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Abstract A numerical simulation of equilibrium gas flow in a binary system is presented for the case 
in which an accretion disc forms around the .accreting star (primary). Preliminary results are shown 
for the mass ratios 0 .4 , 1.0 and 2 .5 . Two main conclusions are reached. First, the accretion disc is 
quite well defined and is comparable in size to the Roche lobe of the primary. Second, all but a 
few per cent o f the mass transferred is accreted by the primary. 

1 . Introduction 

Accretion discs have been receiving considerable attention from astronomers in recent 
years. In this paper we consider the accretion disc that arises when Roche-lobe mass trans­
fer takes place in a semi-detached binary system in which the accreting star is too small 
for the stream of transferred material to strike it directly. Such discs are of particular 
relevance to binary X-ray sources (Rees, 1976) and to dwarf novae (Warner, 1976). 

Close to the accreting star (henceforth the primary), where most of the accretion 
energy is liberated, the gas flow can be treated as a standard, relatively well understood 
accretion disc in which the main flow is circular and Keplerian. For accretion to take 
place at all there must be some form of viscosity which acts to transfer angular momentum 
(relative to the primary) outwards and to allow material in the disc to spiral slowly 
inwards, releasing energy as it does so. 

When the binary orbit is circular and the mass-transferring (secondary) star is rotating 
synchronously with the orbit and is sufficiently centrally condensed (that is, when the 
Roche approximation may be applied) the flow near the inner Lagrangian point (Lx) 
is also relatively well understood. Since the flow velocity at Lx is comparable to the 
sound speed in the atmosphere of the secondary and since this velocity is in general much 
smaller than the orbital velocities, it has long been assumed (Kuiper, 1941; Kopal, 1956; 
Gould, 1957,1959; Kruszewski, 1964) that the initial trajectory of the stream is the same 
as that delineated by a test particle falling from the L x point in the restricted three-body 
problem. Additional support for this assumption has been provided by Lubow and Shu 
(1975). 

The understanding of the interaction between the accretion disc around the primary 
and the mass stream from the secondary is of crucial importance to a number of prob­
lems. Together with a better understanding of the radiation processes involved it is cen­
tral to the interpretation of the optical light curves of dwarf novae and of the optical 
and X-ray light curves of some binary X-ray sources. Perhaps most important of all it can 
tell us how much of the mass transferred through the L x point actually ends up on the 
primary and how much mass and/or angular momentum (if any) is lost from the system 
as a whole. A definitive answer to this problem would greatly simplify calculations of the 
evolution of binary stars. 

Suppose for the moment that no viscous processes are occurring in the gas. In this 
case the general aspects of the gas flow are relatively easy to understand. The region 
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where the disc/stream interaction takes place is sufficiently close to the primary that 
angular momentum about the primary is approximately conserved during the inter­
action. Thus the dissipation of energy that occurs during the interaction allows the 
material in the stream to form a ring about the primary and the radius of the ring is 
roughly determined by the condition that the angular momentum with respect to the 
primary for particles flowing round the ring is equal to that for particles in the incoming 
stream. Calculations based on these assumptions have been made by Warner and Peters 
(1972), Flannery (1974) and Lubow and Shu (1975). Note, however, that the assumption 
that no viscous processes are acting means that no accretion can take place onto the 
primary and that the transferred material continues to build up in a ring around it. 

The effect of viscosity on a ring of material circling a central gravitating object has 
been calculated by Lynden-Bell and Pringle (1974). Although the details of their results 
depend on the assumptions made about the nature of the viscosity, the general aspects 
of the flow do not. Viscosity acts to spread the ring out. The inner radius of the ring 
decreases, taking most of the mass with it and so releasing gravitational potential energy. 
The outer radius increases, in order to absorb the angular momentum which is lost by 
mass at the inner radius and which is transferred outwards by the viscous mechanism. 
If the initial radius of the ring is Rh and if the material (and angular momentum) flow­
ing outwards is absorbed at a radius RL then the fraction of mass that is absorbed at 
RL in order to allow the rest to fall from Rh to Rx, the radius of the primary (assumed 
<Rn)> is approximately (Rn/RL)%. For this reason Prendergast and Burbidge (1968) 
predicted that about half the mass transferred in such a binary system would not be 
accreted by the primary. 

Thus we see that if viscous processes are important in the gas flow (or, in other words, 
if accretion takes place) the outer edge of the accretion disc must be larger than that 
calculated under the assumption of zero viscosity. In fact, if the flow settles down to 
a steady state we do not necessarily expect all the transferred mass to be accreted and 
may expect some of it to be lost from the Roche lobe taking with it the excess 'angular 
momentum about the primary'. Thus we may expect the outer edge of the disc to be 
comparable to the size of the Roche lobe. 

Because of the enormity of the problem a full-scale hydrodynamical calculation of 
the equilibrium flow is not really feasible at this stage. Prendergast and Taam (1974) 
have considered the simpler situation in which the primary is large enough that a disc 
does not form. Flannery (1975) has computed the flow resulting from a constant mass 
transfer rate for only one orbital period. He, however, excludes consideration of viscous 
processes and therefore finds that the transferred material forms a ring around the primary. 
Sorensen et al. (1975) have considered the accretion flow resulting from a stellar wind 
driven from the surface of the secondary. Their results are complementary to those 
presented here. 

We have adopted a simpler approach. In the gas flow we wish to simulate, pressure 
is relatively unimportant since radiation timescales are for the most part much shorter 
than dynamical ones. On the other hand some kind of viscous or dissipative process must 
be present in order to allow accretion to proceed. We suspect that once an equilibrium 
flow has been established, the overall properties of the flow may be relatively independent 
of the properties of the dissipative process. Rather than attempting to use a computer to 
provide an approximate solution of the fluid equations (which are, after all, just analytic 
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expressions of conservation laws) we have adopted a many-body approach to the problem. 
We approximate the fluid as being composed of a few thousand individual particles. For 
most of the time these particles move under Newton's laws as isolated test particles in 
the potential of the binary system (restricted three-body problem). Every so often each 
particle is forced to interact instantaneously with its neighbours in a viscous manner. In 
Section 2 we discuss the details of the viscous interaction and our numerical technique. 
We present the results of the computations in Section 3 and comment on them in Section 4. 

2 . Methods 

2 . 1 . P A R T I C L E D Y N A M I C S ; T H E R E S T R I C T E D T H R E E - B O D Y P R O B L E M 

The relevant equations have been discussed by several authors and we recapitulate briefly 
to establish our notation. We choose units so that the binary separation, the total mass of 
the system and the orbital angular velocity are unity. We work in a frame rotating with 
the binary system. We take the centre of mass of the primary (mass mx) to be at the 
origin (0 ,0 ,0) and the centre of mass of the secondary (mass m2) to be at (—1,0,0). 
We take the x-y plane to be the orbital plane and for convenience ignore any motion in 
the z-direction. The equations of motion for a test particle are then 

dr dr r2 

dt2 dt \ r2

3 rx

3 
(2.2) 

where n = ql(l + q) = rnxl(mx + m2), r2

2 = (x + l ) 2 +y2 and r 2 = x2 +y2. 
The conserved quantity along the orbit of an isolated particle is the Jacobi integral 

C=2U-(x2 +^2) 

where 

U=\t^i2 + ( l - / i > 2

2 ] + - + — . (2.3) 
2 rx r2 

2 . 2 . T H E V I S C O U S I N T E R A C T I O N 

Initially the particles are allowed to follow the orbits prescribed by the Equations (2.1) 
and (2.2). After a small time interval At the particles have moved a finite distance with­
out any interaction between themselves. At this instant any particle with a sufficiently 
close neighbour (or neighbours) is allowed to interact instantaneously with it (or them). 
Suppose that at one instant there are n particles which we are allowing to interact, with 
positions ri and velocities vt (i=l,n) (with respect to an inertial frame) before the inter­
action. Since the interaction is instantaneous, during it we must conserve (Newton's 
third law) the particle's total momentum and total angular momentum with respect 
to an inertial frame. The action of viscosity is to reduce locally the shear and (bulk 
viscosity) the dilatation of the fluid. Therefore the simplest form of viscous interaction 
to consider is to assume that after the interaction the particles end up rotating rigidly 
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about their local centre of mass and remain in their original positions. The position of 
their centre of mass is given by 

rcB\2'f (2-4) 

The velocity of the centre of mass is given by 

u c = ^ 2 »/• (2-5) 
7 1 1 = 1 

We define Ri = ri-rc and V^v^vc. 
After the interaction the velocities of the particles are given by 

where 

! = 1 

n 
a = - ~ ( 2 . 6 ) 

/ = i 

More generally, we may assume that shear and bulk viscosities are not efficient enough to 
achieve local rigid body rotation within an interacting region completely in a time At. 
For example if a fraction a of the local shear and of the local dilatation is dissipated in 
the interaction, the velocities of the particles after the interaction may be written 

u( = vc - < * R , A ^ j + ( l - a ) F , . . ( 2 . 7 ) 

2 R,--R, 
7 - 1 

Of course, for the particles taking part in a given interaction, their state of lowest 
energy (given momentum and angular momentum) is rigid body rotation. Thus the 
process we describe is of necessity a dissipative one. In this sense the interactive process 
used in our numerical simulation of the fluid flow contains the necessary properties of 
a dissipative process. 

We assume that the energy liberated is radiated away instantaneously and we record 
the amount and position liberated during each interaction. This should be a reasonable 
approximation since the radiation timescale for gas in the disc is short compared to the 
flow timescale. 

2.3 . NUMERICAL TECHNIQUE 

To follow the particle orbits we use fourth and seventh order Runge-Kutta integration 
subroutines. In the region near the compact object primary (r x < r c r , where rCT is a pres­
cribed parameter taken to be 0.05) we use the seventh order routine since the accelera-
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tions due to the gravitational field is larger there. We use the fourth order routine else­
where. 

After each timestep the position of each particle is checked to determine whether it 
has other particles close enough to it to interact with. This position checking process can 
be time-consuming and for maximum efficiency we use a mixture of two methods. 

(i) Close to the primary within an area A (see Figure 1) we divide the space up into 
kXm mesh boxes each of size IXI (typically k and m lie in the range 50—80). If a 
particle is within A at the end of a timestep it is allocated to a mesh box. All the particles 
in each mesh box are then allowed to interact in the manner described in Section 2.2. 

(ii) Outside A, where the particle density is smaller each pair of particles is checked 
to see if they lie within a distance / of each other. If they do, they are allowed to interact 
in the same manner setting n = 2 in the equations of Section 2.2. We find that our results 
do not depend on the size of A. 

In addition, at each timestep those particles that have returned to the secondary, those 
that have been accreted by the primary and those that have been lost from the system 

\ 

I U 
Fig. 1. The Roche lobe with q - 1.0 showing the area A defined in Section 2.3. Also shown is the 
potential which passes through the outer Lagrangian points. 
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are removed and recorded. A particle is deemed to have been lost from the system if it 
has a velocity greater than twice the escape velocity from the system and is at a distance 
of greater than 10 binary separations from the primary. 

3. Results 

We start our computations at the onset of mass transfer and continue until the flow 
reaches some kind of equilibrium — in particular until the number of particles within two 
binary radii of the primary tends to a constant value (Figure 2). We then allow the flow 
to proceed for a few more binary orbits and take a time average of the results. 

In all the computations presented here we have used a timestep Af=0.01, a mass 
transfer rate of one particle per timestep, and the viscous interaction (2.7) in the form 
with a = 1. We find that particles conserve the Jacobi integral along their orbit to within 
a few parts in 10 6 per timestep At. This is similar to the rounding error incurred during 
each interaction. Thus the cumulative error incurred during five orbits of equilibrium 

0 50 100 150 

TIME 
Fig. 2. A graph of the number N o f particles within two binary radii of the centre of mass of the 
primary as a function of dimensionless time for q = 1.0. Equilibrium flow is established after a time of 
130 which corresponds to 20 orbital periods. 
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flow is less than a few parts in 1 0 4 . We take the interaction length / = 0.02 and the radius 
of the primary to be R i = 0.01. 

The results are presented in Figures 3—5 and some of the details are summarized in 
Table I. In all cases the orbital motion is anti-clockwise. The equipotential surfaces corres­
ponding to the L i and L2 points are shown. The density contours are shown in the figures 
marked (a). Since the density of the particles in the disc depends on the space-dependence 
of the viscosity, the levels of the individual contours probably reflect directly our assump­
tions about the viscous process and as such are not necessarily very meaningful. We do 
find, however, that the outer edge of the disc is quite well defined and in each case the 
density drops quite sharply outside the outermost contour shown. Near the primary 
the contours are circular and the density decreases, as expected from standard accretion 
disc theory (Shakura and Sunyaev, 1973). 

The velocity fields are shown in the figures marked (b). The flow in the disc is anti­
clockwise about the primary. The length of the line shown corresponds to the magnitude 

Fig. 3a. 4 = 1.0, / = 0 .02 . Density contours at relative levels 1, 2.5, 5, 7.5 and 10. The density is 
low at the outside and at the centre of the disc and rises to a 'volcanic' rim in between. This variation 
is just a result of the assumptions made about viscosity. 
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Fig. 3b. q = 1.0, / = 0.02. The velocity field. Flow in the disc is anti-clockwise and the initial points 
of the vectors lie on a square mesh at the points corresponding to the velocity indicated by the length 
of the vector. The scale is shown. 

TABLE I 

Model parameters 

q=MjM2 "o N / *s Rh 

0.4 20 1500 0.06 ± 0.01 0.19 0.07 
1.0 20 2 7 0 0 0.03 ± 0.01 0.27 0.09 
2.5 4 0 5 0 0 0 0.03 ± 0.01 0 .40 0.13 

of the velocity. Each line starts on a square grid corresponding to the point at which the 
velocity is measured. The scale shown corresponds to unit velocity in the units used. The 
presence of a shock where the stream strikes the disc is quite marked. 

The contours of radiation intensity (that is, power per unit area) are shown in the 
figures marked (c). In an equilibrium flow, these contours should be reasonably indepen­
dent of the assumptions made about the viscosity. We note a region of enhanced emission 
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Fig. 3c. q- 1.0, / = 0.02. Contours of radiation intensity at relative levels o f 1.0, 2 . 5 , 5 , 1 0 , 2 0 , and 80. 

where the stream strikes the disc. Close to the primary the contours are roughly circular 
and follow the expected rx~3 dependence. 

In Table I we show for each case the number of orbits required to reach equilibrium 
(fl 0), the number of particles in the equilibrium disc (AO, and the fraction of particles 
transferred that are not accreted (f). We also show the radius Rs at which the disc stream 
energy dissipation takes place, and the radius Rh at which we would expect it to occur 
were no viscosity present (Flannery, 1975). 

4. Discussion 

Those wishing to apply the results presented here directly to observational data should 
proceed with considerable caution. We have shown a numerical simulation of a time-
average of the equilibrium flow of a pressure-free, pseudo-viscous fluid which is being 
transferred from one star to another in a binary system. We feel that the overall properties 
of the flow are probably well represented, despite the simplifications we have made, but 
that any detailed conclusions drawn should be treated with care. We have not presented 

https://doi.org/10.1017/S0074180900012006 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900012006


2 4 6 D. N. C. LIN AND J. E. PRINGLE 

Fig. 4a. q = 0 .04, / = 0 .02 . Density contours at relative levels o f 1, 2.5, 5, 7.5 and 10. The density is 
low at the outside and at the centre of the disc and rises to a Volcanic' rim in between. This variation 
is just a result of the assumptions made about viscosity. 

any of the time-dependent features of the flow, although we are preparing a 16-mm cine 
film of some of it. We hope that this will give us further insight into the mass-transfer 
process. For this reason we cannot, as yet, comment upon time-dependent accretion 
phenomena, for example the outbursts of dwarf novae. We have also, for simplicity and 
to save time omitted any consideration of fluid motions perpendicular to the plane of 
the binary system. For this reason we are unable to shed much light on phenomena that 
are probably associated with variations in the thickness of the disc (that is, that are 
essentially three-dimensional), for example the pre-eclipse dips in Her X-l and the hump 
in the orbital light curve of dwarf novae. 

Nevertheless we feel that the following conclusions can be tentatively drawn from our 
results. 

(i) A high percentage of the matter transferred from the secondary is actually accreted 
by the primary (see Table I). This is in contrast to the simple estimates (Section 1) of 
the amount of matter that is required to be lost in order to remove the necessary angular 
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Fig. 4b . q = 0.4, / = 0 .02 . The velocity field. 

momentum with respect to the primary. There are probably a number of reasons for 
this. Firstly the radius of the primary Rx is finite, but for the cases we have considered 
it is not large enough to explain the discrepancy entirely. Secondly, the estimate was 
made for particles orbiting a single gravitating mass for which the concept of angular 
momentum is good. For orbits close to the primary, angular momentum with respect 
to the primary is similarly a good concept. However, near the edge of the accretion disc, 
particles are influenced by the gravitational fields of both stars, and angular momentum 
about the primary is no longer even approximately conserved along a particle's trajec­
tory. Thus we expect in any case our somewhat naive estimate to be in error. Thirdly the 
outer regions of the disc may be thought of as a viscous field which is rotating faster than 
the orbital angular velocity. Tidal interactions would then tend to slow down the rotation, 
and to transfer the necessary amount of angular momentum to the orbital motion. 
If this process were efficient enough there would be no need for any of the transferred 
matter to be lost from the Roche lobe of the primary. However, since this process depends 
on viscosity it seems probable that its relative efficiency compared to mass loss from 
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the Roche lobe may be independent of the value of the viscosity in an equilibrium situa­
tion. 

(ii) In equilibrium the accretion disc is a fairly well defined entity (i.e. the particle 
density falls off rapidly at the edge of the disc), and more or less fills the Roche lobe of 
the primary. This is simply a consequence of the apparent requirement that matter 
must be lost from the Roche lobe to carry any of the excess angular momentum relative 
to the primary. The material leaves the Roche lobe roughly in the neighbourhood of the 
relevant outer Lagrangian point (L2 or L 3 ) with relatively small velocities. Our calcula­
tions cannot be relied upon to tell us what happens to the matter that escapes. There are 
essentially two possibilities. Either the matter escapes from the system, in which case it 
is no trivial problem to calculate how much angular momentum it removes with it; or 
the matter returns to the secondary, in which case it is an additional factor to mass 
exchange itself in tending to desynchronize the rotation of the secondary, particularly 
in its outer layers. Slight non-corotation of the outer layers of the secondary can severely 
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Fig. 5a. q = 2.5,1 = 0 .02. Density contours at relative levels 1, 2, 3 and 4. 

alter the trajectory of the stream of transferred material. Since the velocity of the material 
as it leaves the Roche lobe is quite low, we expect the latter possibility to be strongly 
preferred for large values of Mx /Af2. 

In summary, we have presented a numerical simulation of equilibrium viscous gas 
flow in a binary system. Although the approach we have adopted is somewhat naive, it 
makes computation relatively easy, and does, we believe, embody the essential properties 
of such a flow, at least in a time-averaged sense. Study of the flow and of the approxi­
mations involved is still in progress and the full results will be published elsewhere. 
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Fig. 5b. q = 2.5,1 = 0 .02. The velocity field. 
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Fig. 5c. q - 2.5, / = 0 .02 . Contours of radiation intensity at relative levels 1, 4 , 16, 64 and 128. We 
note that the dissipation in the outer regions of the Roche lobe is distributed in a non-circular manner 
with respect to the primary. This may be indicative of tidal dissipation. 

D I S C U S S I O N 

Paczynski: How much matter is lost from the Roche lobe in which the disc is located? Does this matter 
carry away the excess o f angular momentum from the accretion disc? 

Pringle: Only a small fraction of the mass transferred is lost from the Roche lobe of the primary 
(see Table I). Loosely this matter must take away the excess o f angular momentum from the accretion 
disc, but I think a more honest answer would be that it depends what you mean by angular 
momentum. 

Shu: I think you would be the first to agree that what you do is not fluid mechanics. It does give 
some aspects of the role o f viscosity, but not all. Furthermore, I would suspect that the results of the 
calculation are quite sensitive to the value chosen for the parameter /. 

Pringle: I think it is a bit strong to say that what w e are doing is not fluid mechanics. We treat the 
mechanics correctly and I would contend that we are dealing with a fluid. The real question is whether 
or not the equation of state and properties we have bestowed upon our fluid are sufficiently realistic 
for our present purposes. We feel that in some respects they probably are. Since the size of the para­
meter / is directly related to the effective viscosity in the fluid, I agree that some of the results of 
the calculation must depend upon it. We are at present in the process of examining the dependence in 
more detail. 
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Jones: A comment a propos Dr Shu's remark. While one would entertain serious doubts about the 
validity of such a numerical model in a non-steady situation, it may not be too bad in the steady state. 
The reason is that in a rapidly time-varying situation only a few particles are used to evaluate the 
effects of the pseudo-viscosity on the particle motions, whereas in the steady state viscous effects are 
evaluated in a given cell many times and averaged. The most serious problem concerns the nature of 
the equation of state of this pseudo-fluid. It will be important to check this 'hydrodynamic' model 
against known flows, and in particular to verify whether across a shock the Rankine-Hugoniot relations 
are satisfied. 

Pringle: I agree that it is important to check this model against known flows and we have already 
started to do this with some success. I would have thought that since the Rankine-Hugoniot relations 
are just conservation equations they must be satisfied by our 'pseudo-fluid'. 

Icke: One may try to mimic 'true' hydrodynamics by changing the amount of shear and the 
amount of dilatation which is removed by particle interaction. There is even a hope of thus disting­
uishing the effects of bulk viscosity and kinematic viscosity, without unduly increasing the number 
of particles. 

Flannery: The position of the hot spot seems much too far from the central star. Has the method 
been checked against known flow patterns? 

Pringle: Our calculations merely indicate where the energy is generated in the interaction between 
the disc and the incoming stream. I am afraid that it will take some lengthy calculations before I would 
want to make any comparison with observations of dwarf novae light curves. To be able to predict 
what the resultant hot spot would look like, one must know in addition not only where this energy 
is radiated, and in what form it is radiated (bolometric corrections can be substantial) but also in 
which directions it is radiated. 
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