preperiodic points have canonical height equal to 0, the dynamical Bogomolov conjecture
is a generalization of the dynamical Manin–Mumford conjecture when the algebraic dynamical
system (X,Φ) is defined over a number field.

Besides the case of abelian varieties X endowed with the multiplication-by-2 map Φ (which
motivated Zhang’s conjectures), there are known only a handful of special cases of the dynamical
Manin–Mumford or the dynamical Bogomolov conjectures. All of these partial results are for
curves contained in P1 × P1 (see [BH05, GT10, GTZ11, GNY17]). We also mention here the
paper of Dujardin and Favre [DF17] who prove a result for plane polynomial automorphisms
motivated by Zhang’s dynamical Manin–Mumford conjecture. Our Theorem 1.2 is the first result
towards the dynamical Manin–Mumford and the dynamical Bogomolov conjectures for higher
dimensional subvarieties of (P1)n.
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The case n = 2 in Theorems 1.2 and 1.3 (i.e., V is a curve in P1 × P1) was established in
[GNY17, Theorems 1.1 and 1.3]. Even though the general strategy in our present proof follows
the one we employed in [GNY17], there are significant new obstacles that we need to overcome;
for more details, see § 2.4.

1.5 Preperiodic subvarieties
The conclusion from Theorem 1.2 covers the main result of Medvedev’s PhD thesis [Med07]
(whose main findings were published in [MS14, Proposition 2.21]) who showed that any invariant
subvariety V ⊂ (P1)n under the coordinatewise action of n non-exceptional rational functions
must have the form (1.3.1). Our result is stronger than the results from [Med07, MS14] since we
only assume that a subvariety V ⊂ (P1)n contains a Zariski dense set of preperiodic points under
the action of Φ := (f1, . . . , fn) and then we derive that V must have the form (1.3.1) (see also
our Theorem 1.4). Medvedev and Scanlon assume that V is invariant by Φ (or more generally,
preperiodic under the action of Φ) and then using the model theory of difference fields, they
conclude that V must have the form (1.3.1). We do not use model theory; instead, we use algebraic
geometry (including the powerful arithmetic Hodge index theorem of Yuan and Zhang [YZ17])
coupled with a careful analysis for the local symmetries of the Julia set of a rational function.
We state below our formal result which covers the main result of [Med07] thus providing the
form of any preperiodic subvariety in (P1)n under the split action of n non-exceptional rational
functions.

Theorem 1.4. Let n ∈ N, let f1, . . . , fn ∈ C(x) be non-exceptional rational functions of degrees
> 1, and let Φ be their coordinatewise action on (P1)n. If V ⊂ (P1)n is a preperiodic subvariety
under the action of Φ, then there exists a finite set S of pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n}
along with curves Ci,j ⊂ P1 × P1 which are preperiodic under the coordinate wise action
(xi, xj) 7→ (fi(xi), fj(xj)) such that V is an irreducible component of

⋂
(i,j)∈S π

−1
i,j (Ci,j), where

πi,j : (P1)n −→ (P1)2 is the projection on the (i, j)th coordinate axes.

1.6 The dynamical Pink–Zilber conjecture
Analogous to asking the dynamical Manin–Mumford conjecture as a dynamical variant of the
classical Manin–Mumford conjecture, one could formulate a dynamical Pink–Zilber conjecture,
at least in the case of split endomorphisms. The following statement is implicitly raised in [GN16].

Conjecture 1.5. Let n ∈ N, let f1, . . . , fn ∈ C(x) be non-exceptional rational functions of
degrees > 1, and let Φ : (P1)n −→ (P1)n be their coordinatewise action (x1, . . . , xn) 7→ (f1(x1),
. . . , fn(xn)). For each m ∈ {0, . . . , n}, we let Per[m] be the union of all irreducible subvarieties of
(P1)n of codimension m, which are periodic under the action of Φ. If V ⊂ (P1)n is an irreducible
subvariety which is not contained in a proper periodic subvariety of (P1)n, then V ∩Per[dim(V )+1]

is not Zariski dense in V .

We exclude exceptional rational functions in Conjecture 1.5 since in those cases we rediscover
the classical Pink–Zilber conjecture; for more details on the Pink–Zilber conjecture, see [Zan12].

In Conjecture 1.5, if V ⊂ (P1)n is an irreducible hypersurface, then we recover essentially
the dynamical Manin–Mumford conjecture we proved in Theorem 1.2. Quite interestingly, the
same Theorem 1.2 can be used (along with other results) in order to solve Conjecture 1.5 if
V ⊂ (P1)n has dimension 1 or codimension 2 and each fi is a polynomial defined over Q̄ (see the
forthcoming paper A dynamical variant of the Pink–Zilber conjecture by Ghioca and Nguyen).
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1.7 Plan for our paper

In § 2 we show that in order to prove Theorems 1.1, 1.2 and 1.3, it suffices to assume that

V ⊂ (P1)n is a hypersurface which projects dominantly onto any subset of (n − 1) coordinate

axes of (P1)n. Thus we are left to prove our results for hypersurfaces H (see Theorem 2.2), which

will be done over the remaining sections of our paper; the conclusion in Theorem 1.4 will follow

from the ingredients we develop for proving Theorem 1.2.

In §§ 3 and 4 we set up our notation, state basic properties for the Julia set of a rational

function, construct the heights associated with an algebraic dynamical system and define adelic

metrized line bundles which are employed in the main equidistribution result (Theorem 4.1). We

note that Theorem 4.1 (of Yuan [Yua08]) is a crucial ingredient in our proof. In § 5 we prove

that under the hypotheses of Theorem 2.2, the measures induced on the hypersuface H ⊂ (P1)n

from the dynamical systems

((P1)n−1, f1 × · · · × fi−1 × fi+1 × · · · × fn)

are all equal (for i = 1, . . . , n). Also, in § 5 we prove Proposition 5.2, which is a crucial step in

our proof of our main results (for more details on this step and also on our overall proof strategy,

see § 2.4).

In § 6 we show how to use the equality of the above measures to infer the preperiodicity of

H, assuming also that H satisfies an additional technical hypothesis (see Theorem 6.1). In § 7

we finalize the proof of Theorem 2.2 (and thus finish our proof for Theorems 1.1, 1.2 and 1.3).

We conclude our paper by proving Theorem 1.4.

2. Reduction to the case of hypersurfaces

In this section we present various reductions which we will employ in proving Theorems 1.1, 1.2

and 1.3. We also provide additional details regarding the overall strategy for our proof.

2.1 Some reductions

We start with the following important reduction.

Proposition 2.1. It suffices to prove Theorems 1.1, 1.2 and 1.3 under the additional hypothesis

that V ⊂ (P1)n is a hypersurface which projects dominantly onto any subset of n− 1 coordinate

axes.

Proof. First we prove that it suffices to assume in each of the Theorems 1.1, 1.2 and 1.3

that V ⊂ (P1)n is a hypersurface. Indeed, we assume Theorems 1.1, 1.2 and 1.3 hold for all

hypersurfaces and we derive the same conclusion for all subvarieties of (P1)n. So, let V ⊂ (P1)n be

an irreducible subvariety of dimension D < n−1 satisfying the hypotheses of either Theorem 1.1,

or of Theorem 1.3, or hypothesis (1) (or (2)) of Theorem 1.2. Then there exist D coordinate axes

(without loss of generality, we assume they are x1, . . . , xD) so that the projection π of (P1)n onto

its first D coordinate axes remains dominant when restricted to V . For each j = D + 1, . . . , n,

we let πj be the natural projection map of (P1)n on coordinates x1, . . . , xD, xj , and we let

Hj := πj(V ). Then Hj ⊂ (P1)D+1 is a hypersurface satisfying the hypotheses of Theorem 1.1,

or of Theorem 1.3, or hypothesis (1) (or (2)) of Theorem 1.2 with respect to the coordinatewise

action of the rational functions f1, . . . , fD, fj . Furthermore, for each j = D + 1, . . . , n, we let

H̃j ⊂ (P1)n be the hypersurface Hj × (P1)n−D−1 ⊂ (P1)n (i.e., we insert a copy of P1 on each
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coordinate axis not included in the set {1, . . . , D, j}). Then also H̃j ⊂ (P1)n is a hypersurface
satisfying the hypotheses of either one of the three Theorems 1.1, 1.2 or 1.3. Let

H̃ :=
n⋂

j=D+1

H̃j ; (2.1.1)

clearly, V ⊂ H̃ and so, D = dim(V ) 6 dim(H̃).
Since dim(V ) = D and π|V : V −→ (P1)D is a dominant morphism, then we conclude that

there exists a Zariski open subset U ⊂ (P1)D such that for each α ∈ U , the fibre π−1(α) is finite.
Therefore for each α ∈ U and for each j = D+1, . . . , n, we have that there exists a finite set Sα,j
with the property that if (a1, . . . , an) ∈ H̃j and (a1, . . . , aD) = α, then aj ∈ Sα,j . Thus for each
α ∈ U , we have that there exist finitely many points (a1, . . . , an) ∈ H̃ such that (a1, . . . , aD) = α.
Hence V is an irreducible component of H̃; moreover, any irreducible component W of H̃ for
which π|W : W −→ (P1)D is a dominant morphism has dimension D.

If Theorem 1.2 holds for hypersurfaces, then each hypersurface H̃j ⊂ (P1)n must have the
form (1.3.1) since each one of these hypersurfaces satisfies the hypotheses of Theorem 1.2.
Actually, since each H̃j is a hypersurface, then we must have

H̃j = π−1
i,j (Ci,j)

for some curve Ci,j ⊂ P1×P1, which is preperiodic under the action of (xi, xj) 7→ (f `ii (xi), f
`j
j (xj))

for some `i, `j ∈ N with the property that deg(f `ii ) = deg(f
`j
j ). Because V is an irreducible

component of H̃ (see (2.1.1)), we obtain the desired conclusion in Theorem 1.2.
Now, if Theorems 1.1 or 1.3 hold for hypersurfaces, then each hypersurface H̃j ⊂ (P1)n is

preperiodic under the action of Φ := (f1, . . . , fn). Thus, also H̃ is preperiodic under the action
of Φ (see (2.1.1)). Combining the following facts:
• H̃ is preperiodic;
• V is an irreducible component of H̃;
• each irreducible component W of H̃ for which π|W : W −→ (P1)D is a dominant morphism

has dimension D; and
• each variety Φm(V ) (for m ∈ N) projects dominantly onto (P1)D,

we obtain that V itself must be preperiodic under the action of Φ, as desired.
Now, once we reduced proving Theorems 1.1, 1.2 and 1.3 to the case V ⊂ (P1)n is a

hypersurface, we can reduce further to the special case when V projects dominantly onto each
subset of (n− 1) coordinate axes. Indeed, assuming otherwise, then (without loss of generality)
we may assume V = P1 × V0 for some hypersurface V0 ⊂ (P1)n−1. Therefore, it suffices to
prove Theorems 1.2 and 1.3 for the subvariety V0 ⊂ (P1)n−1 under the coordinatewise action
of the rational functions f2, . . . , fn. A simple induction on n finishes our proof. (Finally, as an
aside, we observe that in light of [GNY17, Theorem 1.1], then due to the reduction proved in
Proposition 2.1, we have that Theorem 1.2 is equivalent with proving that if n > 2 and also
if each fi is non-exceptional, then there is no hypersurface H ⊂ (P1)n projecting dominantly
onto each subset of (n− 1) coordinate axes of (P1)n such that H contains a Zariski dense set of
preperiodic points; this is exactly what we will be proving in Theorems 2.2 and 6.1.) 2

2.2 A technical result
The next result (proven in § 7) in conjunction with [GNY17, Theorems 1.1 and 1.3] yields the
conclusions of each of the three Theorems 1.1, 1.2 and 1.3.
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Theorem 2.2. Let n > 2 be an integer, let fi ∈ C(x) of degree di > 2 (for i = 1, . . . , n) and
let H ⊂ (P1)n be an irreducible hypersurface projecting dominantly onto each subset of (n− 1)
coordinate axes. If there is a Zariski dense sequence of points (x1,i, . . . , xn,i) ∈ V (C) such that:

(1) either each (x1,i, . . . , xn,i) is preperiodic under the coordinatewise action of (f1, . . . , fn) and
also d1 = d2 = · · · = dn;

(2) or each fi ∈ Q̄(x) (for i = 1, . . . , n), V is defined over Q̄ and limi→∞
∑n

j=1 ĥfj (xj,i) = 0,

then the following must hold:

(i) either each fi(x) is conjugate to x±di or to ±Tdi(x);

(ii) or each fi is a Lattès map (for i = 1, . . . , n).

2.3 Our main results as consequences of the technical result
We show next how to derive Theorems 1.1, 1.2 and 1.3 from Theorem 2.2.

Proof of Theorem 1.2. As shown in Proposition 2.1, it suffices to prove Theorem 1.2 for
irreducible hypersurfaces V , which project dominantly onto each subset of (n−1) coordinate axes
of (P1)n. Since no fi is exceptional, then Theorem 2.2 yields that the case of such hypersurfaces
is vacuously true when n > 2. The case of curves V ⊂ (P1)2 is proven in [GNY17, Theorem 1.1],
which concludes our proof. 2

Since both Theorems 1.1 and 1.3 have similar statements and proofs, we will show next in
parallel how to derive these two results from Theorem 2.2.

Proof of both Theorems 1.1 and 1.3. Again using Proposition 2.1, it suffices to prove
Theorems 1.1 and 1.3 for irreducible hypersurfaces V , which project dominantly onto each
subset of (n − 1) coordinate axes of (P1)n. The case n = 2 in Theorem 1.3 was already proven
in [GNY17, Theorem 1.3]. On the other hand, note that [GNY17, Equation (11)] yields that
for a plane curve (neither horizontal, nor vertical) which contains infinitely many preperiodic
points under the coordinatewise action of two rational functions f1 and f2, if f1 is conjugate
to a monomial or ±Chebyshev polynomial, then f2 must also be conjugated to a monomial or
±Chebyshev polynomial. Furthermore, if we assume n > 2, then Theorem 2.2 yields that:

(i) either for each i = 1, . . . , n we have that fi(x) = ν−1
i (x) ◦ x±d ◦ νi(x) or fi(x) = ν−1

i (x) ◦
(±Td(x)) ◦ νi(x) for some automorphisms νi : P1 −→ P1;

(ii) or each fi is a Lattès map corresponding to some elliptic curve Ei (for i = 1, . . . , n).

Therefore, from now on, we work in both Theorems 1.1 and 1.3 under the assumption that either
hypotheses (i) or (ii) above are met.

If condition (i) is satisfied, then at the expense of replacing V by ν̃(V ), where ν̃ is the
automorphism of (P1)n given by

ν̃(x1, . . . , xn) := (ν1(x1), . . . , νn(xn)),

we may assume that each fi(x) is either x±d or ±Td(x). Next, let µ : Gn
m −→ (P1)n be the

morphism given by
µ(x1, . . . , xn) =: (µ1(x1), . . . , µn(xn)),

for rational functions µi which are:
• µi(x) = x if fi(x) = x±d; and
• µi(x) = x+ (1/x) if fi(x) = ±Td(x).
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Then there exists an irreducible subvariety W of µ−1(V ) ⊂ Gn
m (projecting dominantly onto V

through the map µ), which contains a Zariski dense set of preperiodic points under the action
of Φ : Gn

m −→ Gn
m given by

(x1, . . . , xn) 7→ (±x±d1 , . . . ,±x±dn ).

Hence, W contains a Zariski dense set of torsion points of Gn
m. Laurent’s theorem [Lau84] (the

original Manin–Mumford conjecture for tori) yields that W is a subtorus, thus preperiodic under
the action of Φ. This proves that V = µ(W ) is preperiodic under the action of

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)),

as desired in the conclusion of Theorem 1.1. Furthermore, we note that in this case, the conclusion
of Theorem 1.3 holds without the extra hypothesis regarding the preperiodicity of the tangent
subspaces under the corresponding induced action; we will only need this extra assumption when
dealing with hypothesis (ii) above, i.e., when the maps are Lattés.

Now, we assume condition (ii) is verified and so, each fi is a Lattès map which satisfies
pi ◦ψi = fi ◦ pi where pi : Ei −→ P1 and ψi : Ei −→ Ei are morphisms satisfying deg(ψ1) =
deg(ψ2) = · · · = deg(ψn) because the Lattès maps fi have the same degree. Then there
exists an irreducible component W of p−1(V ) ⊂ Ẽ :=

∏n
i=1Ei (where p : Ẽ −→ (P1)n is the

morphism given by p1 × · · · × pn) with the property that it contains a Zariski dense set of
(smooth) points P which are preperiodic under the action of the endomorphism ψ̃ of Ẽ given by
ψ1×· · ·×ψn, and moreover, the tangent space of W at P is preperiodic under the induced action
of ψ̃ on Grdim(W )(TẼ,P ), where TẼ,P is the tangent space of Ẽ at P and Grdim(W )(TẼ,P ) is the

corresponding Grassmannian. Since each ψi is an isogeny of Ei of same degree, we get that ψ̃
is a polarizable endomorphism of Ẽ and so, [GTZ11, Theorem 2.1] yields that W is preperiodic
under the action of ψ̃. Therefore V = p(W ) is preperiodic under the action of

(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)),

as desired in the conclusion of Theorem 1.3. 2

2.4 Strategy for our proof
The remaining sections of our paper are dedicated to proving Theorem 2.2. The setup is as
follows:
• n > 2 and H ⊂ (P1)n is a hypersurface projecting dominantly onto each subset of (n − 1)

coordinate axes;
• f1, . . . , fn are rational functions of degrees larger than 1 acting coordinatewise on (P1)n;

and
• H contains a Zariski dense set either of preperiodic points or of points of small height

(see (2) in Theorem 1.2) under the action of (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)).
If at least one of the functions fi is not exceptional, then we will derive a contradiction. Now, if
some fi is conjugated to a monomial or ±Chebyshev polynomial, then we prove that each of the
n rational functions must be conjugated to a monomial or ±Chebyshev polynomial. Similarly, if
one of the functions fi is a Lattés map, then we prove that each fi must be a Lattés map. We
obtain this goal (see Theorem 6.1) by showing a similitude between the Julia sets of each one
of the rational functions fi. In turn, the relation between the Julia sets is a consequence of a
powerful equidistribution theorem for points of small height.
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More precisely, using the equidistribution theorem of [Yua08] for points of small height on
a variety (see [Cha06] for the case of curves and also [BR06] and [FR06] for the case of P1), we
prove that under the above hypotheses for H and fi, then the measures µ̂i induced on H by the
invariant measures corresponding to the dynamical systems

((P1)n−1, f1 × · · · × fi−1 × fi+1 × · · · × fn)

are equal (for each i = 1, . . . , n). Using a careful study of the local analytic maps which preserve
(locally) the Julia set of a rational map (which is not exceptional), we obtain the conclusion of
Theorem 1.2. Even though our arguments resemble the ones we employed in [GNY17] to treat
the case of plane curves (i.e., n = 2), there are significant new complications in our analysis.

Indeed, using Yuan’s arithmetic equidistribution theorem [Yua08] for points with small
height on a space of dimension n > 2, we first get connections for the (n − 1, n − 1)-currents
(coming from dynamics) on a hypersurface H ⊂ (P1)n. From these connections, we are able to
construct many symmetries for the aforementioned (n− 1, n− 1)-current. A further analysis of
the symmetries for such an (n−1, n−1)-current yields additional symmetries of the Julia set on
the one-dimensional slices of (P1)n. Applying the rigidity of the symmetries of the Julia set
on the one-dimensional slices, we are able to derive the rigidity of the symmetries of the entire
(n−1, n−1)-current, from which we derive the desired conclusion regarding H and the dynamical
system (f1, . . . , fn) (see the proof of Theorem 6.1). It is precisely the study of the rigidity of this
(n − 1, n − 1)-current (for n > 2) which provides the new proof of Medvedev’s result [Med07],
which otherwise could not have been obtained from the arguments from our previous paper
[GNY17].

Also, in order to finish the proof of Theorem 2.2 by showing that the hypotheses of
Theorem 6.1 are met, we need to know that for a hypersurface H ⊂ (P1)n as in Theorem 2.2,
for each point (a1, . . . , an) ∈ H,

if a1, . . . , an−1 are preperiodic, then also an is preperiodic. (2.4.1)

If n = 2, this fact was known for quite some time (see [Mim13] which publishes the findings
of Mimar’s PhD thesis [Mim97] from 20 years ago). However, if n > 2, in order to prove
(2.4.1) (see our Proposition 5.2 in the case each fi and also H are defined over Q̄), we need
to use arithmetic versions of the Hodge index theorem proved by Faltings [Fal84] and by Hriljac
[Hri85] for arithmetic surfaces and proved by Moriwaki [Mor96] for higher dimensional arithmetic
varieties, and also, we use crucially the new arithmetic Hodge index theorem proved by Yuan
and Zhang [YZ17]. Furthermore, in order to derive (2.4.1) in the general case (over C) we
need a specialization argument based on a result of Yuan and Zhang [YZa, YZb] regarding the
specialization of a Zariski dense set of preperiodic points for a polarizable endomorphism defined
over a base curve.

3. Complex dynamics and height functions

In this section, we introduce the Julia set of a rational function, some of its properties and also
the arithmetic height functions associated with an algebraic dynamical system.

3.1 The Julia set
Let f : P1

→ P1 be a rational function defined over C of degree df > 2. The Julia set Jf is
the set of points x ∈ P1

C for which the dynamics is chaotic under the iteration of f . The Julia
set Jf is closed, non-empty and invariant under f . Let x be a periodic point in a cycle of exact
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period n; then the multiplier λ of this cycle (or of the periodic point x) is the derivative of fn

at x. A cycle is repelling if its multiplier has an absolute value greater than 1. All but finitely
many cycles of f are repelling, and repelling cycles are in the Julia set Jf . Locally, at a repelling
fixed point x with multiplier λ, we can conjugate f to the linear map z → λ · z near z = 0 (note
that λ 6= 0 since the point is assumed to be repelling). For more details about the dynamics of
a rational function, we refer the reader to Milnor’s book [Mil00].

There is a probability measure µf on P1
C associated with f , which is the unique f -invariant

measure achieving maximal entropy log df ; see [Bro65, Lyu83, FLM83, Mañ83]. Also µf is the
unique measure satisfying

µf (f(A)) = df · µf (A) (3.1.1)

for any Borel set A ⊂ P1
C with f injective when restricted on A. The support of µf is Jf , and

µf (x) = 0 for any x ∈ P1
C. Moreover, µf has continuous potential, in the sense that locally there

is a continuous subharmonic function u(x) such that the (1, 1)-current satisfies

ddcu(x) = dµf (x),

and then (3.1.1) is equivalent to

ddcu ◦ f(x) = df · dµf (x).

3.2 Measures on a hypersurface associated with a dynamical system
Let

f̂(x1, . . . , xn) := (f1(x1), . . . , fn(xn))

be an endormorphism of (P1
C)n with fi being a rational function of degree di > 2 for 1 6 i 6 n.

For i = 1, . . . , n, denote
f̃i := (f1, . . . , fi−1, fi+1, . . . , fn) (3.2.1)

as an endormorphism of (P1
C)n−1 with invariant measure

µ̃i := µf1 × · · ·µfi−1
× µfi+1

× · · ·µfn . (3.2.2)

Let H ⊂ (P1
C)n be an irreducible hypersurface projecting dominantly onto any subset of (n− 1)

coordinates, i.e., the canonical projections π̂i : (P1)n → (P1)n−1 (where for each i = 1, . . . , n, π̂i
is the projection of (P1)n onto the (n−1) coordinates forgetting the ith coordinate axis) restrict
to dominant morphisms (π̂i)|H : H −→ (P1)n−1. By abuse of notation, we denote the restriction
(π̂i)|H also by π̂i. We define probability measures µ̂i (for i = 1, . . . , n) on H corresponding to
the dynamical system ((P1

C)n−1, f̃i). More precisely, for each i = 1, . . . , n, we pullback µ̃i by π̂i
to get a measure π̂∗i µi on H so that

π̂∗i µ̃i(A) := µ̃i(π̂i(A))

for any Borel set A ⊂ H such that π̂i is injective on A. Another way to interpret this is that for
t = (x1, . . . , xn) ∈ H, we have that d(π̂∗i µ̃i)(t) is an (n− 1, n− 1)-current on H given by

dπ̂∗i µ̃i(t) = ddcu1(x1) ∧ · · · ∧ ddcui−1(xi−1) ∧ ddcui+1(xi+1) ∧ · · · ∧ ddcun(xn),

where uj is a locally defined continuous subharmonic function with ddcuj = dµfj for each j = 1,
. . . , n. Hence we get the probability measures on H:

µ̂i := π̂∗i µ̃i/deg(π̂i) for i = 1, . . . , n.

Similarly, one has that

f̃∗i µ̃i = d1 · · · di−1 · di+1 · · · dn · µ̃i for i = 1, . . . , n.
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3.3 Symmetries of the Julia set
Let ζ be a meromorphic function on some disc B(a, r) of radius r centred at a point a ∈ Jf . We
say that ζ is a symmetry on Jf if it satisfies the following properties:
• x ∈ B(a, r) ∩ Jf if and only if ζ(x) ∈ ζ(B(a, r)) ∩ Jf ; and
• if Jf is either a circle, a line segment, or the entire sphere, there is a constant α > 0 such

that for any Borel set A where ζ|A is injective, one has µf (ζ(A)) = α · µf (A).
A family S of symmetries of Jf on B(a, r) is said to be non-trivial if S is normal on B(a, r)
and no infinite sequence {ζn} ⊂ S converges to a constant function. A rational function is
post-critically finite (sometimes called critically finite), if each of its critical points has finite
forward orbit, i.e. all critical points are preperiodic. According to Thurston [Thu85, DH93], there
is an orbifold structure on P1 corresponding to each post-critically finite map. A rational function
is post-critically finite with parabolic orbifold if and only if it is exceptional; or equivalently its
Julia set is smooth (a circle, a line segment or the entire sphere) with smooth maximal entropy
measure on it; see [DH93].

3.4 The height functions
Let K be a number field and K be the algebraic closure of K. The number field K is naturally
equipped with a set ΩK of pairwise inequivalent non-trivial absolute values, together with positive
integers Nv for each v ∈ ΩK such that:
• for each α ∈ K∗, we have |α|v = 1 for all but finitely many places v ∈ ΩK ;
• every α ∈ K∗ satisfies the product formula∏

v∈ΩK

|α|Nv
v = 1. (3.4.1)

For each v ∈ ΩK , let Kv be the completion of K at v, let Kv be the algebraic closure of Kv and
let Cv denote the completion of Kv. We fix an embedding of K into Cv for each v ∈ ΩK ; hence
we have a fixed extension of | · |v on K. If v is Archimedean, then Cv ∼= C. Let f ∈ K(z) be a

rational function with degree d > 2. There is a canonical height ĥf on P1(K) given by

ĥf (x) :=
1

[K(x) : K]
lim
n→∞

∑
T∈Gal(K/K)·X

∑
v∈ΩK

Nv ·
log ‖Fn(T )‖v

dn
, (3.4.2)

where F : K2
→ K2 and X are homogenous lifts of f and respectively x ∈ P1(K), while

‖(z1, z2)‖v := max{|z1|v, |z2|v}. By product formula (3.4.1), the height ĥf does not depend on the

choice of the homogenous lift F and therefore it is well defined. As proven in [CS93], ĥf (x) > 0
with equality if and only if x is preperiodic under the iteration of f .

4. Adelic metrized line bundles and the equidistribution of points of small height

In this section, we set up the height functions and state the equidistribution theorem for points
of small height, which would be used later in proving the main theorems of this article. The
main tool we use here is the arithmetic equidistribution theorem for points with small height on
algebraic varieties (see [Yua08]).

4.1 Adelic metrized line bundle
Let L be an ample line bundle of an irreducible projective variety V over a number field K. As
in § 3.4, K is naturally equipped with absolute values | · |v for v ∈ ΩK . A metric ‖ · ‖v on L is a
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collection of norms, one for each t ∈ V (Kv), on the fibres L(t) of the line bundle, with

‖αs(t)‖v = |α|v‖s(t)‖v

for any section s of L. An adelic (semipositive) metrized line bundle L = {L, {‖ · ‖v}v∈ΩK
} over

L is a collection of metrics on L, one for each place v ∈ ΩK , satisfying certain continuity and

coherence conditions; see [Zha95a, Zha95b, YZ17].

There are various adelic metrized line bundles; the simplest adelic (semipositive) metrized

line bundle is the line bundle OP1(1) equipped with metrics ‖ · ‖v (for each v ∈ ΩK), which

evaluated at a section s := u0Z0 + u1Z1 of OP1(1) (where u0, u1 are scalars and Z0, Z1 are the

canonical sections of OP1(1)) is given by

‖s([z0 : z1])‖v :=
|u0z0 + u1z1|v

max{|z0|v, |z1|v}
.

Furthermore, we can define other metrics on OP1(1) corresponding to a rational function f

of degree d > 2 defined over K. We fix a homogenous lift F : K2
→ K2 of f with homogenous

degree d. For j > 1, write F j = (F0,j , F1,j). For each place v ∈ ΩK , we can define a metric on

OP1(1) as

‖s([z0 : z1])‖v,F,j :=
|u0z0 + u1z1|v

max{|F0,j(z0, z1)|v, |F1,j(z0, z1)|v}1/dj
, (4.1.1)

where s = u0Z0+u1Z1 with u0, u1 scalars and Z0, Z1 canonical sections of OP1(1). Hence {OP1(1),

{‖ · ‖v,F,j}v∈ΩK
} is an adelic metrized line bundle over OP1(1).

A sequence {L, {‖ · ‖v,j}v∈ΩK
}j>1 of adelic metrized line bundles over an ample line bundle

L on a variety V is convergent to {L, {‖ · ‖v}v∈ΩK
}, if for all j and all but finitely many v ∈ ΩK ,

we have that ‖ · ‖v,j = ‖ · ‖v, and moreover, {log (‖ · ‖v,j/‖ · ‖v)}j>1 converges to 0 uniformly on

V (Cv) for all v ∈ ΩK . The limit {L, {‖ · ‖v}v∈ΩK
} is an adelic metrized line bundle. Also, the

tensor product of two (adelic) metrized line bundles is again a (adelic) metrized line bundle.

A typical example of a convergent sequence of adelic metrized line bundles is {{OP1(1),

{‖ · ‖v,F,j}v∈ΩK
}}j>1 which converges to the metrized line bundle denoted by

LF := {OP1(1), {‖ · ‖v,F }v∈ΩK
} (4.1.2)

(see [BR06] and also see [Zha95b, Theorem 2.2] for the more general case of a polarizable

endomorphism f of a projective variety).

As usual, we let f̃ = (f1, . . . , fn) with fi being a rational function of degree di > 2 defined

over the number field K for 1 6 i 6 n. Fix a homogenous lift Fi for each fi and denote

F̃ := (F1, . . . , Fn).

We let πi be the ith coordination projection map from (P1)n to P1. We construct an adelic

metrized line bundle on (P1)n as follows

LF̃ := {LF̃ , ‖ · ‖v,F̃ } := (π∗1LF1)⊗ (π∗2LF2)⊗ · · · ⊗ (π∗nLFn), (4.1.3)

where the metric ‖ · ‖v,F̃ on LF̃ is the one inherited from the metrics ‖ · ‖v,Fi on OP1(1) for

1 6 i 6 n.
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4.2 Equidistribution of small points
For a semipositive metrized line bundle L on a (irreducible and projective) variety V defined
over a number field K, the height for t ∈ V (K) is given by

ĥL(t) =
1

|Gal(K/K) · t|

∑
y∈Gal(K/K)·t

∑
v∈ΩK

−Nv · log ‖s(y)‖v, (4.2.1)

where |Gal(K/K) · t| is the number of points in the Galois orbits of t, and s is any meromorphic
section of L with support disjoint from Gal(K/K) · t. A sequence of points tj ∈ V (K) is small if

limj→∞ ĥL(tj) = ĥL(V ), and is generic if no subsequence of tj is contained in a proper Zariski
closed subset of V ; see [Zha95b] for more details on constructing the height for any irreducible

subvariety Y of V (which is denoted by ĥL(Y )). We use the following equidistribution result due
to Yuan [Yua08] in the case of an arbitrary projective variety.

Theorem 4.1 [Yua08, Theorem 3.1]. Let V be a projective irreducible variety of dimension n
defined over a number field K, and let L be a metrized line bundle over V such that L is ample
and the metric is semipositive. Let {tn} be a generic sequence of points in V (K) which is small.
Then for any v ∈ ΩK , the Galois orbits of the sequence {tj} are equidistributed in the analytic
space V an

Cv
with respect to the probability measure dµv = c1(L)nv/degL(V ).

When v is Archimedean, V an
Cv

corresponds to V (C) and the curvature c1(L)v of the metric

‖ · ‖v is given by c1(L)v = (∂∂/πi) log ‖ · ‖v. If v is a non-Archimedean place, then V an
Cv

is the
Berkovich space associated with V (Cv), and Chambert-Loir [Cha06] constructed an analog for
the curvature on V an

Cv
. The precise meaning of the equidistribution statement in Theorem 4.1 is

that

lim
j→∞

1

|Gal(K/K) · tj |

∑
y∈Gal(K/K)·tj

δy = µv, (4.2.2)

where δy is the point mass probability measure supported on y ∈ V an
Cv

, while the limit from
(4.2.2) is the weak limit for the corresponding probability measures on the compact space V an

Cv
.

4.3 Some examples
For the dynamical system (P1, f) corresponding to a rational function f defined over a number
field K and of degree df > 2, at an Archimedean place v, it is well known that the curvature of
the limit of the metrized line bundles

{OP1(1), {‖ · ‖v,F,j}v∈ΩK
}j>1

is a (1, 1)-current given by dµf , which is independent on the choice of F . Combining the definition

(3.4.2) of the canonical height ĥf of f , with the height (4.2.1) of points for an adelic metrized
line bundle and the definition (4.1.1) and (4.1.2) of LF , we get

ĥLF (x) = ĥf (x)

which is independent of the choice for the lift F of f .
We conclude this section by noting that in the case of the metrized line bundle LF̃ on

(P1)n associated with an endomorphism f̃ of (P1)n (see § 4.1), at an Archimedean place v, the
(n, n)-current satisfies the formula:

c1(LF̃ )nv = n! · dµ̃, (4.3.1)
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where µ̃ = µf1 × · · · ×µfn is the invariant measure on (P1
Cv

)n associated with the endomorphism

f̃ = (f1, . . . , fn). To see this, we first notice that since v is Archimedean, then Cv = C and so,
by taking (∂∂/πi) log ‖ · ‖v,F̃ we get

c1(LF̃ )v = ddc(u1(x1) + · · ·+ un(xn)), (4.3.2)

where ui(xi) is a locally defined continuous subharmonic function on P1
Cv

with ddcui = dµfi for
1 6 i 6 n. Hence

c1(LF̃ )nv = n! · ddcu1(x1) ∧ · · · ∧ ddcun(xn) = n! · dµ̃,

and so, the equality from (4.3.1) follows. Moreover, for a point t = (a1, . . . , an) ∈ (P1)n(K), from
(4.1.3) we see that

ĥLF̃
(t) = ĥf1(a1) + · · ·+ ĥfn(an). (4.3.3)

5. Measures and heights on a hypersurface

In this section we study the measures and the corresponding heights on a hypersurface in (P1)n;
this allows us to obtain two important technical ingredients (Theorem 5.1 and Proposition 5.2)
which will later be used in proving Theorem 2.2. So, let f̂ = (f1, . . . , fn) be an endomorphism
of (P1)n defined over a number field K, with degrees di > 2 for each rational function fi (for
1 6 i 6 n). Also, let H ⊂ (P1)n be an irreducible hypersurface defined over K, which projects
dominantly onto each subset of (n− 1) coordinate axes.

5.1 Adelic metrized line bundles on the hypersurface

For each i = 1, . . . , n, as in (3.2.1), we let f̃i be the endomorphism of (P1)n−1 given by forgetting
the ith coordinate axis (along with the action of fi) in the dynamical system ((P1)n, f̂). Let F̃i
be a homogenous lift of f̃i as in § 3.2 and then similar to (4.1.3), we construct an adelic metrized
line bundle LF̃i

on (P1)n−1 such that when v is Archimedean, we have

c1(LF̃i
)n−1
v = (n− 1)! · dµ̃i

(for each 1 6 i 6 n), where the probability measure µ̃i on (P1
Cv

)n−1 is the one appearing in (3.2.2).
For each i = 1, . . . , n, we recall from § 3.2 that the projection

π̂i : H −→ (P1)n−1

is the one given by forgetting the ith coordinates; π̂i is a finite, dominant morphism (due to our
assumption on H). We let

LF̂i
:= π̂∗iLF̃i

(5.1.1)

be an adelic metrized line bundle on H, which is the pullback of the adelic metrized line bundle
LF̃i

(on (P1)n−1) by the morphism π̂i.

5.2 Height functions on the hypersurface
For each i = 1, . . . , n and each t = (a1, . . . , an) ∈ H(K), using (4.3.3) we conclude that

ĥLF̂i

(t) = ĥf1(a1) + · · ·+ ĥfi−1
(ai−1) + ĥfi+1

(ai+1) + · · ·+ ĥfn(an). (5.2.1)

Hence ĥLF̂i

(t) > 0 with equality if and only if aj is preperiodic under fj for each j 6= i with

1 6 j 6 n. So, if the set of all t ∈ H(K) for which ĥLF̂i

(t) = 0 is Zariski-dense on H, then each
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essential minima ej(LF̂i
) (for j = 1, . . . , n, defined as in [Zha95b]) are equal to 0. Therefore,

using the inequality from [Zha95b, Theorem 1.10], we conclude that

ĥLF̂i

(H) = 0. (5.2.2)

5.3 Equal measures on the hypersurface
Now we are ready to prove the following result.

Theorem 5.1. Suppose that there is a generic sequence of points tj = (x1,j , . . . , xn,j) ∈ H(K)
such that

lim
j→∞

ĥf1(x1,j) + · · ·+ ĥfn(xn,j) = 0.

Then µ̂1 = µ̂2 = · · · = µ̂n.

Proof. This is an immediate consequence of Theorem 4.1 applied to the sequence of points
tj = (x1,j , . . . , xn,j) ∈ H(K) with respect to the adelic metrized line bundles LF̂i

for 1 6 i 6 n.
Indeed, when v is Archimedean, using (5.2.2) and the assumption on the points tj ∈ H we get
that the Galois orbits of tj in H equidistribute with respect to the probability measures µ̂i on
H(C) for each i ∈ {1, . . . , n}. Hence µ̂1 = µ̂2 = · · · = µ̂n. 2

5.4 Preperiodic points on hypersurfaces
In this section we prove the following important result; we thank Xinyi Yuan and Shouwu Zhang
for several very helpful conversations regarding its proof.

Proposition 5.2. Let n > 2 be an integer, let f1, . . . , fn ∈ C(x) be rational functions of degrees
di > 2 and let H ⊂ (P1)n be an irreducible hypersurface which projects dominantly onto any
subset of (n− 1) coordinate axes. Assume:

(1) either that H contains a Zariski dense set of preperiodic points under the action of
(x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)) and that d1 = · · · = dn;

(2) or that f1, . . . , fn ∈ Q̄(x), that H is defined over Q̄, and that there exists a Zariski dense

sequence of points (x1,j , . . . , xn,j) ∈ H(Q̄) such that limj→∞
∑n

i=1 ĥfi(xi,j) = 0, where ĥfi
is the canonical height with respect to the rational function fi.

Then there exists i ∈ {1, . . . , n} such that for any (a1, . . . , an) ∈ H(C) with aj being preperiodic
under the action of fj for each j ∈ {1, . . . , n}\{i}, we must have that also ai is preperiodic under
the action of fi.

We prove first that hypothesis (2) in Proposition 5.2 yields the desired conclusion, and then
we prove that part (1) may be reduced to part (2) in Proposition 5.2 through a specialization
result of Yuan and Zhang [YZa, YZb].

Proof of Proposition 5.2 assuming hypothesis (2) holds. Since the case n = 2 was proven in
[Mim97] (see also [Mim13]), from now on, we assume n > 2. We assume each fi ∈ Q̄(x) and
also that H is defined over Q̄.

We use the notation as in § 5.1; so, we consider the adelic metrics LF̂i
(for i = 1, . . . , n) on

H, defined as in (5.1.1). For the sake of simplifying our notation, we will denote from now on the
tensor product of two line bundles M1 and M2 as M1 +M2. We denote by Pic(H) the group
of (adelic) metrized line bundles on H.
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Lemma 5.3. Proof of Proposition 5.2 assuming hypothesis (2) holds. There exist real numbers
ci (for i = 1, . . . , n) not all equal to 0 such that the metrized line bundle

L0 := c1 · LF̂1
+ · · ·+ cnLF̂n

∈ Pic(H)⊗ R (5.4.1)

has the property that L0 · x = ĥL0(x) = 0 for each x ∈ H(Q̄).

Proof of Lemma 5.3. We thank Shouwu Zhang for suggesting to us the proof of this lemma,
which follows the idea used in the proof of [YZ17, Theorem 4.13].

We let L̂i ∈ Pic(H) be the line bundle supporting LF̂i
, i.e.,

L̂i := π∗1OP1(1)⊗ · · · ⊗ π∗i−1OP1(1)⊗ π∗i+1OP1(1)⊗ · · · ⊗ π∗nOP1(1),

where πj is the induced projection map of H onto the jth coordinate axis of (P1)n (for each
j = 1, . . . , n).

Claim 5.4. Proof of Proposition 5.2 assuming hypothesis (2) holds. There exist real constants
c1, . . . , cn (not all equal to 0) such that the line bundle L0 :=

∑n
i=1 ciL̂i ∈ Pic(H) ⊗ R is

numerically trivial.

Proof of Claim 5.4. The main ingredient in our proof is a result on arithmetic intersections,
which generalizes the classical Hodge index theorem (see [YZ17, Theorem 5.20]). We let

L1 :=
n∑
i=1

L̂i ∈ Pic(H); (5.4.2)

then L1 is ample (since it is the pullback of an ample line bundle on (P1)n under the natural
inclusion map H ↪→ (P1)n). We find the real numbers ci so that L0 :=

∑n
i=1 ciL̂i satisfies the

following two conditions:

(A) L0 · Ln−2
1 = 0;

(B) L2
0 · L

n−3
1 = 0.

Condition (A) above yields a linear relation between the unknowns ci. On the other hand,
condition (B) yields a quadratic form in the variables ci. This quadratic form is not positive-
definite since (from the generalization of the Hodge index theorem proven in [Fal84, Hri85,
Mor96]) we know that generically, for any line bundle M satisfying M·Ln−2

1 = 0, we have that
M2 · Ln−3

1 6 0. Also, this quadratic form is not negative definite since L2
1 · L

n−3
1 = Ln−1

1 > 0
(because L1 is ample). Therefore, there exist real numbers ci, not all equal to 0 such that
L0 satisfies both conditions (A) and (B) above. Then [YZ17, Theorem 5.20] yields that L0 is
numerically trivial, as claimed. 2

Now let c1, . . . , cn ∈ R satisfy the conclusion of Claim 5.4 and define

L0 :=

n∑
i=1

ciLF̂i
∈ Pic(H)⊗ R.

We consider next the adelic metrized line bundle L1 :=
∑n

i=1 LF̂i
; note that the generic fibre

of L1 is the ample line bundle L1 from (5.4.2). Using our hypothesis (2) from Proposition 5.2,
i.e., the existence of a Zariski dense set of points on H of height tending to 0, we obtain that
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each of the successive minima ej(L1) = 0 for j = 0, . . . , n − 1. Note that for each j = 0, . . . , n,
we have

ej(L1) := sup
Y⊂H

codimH(Y )=j

inf
x∈(H\Y )(Q̄)

ĥL1(x)

and so, indeed hypothesis (2) of Proposition 5.2 yields that ej(L1) = 0. In particular, en(L1) = 0
and thus Ln1 = 0. The exact same argument applied for each i1, i2 = 1, . . . , n and for each
m1,m2 ∈ N to the metrized line bundle Li1,i2,m1,m2 := L1 +m1LF̂i1

+m2LF̂i2
yields again

(L1 +m1LF̂i1
+m2LF̂i2

)n = 0. (5.4.3)

Keeping i1 and i2 fixed and letting m1 and m2 vary in N, we see that (5.4.3) yields that Lj01 ·
Lj1
F̂i1
· Lj2

F̂i2
= 0 for non-negative integers j0, j1, j2 such that j0 + j1 + j2 = n. Hence

L2
0 · L

n−2
1 = 0; (5.4.4)

moreover, because the numbers ci satisfy the construction from Claim 5.4 (see condition (A) in
the proof of the aforementioned Claim), we also have that

L0 · Ln−2
1 = 0. (5.4.5)

Furthermore, since each LF̂i
is semipositive, we obtain that (with the terminology from [YZ17])

L0 is L1-bounded, i.e., there exists m ∈ N (any integer larger than maxi |ci| would work) such
that both m · L1 − L0 and m · L1 + L0 are semipositive.

Since L1 may not necessarily be arithmetically positive, we alter L1 by adding to it an
arbitrarily positive metrized line bundle ι∗(C) where C is a positive metrized line bundle on
Spec(Q̄) and ι : H −→ Spec(Q̄) is the structure morphism (for a similar application, see the

proof of [YZ17, Theorem 4.13]). Then L0 would still be L′1-bounded with respect to this new

metrized line bundle L′1 := L1 + ι∗(C). Because the generic fibre of L0 is numerically trivial
(according to our choice of the numbers ci satisfying the conclusion of Claim 5.4), then (5.4.4)
and (5.4.5) yield

L0 · (L′1)n−1 = 0 and L2
0 · (L

′
1)n−2 = 0. (5.4.6)

Thus the hypotheses of [YZ17, Theorem 3.2] are verified and so, we obtain that the metrized

line bundle L0 is itself numerically trivial, i.e., ĥL0(x) = 0 for each x ∈ H(Q̄). This concludes
the proof of Lemma 5.3. 2

So, by Lemma 5.3, there exist suitable constants ci ∈ R (for i = 1, . . . , n), not all equal to
0 such that the metrized line bundle L0 := c1 · LF̂1

+ · · · + cnLF̂n
∈ Pic(H) ⊗ R is numerically

trivial on H and therefore, for each α ∈ H(Q̄), we have that L0 · α = 0, i.e.,

n∑
i=1

ci · ĥLF̂i

(α) = 0. (5.4.7)

Since not all ci are equal to 0, then there exists some i0 ∈ {1, . . . , n} with the property that

c1 + · · ·+ ci0−1 + ci0+1 + · · ·+ cn 6= 0. (5.4.8)
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Now, for any α := (a1, . . . , an) ∈ H(Q̄) and for any i = 1, . . . , n, we have that

ĥLF̂i

(α) = ĥf1(a1) + · · ·+ ĥfi−1
(ai−1) + ĥfi+1

(ai+1) + · · ·+ ĥfn(an), (5.4.9)

as shown in (5.2.1). Now, if

ĥf1(a1) = · · · = ĥfi0−1
(ai0−1) = ĥfi0+1

(ai0+1) = · · · = ĥfn(an) = 0,

then (5.4.7), (5.4.8) and (5.4.9) yield that also ĥfi0 (ai0) = 0, as claimed in the conclusion of
Proposition 5.2. This concludes our proof of Proposition 5.2 assuming each rational function fi
along with the hypersurface H are defined over Q̄. 2

Proof of Proposition 5.2 assuming hypothesis (1) holds. We let K ⊂ C be a finitely generated
extension of Q̄ such that each fi ∈K(x) and also H is defined over K. We argue by induction on
r := trdegQ̄K; the case r = 0 is already proved using Proposition 5.2 with hypothesis (2). Hence,
we assume the conclusion of Proposition 5.2 holds whenever r < s (for some s ∈ N) and we prove
that it also holds when r = s. We know there exists an infinite sequence S of points αj ∈ H(C)
such that αj has its ith coordinate preperiodic under the action of fi (for each i = 1, . . . , n).
Also, we let

d := deg(f1) = deg(f2) = · · · = deg(fn).

Then we let K0 be a subfield Q̄ ⊂ K0 ⊂ K such that trdegK0
K = 1 and we let C be a curve

defined over K0 whose function field is K (at the expense of replacing both K0 and K by finite
extensions, we may assume C is a projective, smooth, geometrically irreducible curve). We fix
some algebraic closures K0 ⊂ K of our fields.

There exists a Zariski dense, open subset C ⊆ C such that we may view each fi as a base
change of an endomorphism fi,C of P1

C ; similarly, H is the base change of a hypersurface HC ⊂
(P1
C)n, while S is the base change of a subset SC ⊂ HC . For each geometric point t ∈ C(K0), the

objects HC , fi,C and SC have reductions Ht, fi,t and respectively St, such that St ⊂ HC consists
of points with their ith coordinate preperiodic under the action of fi,C , for each i = 1, . . . , n.

Claim 5.5. There exists a Zariski dense, open subset C0 ⊆ C ⊆ C such that for each t ∈ C0(K0),
the set St is Zariski dense in Ht.

Proof of Claim 5.5. We let Ψ := (f1, . . . , fn−1) be the coordinatewise action of these rational
functions on the first n− 1 coordinates of (P1)n; since d1 = · · · = dn−1 = d > 1, we know that Ψ
is a polarizable endomorphism of (P1)n−1. We let S̃ be the projection of the set S on the first
n − 1 coordinate axes of (P1)n; because S ⊂ H is dense and H projects dominantly onto the
first n− 1 coordinate axes, we conclude that S̃ ⊂ (P1)n−1 is also dense. Note that each point of
S̃ is a preperiodic point for Ψ. As before, we let S̃t be the specialization of the set S̃C at some
point t ∈ C0(K0).

As proven in [YZb, Theorem 4.7] (see also [YZa, Lemma 3.2.3]), the set S̃t ⊂ (P1)n−1 is still
Zariski dense for all the K0-points t of a dense open subset C0 ⊆ C. Here it is the only point
in our argument where we use that d1 = · · · = dn because Yuan and Zhang [YZb, YZa] show
that specializing a Zariski dense set of preperiodic points for a polarizable endomorphism yields
also a Zariski dense set of preperiodic points for all specializations in a dense, open subset of
the base; in their proof, they employ a result of Faber [Fab09] and of Gubler [Gub08] regarding
the equidistribution of subvarieties of a given polarizable dynamical system (X,Φ) with respect
to the invariant measure of Φ. (As an aside, we note that the results of [YZa] were recently
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published in [YZ17], while [YZb] has been updated to [YZ13] using slightly different arguments.)
Finally, since S̃t ⊂ (P1)n−1 is Zariski dense, then the Zariski closure of St must have dimension
n − 1 because St projects to S̃t on the first n − 1 coordinate axes of (P1)n. Hence St ⊂ Ht is
Zariski dense, which concludes the proof of Claim 5.5. 2

Let C0 be the Zariski dense, open subset of C satisfying the conclusion of Claim 5.5. At the
expense of perhaps shrinking C0 to a smaller, dense, open subset, we may assume that

deg(fi,t) = d > 1 for all i = 1, . . . , n and each t ∈ C0(K0). (5.4.10)

For each t ∈ C0(Q̄), our inductive hypothesis (which can be applied since each fi and also H are
defined over K0 and trdegQ̄K0 < s) yields the existence of some index it ∈ {1, . . . , n} which has
the property that for each α ∈Ht(Q̄), if we know that the jth coordinate of α is preperiodic under
the action of fj,t for each j ∈ {1, . . . , n}\{it}, then also the itth coordinate of α is preperiodic
under the action of fit,t.

Let hC(·) be a height function for the points on C(K0) corresponding to a divisor of degree
1 on C, constructed with respect to the Weil height on K0. Note that if trdegQK0 > 1, then we
construct the Weil height on the function field K0/Q̄ as in [BG06]. At the expense of replacing
C0 by an infinite subset U0 for which

sup
t∈U0

hC(t) = +∞, (5.4.11)

we may even assume that for each t ∈ U0, there is the same index i0 := it ∈ {1, . . . , n}
satisfying the above property. We show next that this index i0 would satisfy the conclusion
of Proposition 5.2 for H.

Indeed, let α = (a1, . . . , an) ∈ H(K) with the property that for each j ∈ {1, . . . , n}\{i0}, we
have that aj is preperiodic under the action of fj . Then for each t ∈ U0 we have that each aj,t
(for j ∈ {1, . . . , n}\{i0}) is preperiodic for fj,t and so, also ai0,t is preperiodic under the action
of fi0,t. Therefore, the canonical height

ĥfi0,t(ai0,t) = 0, (5.4.12)

where ĥfi0,t(·) is the canonical height corresponding to the rational function fi0,t (which has

degree larger than 1; see (5.4.10)), constructed using the Weil height on K0. Using [CS93,
Theorem 4.1], we have that

lim
hC(t)→∞

ĥfi0,t(ai0,t)

hC(t)
= ĥfi0 (ai0), (5.4.13)

where ĥfi0 (·) is the canonical height of fi0 constructed with respect to the function field K/K0.
Equations (5.4.11), (5.4.12) and (5.4.13) yield that

ĥfi0 (ai0) = 0. (5.4.14)

If fi0 ∈K(x) is not isotrivial over K0, then [Bak09] (see also [Ben05] for the case of polynomials)
yields that (5.4.14) is equivalent with saying that ai0 is preperiodic under the action of fi0 , as
desired. Now, if fi0 is isotrivial over K0, then there exists a linear transformation

ν : P1 −→ P1 (defined over K)
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such that ν−1 ◦ fi0 ◦ ν ∈ K0(x). If ν−1(ai0) ∈ K0, then since we know there exists even a single
specialization t such that ai0,t is preperiodic for ft, we get that also ai0 is preperiodic for fi0 . On
the other hand, if ν−1(ai0) /∈ K0, then ν−1(ai0) cannot be preperiodic for ν−1 ◦ fi0 ◦ ν ∈ K0(x)
and so, ai0 is not preperiodic for fi0 , contradiction. This concludes the proof of Proposition 5.2
under hypothesis (1). 2

6. Hypersurfaces having a Zariski dense set of preperiodic points

In this section, we prove Theorem 6.1, which (essentially) says that there is no hypersurface
H containing a Zariski dense set of preperiodic points under the coordinatewise action of some
rational functions fi, along with some additional technical conditions. To make things simple,
we work on a hypersurface H ⊂ (P1)n+1 of dimension n and use the following notation

x̃ = (x1, . . . , xn), x = (x1, . . . , xn−1)

and hence ã = (a1, . . . , an), a = (a1, . . . , an−1), etc. We denote by D(a, r) ⊂ C the usual disk of
radius r centred at a; also, we use the following notation for polydiscs:

Dn−1(a, r) = D(a1, r)× · · · ×D(an−1, r) and Dn(ã, r) = Dn−1(a, r)×D(an, r).

For the benefit of our readers, we split our proof of Theorem 6.1 into several subsections,
each one presenting a different step in our argument.

6.1 Statement of our theorem
Theorem 6.1. Let n > 2, let fi be rational functions defined over C of degrees di > 1 (for
1 6 i 6 n + 1), and let H ⊂ (P1)n+1 be an irreducible hypersurface defined over C which
projects dominantly onto each subset of n coordinate axes. For each i = 1, . . . , n + 1, let f̃i be
the coordinatewise action on (P1)n given by

(x1, . . . , xi−1, xi+1, . . . , xn+1) 7→ (f1(x1), . . . , fi−1(xi−1), fi+1(xi+1), . . . , fn+1(xn+1)).

Let µ̂i be the measures on H induced from the dynamical systems ((P1)n, f̃i) and assume that
µ̂i = µ̂n+1 for 1 6 i6 n. Also assume that there is a point (ã, b0) ∈H ∩Cn+1 with ã= (a1, . . . , an),
such that:
• ai is a repelling fixed point of fi for 1 6 i 6 n; and
• b1 := fn+1(b0) is a fixed point of fn+1; and
• there is a holomorphic germ h(x̃) at ã with h(ã) = b0, and (x̃, h(x̃)) ∈ H(C) for all x̃ ∈ Cn

in a small (complex analytic) neighbourhood of ã. Moreover, for each i = 1, . . . , n we have
that

βi :=
∂h

∂xi
(ã) 6= 0.

Then the functions fi must be exceptional, and moreover, they are
• either all of them conjugate to monomials and ±Chebyshev polynomials,
• or all of them Lattès maps.

Proof. As we previously stated, we will prove Theorem 6.1 over the next several subsections of
§ 6. To summarize, in § 6.2 we construct a local symmetry g of the Julia set Jfn+1 as in (6.2.1)
fixing b0 and with multiplier λ of absolute value greater than one. This, coupled with a refined
analysis of the dynamics of fi, allows us in §§ 6.3 and 6.4 to construct two normal families of local
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symmetries Ψ` (as in (6.4.1)) and Φ` (as in (6.4.2)) preserving the (n, n)-current corresponding
to µf1 × · · · × µfn (up to a scaling). Using Proposition 6.4, we reduce the symmetries Φ` of
the (n, n)-current to the symmetries Φ`(α, xn) of Jfn for fixed α ∈ Jf1 × · · · × Jfn−1 . Finally,
combining this with the rigidity (proven by Levin [Lev90]) of the symmetries of the Julia set, we
finish the proof of Theorem 6.1 in § 6.7.

6.2 Julia sets and invariant measures
From the assumptions of Theorem 6.1, the multiplier

λi := f ′i(ai)

has absolute value |λi| > 1 for 1 6 i 6 n. So, each ai is in the support of the Julia set Jfi of
fi, for i = 1, . . . , n. Thus (ã, b0) is in the support of µ̂n+1 and because µ̂n = µ̂n+1, we get that
(ã, b0) must be in the support of µ̂n. Therefore, b0 must be in the support Jfn+1 of µfn+1 . Hence
b1 = fn+1(b0) ∈ Jfn+1 and so, it has multiplier

ρ := f ′n+1(b1)

of absolute value |ρ| > 1. Let j0 be the local degree of the map fn+1(x) at x = b0, and let g(x)
be a holomorphic germ on P1 at b0 which is one of the following branches

g(x) := f−1
n+1 ◦ fn+1 ◦ fn+1(x) (6.2.1)

satisfying g(b0) = b0. Although there are j0 different choices for g(x), in the rest of this section
we fix our choice g(x) for such a branch. An easy computation shows that

λ := g′(b0) = j0
√
ρ (6.2.2)

is a j0th root of the multiplier ρ of fn+1 at b1. Since µfn+1 admits no atoms on P1 and
µfn+1(fn+1(A)) = dn+1·µfn+1(A) for any Borel set A with fn+1 being injective on A, the definition
of g(x) yields that

µfn+1(g(A)) = dn+1 · µfn+1(A)

for any Borel set A in a small neighbourhood of b0.

Lemma 6.2. The multiplier λ of g(x) at b0 has absolute value |λ| > 1.

Proof of Lemma 6.2. We first assume that |λ| 6 1 and then prove the lemma by deriving a
contradiction. Using (6.2.2) and the fact that |ρ| > 1, we get that |λ| = 1.

Pick a positive integer m with dn < dmn+1. Let

Φ00(x̃) := (x, h(x, fn(xn))) and Φ11(x̃) := (x, gm ◦ h(x̃)) (6.2.3)

be functions locally defined in a neighbourhood of ã ∈ Cn, mapping that small neighbourhood
of ã into a neighbourhood of (a, b0) ∈ Cn. Since µ̂n = µ̂n+1, there exists some c > 0 with

Φ∗00(µ̃n) = c · dn · µ̃n+1 and Φ∗11(µ̃n) = c · dmn+1 · µ̃n+1. (6.2.4)

The measures µ̃n and µ̃n+1 (defined in (3.2.2)) appearing in (6.2.4) are restricted on some small
neighbourhood of ã (respectively of (a, b0)). Let A be the polydisc given by A := Dn−1(a, r1)×
D(an, r2) for very small r2 and much smaller r1. We claim that Φ11(A) ⊂ Φ00(A). To see this,
let r2 be very small and we see that fn(D(an, r2)) ∼ D(an, |λn|r2). As |λ| = |g′(b0)| = 1 < |λn|
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and βn = (∂h/∂xn)(ã) 6= 0, using (6.2.3) we can pick some very small r2 and a much smaller r1

such that
Φ11(A) ⊂ Dn−1(a, r1)×D(b0, r2 · |βn| · |λn|1/2) ⊂ Φ00(A). (6.2.5)

However, combining (6.2.4) with dn < dmn+1 gives

µ̃n(Φ11(A)) > µ̃n(Φ00(A)),

which is a contradiction. This concludes the proof of Lemma 6.2. 2

6.3 A special sequence of tuples of positive integers
Now since |λ| > 1 and |λi| > 1 for 1 6 i 6 n, we can pick a sequence of tuples of positive integers
(j`, j1,`, . . . , jn,`) such that j` →∞ as ` →∞ and moreover,

lim
`→∞

inf
|λj1,`1 |
|λj` |

, . . . , lim
`→∞

inf
|λj1,`n−1|
|λj` |

> lim
`→∞

λ
jn,`
n

λj`
= 1. (6.3.1)

It will be useful later in our argument (see Lemma 6.8) that our sequence of tuples
(j`, j1,`, . . . , jn,`) satisfies the following arithmetic property in addition to (6.3.1). We want that
for every N ∈ N, there exist `2 > `1 > N such that

j`2 = j`1 and ji,`2 = ji,`1 for 2 6 i 6 n while j1,`2 = j1,`1 + 1. (6.3.2)

In order to achieve (6.3.2), we may replace the original sequence of tuples {(j`, j1,`, . . . , jn,`)}∞`=1

by the larger sequence {(j′`, j′1,`, . . . , j′n,`)}∞`=1 for which

j′2`−1 = j′2` = j` and j′i,2`−1 = j′i,2` = ji,`

for i = 2, . . . , n, while
j′1,2`−1 = j1,` and j′1,2` = j1,` + 1

and still the new sequence {(j′`, j′1,`, . . . , j′n,`)}∞`=1 satisfies (6.3.1) and the fact that j` → ∞ as
` →∞. For the sake of simplifying our notation, we will denote our new sequence of tuples also
as {(j`, j1,`, . . . , jn,`)}∞`=1, but we note that this sequence of tuples satisfies (6.3.2).

6.4 Local symmetries for the Julia sets
From [Mil00], we know we can conjugate fi (for 1 6 i 6 n) and g to linear maps in small
neighbourhoods of the repelling fixed points. More precisely, there exist holomorphic germs φi
at x = 0 satisfying

φi(0) = ai, φn+1(0) = b0, φ
′
i(0) = φ′n+1(0) = 1 for 1 6 i 6 n

and
φ−1
i ◦ fi ◦ φi(x) = λi · x for 1 6 i 6 n,

while
φ−1
n+1 ◦ g ◦ φn+1(x) = λ · x.

We notice that for (x1, . . . , xn) in a neighbourhood of ã ∈ Cn, we have an equality of germs:

gj` ◦ h ◦ (f
−j1,`
1 (x1), . . . , f

−jn,`
n (xn)) = φn+1 ◦

(
λj` · hφ

(
φ−1

1 (x1)

λ
j1,`
1

, . . . ,
φ−1
n (xn)

λ
jn,`
n

))
,

where hφ := φ−1
n+1 ◦ h ◦ (φ1, . . . , φn) and f−1

i is the germ of a branch of the inverse of fi at

xi = ai with f−1
i (ai) = ai. So, using also (6.3.1), then for very small r0 > 0 and all x̃ in the ball

B(ã, r0) ⊂ Cn of radius r0, the map

x̃ 7→ gj` ◦ h ◦ (f
−j1,`
1 , . . . , f

−jn,`
n )(x̃)
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is well defined and uniformly bounded on B(ã, r0) for all ` > 1. Next, we construct the function

Ψ(x̃) := (x1, . . . , xn−1, h(x̃))

for x̃ = (x1, . . . , xn), which is locally one-to-one at x̃ = ã since βn = (∂h/∂xn)(ã) 6= 0. Shrinking
r0 if necessary, we let

Ψ`(x̃) := Ψ−1 ◦ (x1, . . . , xn−1, g
j` ◦ h ◦ (f

−j1,`
1 , . . . , f

−jn,`
n )(x̃))

=: (x1, . . . , xn−1, h`(x̃)) (6.4.1)

for all x̃ ∈ B(ã, r0) and all ` > 1, where h` is some local analytic function on B(ã, r0) satisfying
(6.4.1).

Lemma 6.3. The family of functions {h`(x̃)}`>1 restricted on B(ã, r0) is a normal family.

Proof of Lemma 6.3. Since x̃ 7→ gj` ◦h ◦ (f
−j1,`
1 , . . . , f

−jn,`
n )(x̃) is uniformly bounded on B(ã, r0)

for all ` > 1, then that h` (defined as in (6.4.1)) is uniformly bounded on B(ã, r0), i.e., there
exist R > 0 such that

h`(B(ã, r0)) ⊂ B(b0, R) ⊂ C

for all `> 1. Hence h` is a distance non-increasing map from B(ã, r) (with respect to the Bergman
metric) to B(b0, R) (with respect to the hyperbolic metric). Thus {h`(x̃)}`>1 is equicontinuous
on B(ã, r0), or equivalently, {h`(x̃)}`>1 is a normal family. 2

From Lemma 6.3, we can pick a subsequence of {Ψ`}`>1 which converges uniformly on
B(ã, r0). By passing to a subsequence, without loss of generality, we can assume that the sequence
{Ψ`}`>1 itself converges uniformly to

Ψ0(x̃) := lim
`→∞

Ψ`(x̃)

and satisfies (6.3.2) with Ψ0(ã) = ã and Ψ0(x̃) =: (x1, . . . , xn−1, h0(x̃)). Since

∂h0

∂xn
(ã) = lim

`→∞

∂h`
∂xn

(ã) = lim
`→∞

λj`

λ
jn,`
n

= 1 6= 0,

the map Ψ0 is locally one-to-one at x̃ = ã. Shrinking r0 if necessary, we can further assume that
the sequence of maps

Ψ−1
0 ◦Ψ`(x̃) =: (x1, . . . , xn−1, ~`(x̃)) =: Φ`(x̃) (6.4.2)

converges uniformly to the identity map on B(ã, r0) as ` → ∞. The next goal is to show that
Φ` is the identity map for all large `; see Lemma 6.7.

6.5 Equal currents
Proposition 6.4. Let r1 and r2 be positive real numbers and let u1, . . . , un and u be continuous
subharmonic functions on D(0, r1), respectively on D(0, r2). Let θ be a holomorphic map from
Dn(0̃, r1) to D(0, r2) and moreover, assume the following two (n, n)-currents satisfy the relation:

ddcu1(x1) ∧ · · · ∧ ddcun(xn) = c0 · ddcu1(x1) ∧ · · · ∧ ddcun−1(xn−1) ∧ ddcu ◦ θ(x̃)

on Dn(0̃, r1) for some constant c0 > 0. Then for any given point α in the support of ddcu1(x1)∧
· · · ∧ ddcun−1(xn−1), we have the following equality of (1, 1)-currents on D(0, r1):

ddcun(xn) = c0 · ddcu ◦ θ(α, xn).
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Proof of Proposition 6.4. Let α be a point in the support of ddcu1(x1)∧ · · · ∧ ddcun−1(xn−1). It
suffices to show that for any C∞ real function ϕ with compact support on D(0, r1), one has∫

D(0,r1)
ϕ(xn) ddcun(xn) = c0

∫
D(0,r1)

ϕ(xn) ddcu ◦ θ(α, xn).

To see this, we let µ be the measure on Dn−1(0, r1) with

dµ(x) := c0 · ddcu1(x1) ∧ · · · ∧ ddcun−1(xn−1)

and let µ̃ be the measure on Dn(0̃, r1) with

dµ̃(x̃) := dµ(x) ∧ dxn ∧ dx̄n
−4πi

.
For each small positive real number r, we let ηr(x) be a C∞-function on Dn−1(0, r1) satisfying

the properties:
• 0 6 ηr 6 1;
• ηr is supported on Dn−1(α, r); and
• ηr = 1 on Dn−1(α, r/2).

From the proportionality assumption of the two (n, n)-currents, we get

1

c0

(∫
ηr dµ

)∫
ϕddcun =

1

c0

∫
ηr(x)ϕ(xn) dµ(x) ∧ ddcun(xn)

=

∫
ηr(x)ϕ(xn) dµ(x) ∧ ddcu ◦ θ(x̃)

=

∫
u ◦ θ(x̃) dµ ∧ ddc(ηrϕ)

=

∫
ηr(x)u ◦ θ(x̃)4ϕ(xn) dµ̃(x̃) (6.5.1)

where 4 is the Laplacian and the right-hand side is integrated over the domain Dn(0̃, r1).
Similarly we derive that(∫

ηr dµ

)∫
ϕddcu ◦ θ(α, xn) =

∫
ηr(x)u ◦ θ(α, xn)4ϕ(xn) dµ̃(x̃).

Now let
Θr(x̃) := ηr(x) · (u ◦ θ(α, xn)− u ◦ θ(x̃)) · 4ϕ(xn)

which is supported on Dn−1(α, r) × D(0, r1). Hence as u ◦ θ is continuous and ϕ has compact
support on D(0, r1), there exist constants εr → 0 as r → 0 such that for any x̃ ∈ Dn(0̃, r1), we
have

|Θr(x̃)| 6 ηr(x) · εr.

Consequently∣∣∣∣ 1

c0

∫
ϕddcun −

∫
ϕddcu ◦ θ(α, xn)

∣∣∣∣ 6
∫
Dn(0̃,r1) ηr(x) · εr dµ̃(x̃)∫
Dn−1(0,r1) ηr(x) dµ(x)

= εr · c1

with c1 =
∫
D(0,r1) 1 · (dxn ∧ dx̄n)/(−4πi). Now letting r → 0, the conclusion in Proposition 6.4

follows. 2
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6.6 The rational functions must be exceptional
The next result yields half of the conclusion in Theorem 6.1 by showing that if fn+1 is an
exceptional rational function, then each fi is exceptional, and moreover, each fi is either Lattèes
or not, depending on whether fn+1 is a Lattès map, or not.

Corollary 6.5. The following statements hold:
• if fn+1 is conjugate to a monomial or a ±Chebyshev polynomial, then each fi (for
i = 1, . . . , n) is conjugate to a monomial or a ±Chebyshev polynomial.

• if fn+1 is a Lattès map, then each fi is a Lattès map.

Proof of Corollary 6.5. So, we assume that fn+1 is exceptional. Without loss of generality, we
show that fn is exceptional as well and moreover, it is Lattès if and only if fn+1 is a Lattès map.
Since fi (and fn+1) has continuous potential near ai (respectively near b0) and moreover, ai ∈ Jfi
which is the support of µfi , then Proposition 6.4 along with the hypotheses of Theorem 6.1 yield
that the map h(a, ·) which sends a neighbourhood of an ∈ Jfn to a neighbourhood of b0 ∈ Jfn+1

preserves the measures up to a scaling, i.e., for some c > 0

h∗(a, ·)µfn+1 = c · µfn . (6.6.1)

In [Lev90, Theorem 1], it was shown that there exists an infinite non-trivial family of symmetries
on Jf if and only if f is post-critically finite with parabolic orbifold; hence (6.6.1) (see also § 3.3)
yields that fn must be exceptional.

By a theorem of Zdunik [Zdu90], a rational function f is Lattès if and only if Jf is P1 and µf
is absolutely continuous with respect to Lebesgue measure on P1; therefore, (6.6.1) yields that
fn is Lattès if fn+1 is Lattès.

Assume that fn+1 is conjugate either to a monomial or ±Chebyshev polynomial. Then (6.6.1)
yields that Jfn is a one-dimensional topological space of Hausdorff dimension 1. According to
Hamilton [Ham95], a Julia set which is a one-dimensional topological manifold must be either
a circle, closed line segment (up to an automorphism of P1) or of Hausdorff dimension greater
than one; thus Jfn is itself a circle or a closed line segment (up to an automorphism of P1). This
yields that fn must be conjugated to a monomial or a ±Chebyshev polynomial, which concludes
the proof of Corollary 6.5. 2

6.7 Conclusion of our arguments
Corollary 6.5 yields that all we have left to prove in Theorem 6.1 is that fn+1 must be exceptional.
So, from now on, we assume that fn+1 is non-exceptional and we will derive a contradiction.

Lemma 6.6. Let S be the family of symmetries of Jfn on D(an, r) for some r > 0. Then there
exists ε > 0 such that for any ζ ∈ S with

sup
x∈B(an,r)

|ζ(x)− x| < ε,

we must have ζ(x) ≡ x for x ∈ D(an, r).

Proof of Lemma 6.6. Suppose this lemma is not true, then there exists a sequence of integers
ε` > 0 with ε` → 0 as ` tends to infinity, and a sequence of functions ζ` ∈ S, which are not the
identity map, such that

sup
x∈D(an,r)

|ζ`(x)− x| = ε`. (6.7.1)
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Consequently, {ζ`(x)}`>1 is a normal family with no subsequence having a constant limit (because
ζ` tends to the identity map as `→∞). By Levin’s result [Lev90], {ζ`}`>1 must consist of finitely
many elements, which is a contradiction because there are infinitely many distinct real numbers
ε` as in (6.7.1). 2

Lemma 6.7. There exists N ∈ N, such that Φ` is the identity map on B(ã, r0) for all ` > N .

Proof of Lemma 6.7. By abuse of notation, let µ̃n+1 and µ̃n be the measures µ̃n+1 and µ̃n in
(3.2.2) restricted on Dn(ã, r1) and respectively, on Dn(b̃, r2) for b̃ = (a1, . . . , an−1, b0) and small
radii r1, r2. Since µ̂n = µ̂n+1, there exist constants c` > 0, such that

Φ∗` (µ̃n+1) = c` · µ̃n+1.

By Proposition 6.4, we see that for any α in Dn−1(a, r1)∩ Jf1 × · · · × Jfn−1 , the map ~`(α, ·) is a
symmetry of Jfn on D(an, r2). Moreover, the functions ~`(x̃) converge uniformly to ~(x̃) := xn
on Dn(ã, r1) as ` tends to infinity. Applying Lemma 6.6, there exists N ∈ N, such that for any
` > N and any α in Dn−1(a, r1) ∩ (Jf1 × · · · × Jfn−1), we have

~`(α, xn) = xn

for each xn ∈ D(an, r1). Since ai is an accumulating point in Jfi for each i (see [Mil00]), when
` > N , the zero locus of the equation ~`(x̃)−xn = 0 on Dn(ã, r1) cannot have dimension 6 n−1,
i.e., ~`(x̃) is identically equal to xn and so, Φ` is the identity map. This concludes the proof of
Lemma 6.7. 2

Let N be the positive integer appearing in Lemma 6.7. Pick `2 > `1 > N with j`2 > j`1 and
ji,`2 > ji,`1 for 1 6 i 6 n. Let

mi := ji,`2 − ji,`1 for 1 6 i 6 n and mn+1 := j`2 − j`1 .

Lemma 6.8. With the above notation for mi, let

H ′ := (fm1
1 , . . . , f

mn+1

n+1 )(H) ⊂ (P1)n+1
C .

Then (fm1
1 , . . . , f

mn+1

n+1 )(H ′) = H ′.

Proof of Lemma 6.8. From Lemma 6.7 (see also (6.4.1)), we have that

gj`1 ◦ h ◦ (f
−j1,`1
1 , . . . , f

−jn,`1
n )(x̃) = gj`2 ◦ h ◦ (f

−j1,`2
1 , . . . , f

−jn,`2
n )(x̃)

on Dn(ã, r0), or equivalently

h(x̃) = gmn+1 ◦ h ◦ (f−m1
1 , . . . , f−mn

n )(x̃). (6.7.2)

Let

h′(x̃) := f
mn+1

n+1 ◦ h ◦ (f−m1
1 , . . . , f−mn

n )(x̃)

on a neighbourhood of ã. Now consider the analytic equation

h′(x̃)− xn+1 = 0
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on a neighbourhood of (ã, b1) ∈ PnC × P1
C. The zero set of this equation is an analytic set of

dimension n passing through the point (ã, b1). For x̃ close to ã, the points of the form (x̃, h′(x̃))
lie on the hypersurface H ′. Combining (6.2.1) and (6.7.2), we get

h′ ◦ (fm1
1 , . . . , fmn

n )(x̃) = fmn+1 ◦ h′(x̃).

Hence for points x̃ close to ã, the points (fm1
1 , . . . , f

mn+1

n+1 )(x̃, h′(x̃)), which are points on
(fm1

1 , . . . , f
mn+1

n+1 )(H ′) satisfy also the equation h′(x̃) − xn+1 = 0. Finally, as both H ′ and
(fm1

1 , . . . , f
mn+1

n+1 )(H ′) share an analytic set of dimension n in a neighbourhood of (ã, b1),
they must be identical. So H ′ is fixed by the endomorphism (fm1

1 , . . . , f
mn+1

n+1 ) of (P1)n+1, as
desired. 2

We recall that our sequence of tuples (j`, j1,`, . . . , jn,`) satisfies condition (6.3.2). Therefore,
we can choose some integers `2 > `1 > N such that j`2 = j`1 and also, ji,`2 = ji,`1 for i = 2, . . . , n,
while j1,`2 = j1,`1 + 1 and then apply Lemma 6.8 to the tuple of integers

mi := ji,`2 − ji,`1 for 1 6 i 6 n and mn+1 := j`2 − j`1 .

We have that mi = 0 for each i = 2, . . . , n+ 1, while m1 = 1. Therefore, Lemma 6.8 yields that

(f2
1 , id, . . . , id)(H) = (f1, id, . . . , id)(H), (6.7.3)

where the action in (6.7.3) on coordinates xi for 2 6 i 6 n + 1 is given by the corresponding
identity maps. Equation (6.7.3) yields that H is a hypersurface of the form P1 ×H0 (for some
hypersurface H0 ⊂ (P1)n), contradicting thus our hypothesis that H projects dominantly onto
any subset of n coordinate axes. Hence fn+1 (and thus each of the fi, as shown in Corollary 6.5)
must be exceptional; this concludes our proof of Theorem 6.1. 2

7. Conclusion of our proof

In this section we finish our proof of Theorem 2.2 and then we prove Theorem 1.4. Since we
showed in Proposition 2.1 that it suffices to assume in Theorems 1.1, 1.2 and 1.3 that the
subvariety V ⊂ (P1)n is a hypersurface projecting dominantly onto each subset of (n − 1)
coordinate axes, then this will conclude our proof for each one of those theorems; note that
we proved the above three theorems in § 2.3 as a consequence of Theorem 2.2.

Proof of Theorem 2.2. So, we have a hypersurface H ⊂ (P1)n (for some integer n > 2) containing
a Zariski dense set of points satisfying either hypothesis (1) or hypothesis (2) in Theorem 2.2.
Furthermore, H projects dominantly onto any subset of (n− 1) coordinate axes of (P1)n. We let
µ̂i (for i = 1, . . . , n) be the measures introduced in § 3.2.

Lemma 7.1. We have µ̂1 = µ̂2 = · · · = µ̂n.

Proof of Lemma 7.1. If each fi and also H are defined over Q̄ (i.e., hypothesis (2) in Theorem 2.2
is met), then the conclusion of Lemma 7.1 follows immediately from Theorem 5.1. So, assume
now that each fi and also H are defined over C, and moreover hypothesis (1) in Theorem 2.2 is
met; in particular, deg(f1) = deg(f2) = · · · = deg(fn). We prove the result in this general case
using a specialization technique similar to the one employed in the proof of Claim 5.5.

So, we let K be a finitely generated subfield of C such that each fi and also H are defined over
K, and let K be a fixed algebraic closure of K in C. We know there exists an infinite sequence
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S := {(x1,j , . . . , xn,j)} ⊂ H(C) such that each xi,j is a preperiodic point for fi for i = 1, . . . , n
and for each j > 1. Then the functions fi are base changes of endomorphisms fi,K of P1

K (for
i = 1, . . . , n); similarly, S is the base change of a subset SK ⊂ H(K). We can further extend fi,K
to endomorphisms

fi,U : P1
U −→ P1

U

over a variety U over Q of finite type and with function field K. For each geometric point
t ∈ U(Q̄), the objects fi,U and SU have reductions fi,t and St such that St consists of points with
coordinates preperiodic under the action of the fi,U . We also let µ̂i,t (for i = 1, . . . , n) be the
probability measures on Ht obtained as pullback through the usual projection map onto (n− 1)
coordinates (with the exception of the ith coordinate axis) of the invariant measures on (P1

C)n−1

corresponding to each fj,t for j 6= i. As proven in Claim 5.5 (using [YZb, Theorem 4.7] and also
[YZa, Lemma 3.2.3]), we obtain that the subset St ⊂ Ht is still Zariski dense for all the Q̄-points
t in a dense open subset U0 ⊆ U . Thus, as proven in Theorem 5.1, we conclude that

µ̂1,t = µ̂2,t = · · · = µ̂n,t

for each t ∈ U0(Q̄). Since U0(Q̄) is dense in U(C) with respect to the usual Archimedean topology,
while the measures µ̂i,t vary continuously with the parameter t (since from the construction, the
potential functions of these measures vary continuously with the coefficients of fi,t), we conclude
that

µ̂1,t = µ̂2,t = · · · = µ̂n,t

for all points in U(C) including the point corresponding to the original embedding K ⊂ C. Thus
µ̂1 = µ̂2 = · · · = µ̂n, which concludes the proof of Lemma 7.1. 2

Lemma 7.1 yields that the hypotheses of Proposition 5.2 are met and so, we know that
there exists an index i, which we assume (without loss of generality) to be n so that for each
α := (a1, . . . , an) ∈ H(C), if ai is preperiodic under the action of fi for i = 1, . . . , n−1, then also
an is preperiodic under the action of fn.

Since all but finitely many periodic points of a rational map are repelling, and also, there is
a Zariski dense open subset of points α ∈ H such that the restriction of the natural projection
map π|H : H −→ (P1)n−1 on the first (n− 1) coordinate axes is unramified, then we can find a
point (x1,0, . . . , xn,0) ∈ H(C) satisfying the following properties:

(a) xi,0 is a periodic repelling point for fi for each i = 1, . . . , n− 1; and

(b) there is a non-constant holomorphic germ h0 defined in a neighbourhood of x̃0 := (x1,0, . . . ,
xn−1,0), with h0(x̃0) = xn,0 and (x̃, h0(x̃)) ∈ H(C) for all x̃ in a small neighbourhood of x̃0.
Moreover, we also have that

∂h0

∂xi
(x̃0) 6= 0 for each i = 1, . . . , n− 1. (7.0.1)

Note that hypothesis (7.0.1) can be achieved since the points satisfying (∂h/∂xi) = 0 live in a
proper Zariski closed subset of H (i.e., inequality (7.0.2) is an open condition which can be seen
from computing the partial derivatives using implicit functions). It is essential in this case to
know that H projects dominantly onto each subset of (n − 1) coordinates, i.e., H is not of the
form P1 ×H0 for some hypersurface H0 ⊂ (P1)n−1 since otherwise condition (7.0.1) would not
necessarily hold.

Proposition 5.2 and condition (a) above yield that xn,0 is preperiodic for fn. At the expense
of replacing each fi by f `i (for a suitable positive integer `), we may assume that:
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• xi,0 is a repelling fixed point of fi for 1 6 i 6 n− 1;
• xn,1 := fn(xn,0) is a fixed point of fn; and
• there is a holomorphic germ h(x̃) near x̃0 = (x1,0, . . . , xn−1,0) with h(x̃0) = xn,0, and

(x̃, h(x̃)) ∈ H(C) for all x̃ ∈ (P1)n−1(C) in a small (complex analytic) neighbourhood of
x̃0. Moreover, for each i = 1, . . . , n− 1 we have that

βi :=
∂h

∂xi
(x̃0) 6= 0. (7.0.2)

Then all hypotheses in Theorem 6.1 are met; this yields that each fi must be either all conjugate
to monomials and ±Chebyshev polynomials, or they are all Lattès maps, which concludes our
proof of Theorem 2.2. 2

We finish our paper by proving Theorem 1.4.

Proof of Theorem 1.4. First we observe (similar to the proof of Proposition 2.1) that it suffices
to prove that each irreducible, preperiodic hypersurface H ⊂ (P1)n is of the form π−1

i,j (Ci,j) (for

a pair of indices i, j ∈ {1, . . . , n}), where Ci,j ⊂ P1×P1 is a curve, which is preperiodic under the
action of (xi, xj) 7→ (fi(xi), fj(xj)) (and πi,j is the projection of (P1)n onto the (i, j)th coordinate
axes). Indeed, just as in the proof of Proposition 2.1, we obtain that any preperiodic subvariety
V ⊂ (P1)n is a component of an intersection of preperiodic hypersurfaces, thus reducing our
proof to the case V is a hypersurface.

Since the case n= 2 was proved in [GNY17, Theorem 1.1], from now on, we assume V ⊂ (P1)n

is a hypersurface and n > 2. Then, at the expense of replacing Φ = (f1, . . . , fn) by an iterate
of it and also replacing the hypersurface V by a suitable Φk(V ) (for k ∈ N), we may (and do)
assume that V is invariant under the action of Φ. Also, we may assume V projects dominantly
onto each subset of (n − 1) coordinate axes of (P1)n since otherwise V = P1 × V0 and then we
can argue inductively on n (because V0 ⊂ (P1)n−1 would be invariant under the induced action
of Φ on those (n− 1) coordinate axes). Next we will prove there are no such hypersurfaces, thus
providing the desired conclusion in Theorem 1.4.

We let π|V : V −→ (P1)n−1 be the projection on the first n − 1 coordinate axes; we know
there exists a Zariski open subset U ⊂ (P1)n−1 such that π|−1

V (β) is finite for each β ∈ U .
Now, let β := (a1, . . . , an−1) ∈ U(C) such that each ai is periodic under the action of fi. We

claim that each point α ∈ V (C) satisfying π|V (α) = β is preperiodic under the action of Φ, i.e.,
its last coordinate is preperiodic for fn. Indeed, since β is periodic, then for some positive integer
m, we have that Φm(α) ∈ π|−1

V (β) and because π|−1
V (β) is a finite set, we conclude that the last

coordinate of α (and therefore, α itself) must be preperiodic, as claimed.
At the expense of shrinking U to a smaller, but still Zariski dense, open subset, we may

even assume π|V is unramified above each point of U . Then we can argue as in the proof of
Theorem 2.2 and find a point (x1,0, . . . , xn,0) satisfying the conditions:

(a) xi,0 is a periodic repelling point for fi for each i = 1, . . . , n− 1; and

(b) there is a non-constant holomorphic germ h0 defined in a neighbourhood of x̃0 := (x1,0, . . . ,
xn−1,0), with h0(x̃0) = xn,0 and (x̃, h0(x̃)) ∈ V (C) for all x̃ in a small neighbourhood of x̃0.
Moreover, we also have that (∂h0/∂xi)(x̃0) 6= 0 for each i.

Furthermore, after replacing Φ by yet another iterate, we get that each xi,0 is fixed by fi. Then
we meet the hypotheses of Theorem 6.1 and since we assumed that each fi is non-exceptional,
we derive a contradiction. This concludes our proof of Theorem 1.4. 2
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Mañ83 R. Mañé, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Math.

14 (1983), 27–43.

McQ95 M. McQuillan, Division points on semi-abelian varieties, Invent. Math. 120 (1995), 143–159.

Med07 A. Medvedev, Minimal sets in ACFA, PhD thesis, University of California, Berkeley (2007),

96 pp.

MS14 A. Medvedev and T. Scanlon, Invariant varieties for polynomial dynamical systems, Ann. of

Math. (2) 179 (2014), 81–177.

Mil00 J. Milnor, Dynamics in one complex variable (Vieweg, Wiesbaden, Germany, 2000).

Mil04 J. Milnor, On Lattès maps, Preprint (2004), arXiv:math/0402147 [math.DS].

Mim97 A. Mimar, On the preperiodic points of an endomorphism of P1×P1 which lie on a curve, PhD

thesis, Columbia University (1997).

Mim13 A. Mimar, On the preperiodic points of an endomorphism of P1×P1 which lie on a curve, Trans.

Amer. Math. Soc. 365 (2013), 161–193.

Mor96 A. Moriwaki, Hodge index theorem for arithmetic cycles of codimension one, Math. Res. Lett. 3

(1996), 173–183.
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