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ALGEBRAS WITH A DIAGONABLE SUBSPACE
WHOSE CENTRALIZER SATISFIES
A POLYNOMIAL IDENTITY

E. G. GOODAIRE

1. Introduction. The literature concerning rings with polynomial identity
contains several theorems in which the existence of a polynomial identity on
a subring implies the existence of such an identity on the ring itself. Belluce
and Jain showed in 1968 that a prime ring will satisfy a polynomial identity
provided it contains a right ideal with zero left annihilator which satisfies
a polynomial identity [2]. This present paper was inspired by papers of
Montgomery [7] and Smith [10] in which the P.I. subrings of interest were
centralizers of certain elements in the ring. These authors have subsequently
extended their work to the centralizers of separable subalgebras [8]; we extend
to centralizers of certain subspaces.

In a previous work of this author [3], the notion of a diagonable subspace of
an algebra over a field £ was defined. This is a subspace L with the property
that the linear transformations ad x: ¢ — (¢, x) = ax — xa for x € L are
simultaneously diagonalizable. Equivalently, the algebra A4 is the direct sum
of the subspaces

Ag = Ao(L) = {a € 4: (a,x) = a(x)afor all x € L}

the o's called roots of L in A being maps (easily seen to be linear) L — k. The
subspace L is finitely diagonable if the set A of roots is finite. Any idempotent
or more generally any algebraic element whose minimal polynomial splits into
distinct linear factors over k spans a finitely diagonable subspace as does any
Cartan subalgebra of a finite dimensional simple Jordan algebra (with &
algebraically closed and of characteristic 0) when embedded in the universal
enveloping algebra. A Cartan subalgebra of a finite dimensional simple Lie
algebra becomes a diagonable subspace of the universal enveloping algebra
though not finitely diagonable. The centralizer of a diagonable subspace L
plays an important role in the representation theory of the algebra. If one
calls a module N\-weighted, \ a linear functional on L, if it contains a non-zero
element which is annihilated by some power of x — \(x) for every x in L, then
for any A, there is a one-to-one correspondence between the irreducible A-
weighted modules of the algebra and those of the centralizer of L. In the case
where L is spanned by a separable element of the kind described above (and
this includes the aforementioned case of the Cartan subalgebra of a Jordan
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algebra) then any module is M-weighted for some M and this implies that the
centralizer of L is actually ‘‘large’’ enough to distinguish between all irreducible
representations of the algebra.

It is reasonable to expect that the algebraic structure of the centralizer of
a diagonable subspace should be closely tied to that of the algebra itself, and
in [3] we did give several results which substantiate this expectation. To these
we here add another; namely, the existence of a polynomial identity for the
centralizer of a finitely diagonable subspace implies the existence of a poly-
nomial identity for the entire algebra.

THEOREM 1.1. Let A be an algebra over a field k of characteristic O which possesses
a finitely diagonable subspace L with no more than 2n — 1 roots. Then if the
centralizer of L satisfies a polynomial identity of degree m, A satisfies the standard
wdentity S, if A is semi-prime, else some power of S,y.

Any finite set @ of commuting algebraic elements each of whose minimal
polynomials has distinct roots in the base field spans a finitely diagonable
subspace (see 2.1 and 2.2 of [3]). Thus we obtain immediately the following

corollary, which for the case card @ = 1 is a consequence of a theorem of
Smith [10].

COROLLARY 1.2. Let A be an algebra over a field k of characleristic 0 and sup-
pose Q is a finite sei of commuting separable elements of A wilh all minimal
polynomials splitting in k. Then if the centralizer of Q satisfies a polynomial
identity, A satisfies a standard identily if A is semi-prime, else some power of a
standard 1dentity.

2. Central simple algebras. In this section, we characterize diagonable
elements of central simple algebras (finite dimensional over a field) as linear
combinations of orthogonal idempotents and use this fact to establish Theorem
1.1 in this special situation. By a (finitely) diagonable element, we simply mean
an element x which spans a (finitely) diagonable subspace. In this case, we
will always identify a root a with the scalar a(x). The following general result
about algebraic diagonable elements is crucial.

LeMMA 2.1. Let x be a diagonable algebraic element in an algebra A (with 1)
over a field k of characteristic 0. Assume that the minimal polynomial of x s
irreducible. Then x is central.

Proof. Let g be the minimal polynomial of x and let 4,, « € k, be any (non-
zero) root space. Since 4,q(x) = 0, it is readily checked that ¢(x + «)4, = 0.
But ¢(x)4, = 0 and so the polynomials ¢(¢) and ¢(¢ + «) cannot be relatively
prime. Assuming as we may that they are monic, they are equal because they
are irreducible. Now comparing the terms in ¢(¢) and ¢(¢t + «) of degree
(deg ¢) — 1 wefinda = 0;ie., A = 4, and x is central.

PROPOSITION 2.2. Suppose A is a finite dimensional central simple algebra over
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a field k of characteristic 0. Then an element of A is diagonable if and only if it is
a linear combination of orthogonal idempotents.

Proof. If x = X1 a.e; is a linear combination of the orthogonal idempotents
el ..., € (which we assume have sum 1 with no loss of generality), every
a € A can be written a = 2, ; eae; Since ee; € Aqj—qq, * is diagonable.
For the converse, suppose the minimal polynomial for x is IIi ¢, where
qi, - - -, gs are distinct irreducible monic polynomials. Then since A4 is semi-
prime, so is A, [3, Theorem 5.4] and thus each #; = 1; otherwise, 11} ¢;(x)
would be a nilpotent element in the centre of 4,. Using a standard argument,
we can write 1 = >.1 ey ey, ..., e, being orthogonal idempotents which com-
mute with x and are such that g,;(x)e; = 0 for all <. It follows that g; is the
minimal polynomial of x; = xe;. Denote by 4,(e;) the algebra e;Ae;. This is
central simple over k& because it is isomorphic to End, Ve;, where A4 is iso-
morphic to Endy, V, the ring of linear transformations of the vector space V'
over division ring D. Since 4;(e;) ad x = A,(e;) ad x; C Ai(e;), we see as in
[3, 2.2] that x; is a diagonable element of 4;(e;) and hence x; = a.e;, a; € k by
Lemma 2.1. Thus x = x(D>_;€)) = X iae,.

One feature of the root structure of semi-prime algebras that we will find
very useful in what follows is this:

(1) If A4 is semi-prime with 1 and «, is a non-zero element of a root space A,,
a # 0, then a,4_, # 0 and 4A_.a, # 0.

To see this, simply notice that if ¢.4_, = 0, then a4 is a right ideal of 4 not
meeting Ay. Hence it is nilpotent by [3, Lemma 5.3], an impossibility. In
particular, the remark (1) implies that in a semi-prime ring with 1, the number
of roots, including 0, is always odd. We are now in a position to prove Theorem
1.1 for finite dimensional central simple algebras.

THEOREM 2.3. Let A be a central simple algebra of finite dimension over a
field k of characteristic 0. Suppose L is a finitely diagonable subspace of A with
no more than 2n — 1 roots whose centralizer satisfies a polynomial identity of
degree m. Then A satisfies S, and [A : k] = % (nm)>2.

Proof. We have 4 ~ D, for some division algebra D, central over k. Letting
K be any maximal subfield of D containing k, D @ K ~ K, s = [D: k], using
a result in Herstein (4, p. 96]. Thus 4 ®, K ~ D, @, K ~ K;,. Since K,
satisfies Sy, s0 does A. Also [4: k] = (st)? so we may complete the proof by
establishing st < % nm. For this, we first note that the finite dimensionality of
A implies that any collection of centralizers of diagonable elements in A has
minimal elements (with respect to inclusion), and thus there is some x € L
for which the centralizer of L is just the centralizer of x [3; Theorem 6.2]. In
our notation, A¢(L) = A¢(x). By Proposition 2.2,

2 x= Zt:aiet
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is a linear combination of orthogonal idempotents which we may assume are
primitive with sum 1. Suppose that the number of distinct a; appearing in (2)
is . Then some «; occurs as a coefficient 7 times, » = ¢/I. Thus D, is a subring
of A¢(x) and consequently satisfies a polynomial identity of degree m. By
Kaplansky’s famous theorem (see for instance [4; p. 157]), [D, : k] = [m/2]?%;
ie. rs < [m/2] and so st £ (¢/7)[m/2]. Since r = t/I, st £ 5 ml. Now write
x = 31 B.f where B4, . .., B8; are the distinct a; and each f; is the sum of all
the e;'s which had the same coefficient in (2). Then the f;'s have sum 1 and so
A =3, [Af; Since A is prime, 0 # f;Af; C Ag;—s,(x) and so the non-zero
roots of x are precisely the set of 8; — 8, 7 and j running from 1 to /. We con-
clude the proof by establishing that this set is of cardinality at least 2/ — 1,
and hence ! < n and st £ % nm as required.

Because its characteristic is 0, we can consider k to be a vector space over
the rationals. Let vy, . . ., v, be a basis for the subspace U spanned by 84, ..., 8;
and order U be declaring 31 7y, > 0if the first non-zero 7 is positive. Assume
that B8; is the largest 3; with respect to this ordering. Then 8; — Bs, 81 — B3,

., B1 — B,are l — 1 different positive elements of U yielding together with
their negatives and 0, a total of 2(l — 1) 4+ 1 = 2] — 1 different elements
B; — B

3. Prime algebras. We prove in this section two theorems on which our
main Theorem 1.1 heavily depends.

THEOREM 3.1. Let A be a prime algebra over a field k of characteristic 0 and L
a finitely diagonable subspace. Then if the centralizer of L satisfies a polynomial
identity, A satisfies a generalized polynomial identity.

Proof. Denote by A the vector space over the rationals (the prime field of k)
spanned by the set A of roots of L. Since A is finite, A has a finite basis ay, . . . ,
a, relative to which A may be ordered just as in the previous section. Let
a € A be a maximal root in this ordering. Then for any positive root 8, a + 8
cannot be a root and so 4,45 = 0 (because A,As C Aasp). Also —a will be
a minimal root and so AgA_, = 0 for any negative root 8. We recall here the
earlier remark (1) and its implication that v is a root if and only if —+ is also
a root. Let a, and a_, be arbitrary (non-zero) elements of A, and 4_, respec-
tively such that a_,a, # 0. Then f(#) = a.ua_o, € Agforanyu € A. Now asin
Herstein [4, p. 156-7], we may assume A, satisfies a multilinear homogeneous
identity of the form

g, X)) =X X D Ay - - Xe(y
1€ 8
Then A certainly satisfies the generalized polynomial identity g(f(yvi), . . .,
f(.)). This is a non-trivial identity because the term involving y;, ..., ¥, in
this order is @,¥10—alay20—s . . . Ay @—_o Which is non-zero because of the prime-
ness of A and the fact that a_sa, # 0.
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THEOREM 3.2. Let A be a primitive algebra over a field k of characteristic 0
with non-zero socle. Suppose L is a finitely diagonable subspace whose centralizer
satisfies a polynomial identity. Then A is the complete ring of linear transforma-
tions of a vector space finite dimensional over a division ring D.

Proof. Let S denote the socle of A. Then as a two-sided ideal of 4, S is
homogeneous, S = S¢ + D oxaca S« relative to the collection A of roots of L in
A. For if s € .S, we can write s = D ,ca %o With u, € A,. Because S is two-
sided, the commutator (s, x) = D amo a(x)u, isin.Sand hence sois ((s,x), x) =
> a0 a(x)%u,. Generally

3) Z a(x)ju,, =3;

a0
is in S for any positive integer j. Now u, = 0 except for @ in some finite set
{ar, g, ..., &} C A and since the a; are linear functionals on L and k is
infinite, there is some x € L for which the scalars a;(x), as(x), . .., a,(x) are
distinct (the union of the finitely many subspaces which are the kernels of
a; — a; cannot be all of L). Then letting j run from 1 to #, the matrix of
coefficients of the system of linear equations given by (3) is an invertible
Vandermonde matrix. Consequently each #, with o # 0 is in .S, but then so
1S %o = S — Y amo Ua. We next recall that S is a von Neumann regular ring:
for every u € S, there is a v € S such that ¥ = uwu, and the homogeneity of .S
implies that if # € S,, we may assume v € S_,. In particular, S,S_.S, = S, for
for all @ € A and also S, is a von Neumann regular ring satisfying the same
polynomial identity as 4,. A key point in proving this theorem is the observa-
tion that

(4) Any non-zero (two-sided) ideal of Sy contains a central idempotent.

Firstly, as a von Neumann regular ring .Sq is semi-prime and so any non-zero
ideal I at least contains some central element # by Rowen’s result [9]. Then
choosing v € Sy such that wvu = u, e = uv is an idempotent in I which is
central because esy = uvsy = VSoU = USLU = UVSE = €S¢€ = €SoUY = eUSel =
usgw = souv = s¢e for any sy € Sy.

Now define for each non-zero « € A, I, = S,S_,. Amongst the minimal ele-
ments in the set U of non-zero intersections of these ideals, choose I = Mgea,
I, with A; of maximal cardinality. Since S is simple, S = SIS, and so Sy =
ZﬁGA SgIS_ﬂ. Now for any B € A, S,QIS.,Q C maEAx SﬁIaS_g, and SgIaS_B C Ia+ﬂ
if « + ﬁ #0 (because S,,S,s C Sa+g) and SﬁIaS—ﬂ = S,gS_,aSaS_B = SgS_g = I,s
if @ + B = 0. As a consequence, Sgl.S_4 is contained in MNaear I, for some set
A" C A of the same cardinality as A;. Thus if SgIS_4 is not zero, neither is
Naear I which must then be a minimal ideal of U by the definition of I. We
thus see that Sy is a sum of ideals 4, ..., 4,, minimal elements of U, each
A = Naea; Ia, all the A}'s of the same maximal cardinality. Assuming the 4's
are distinct, their intersections and hence products in pairs is 0, by minimality.
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Moreover,
(b) A:Sgd; =0 for any B # 0.

If this were not so for some particular 8, we would have 0 # 4,535, C 4S5«
foranya € Ayand so 0 # A lge C AN Igya by (1). This forces B 4+ a € A,
because of the maximality of A;. Repeating this argument with « replaced by
B8 + a, we see that 28 + o € A,. It follows that #8 + o € A, for any a € A;
and integer 7, a contradiction to the finiteness of A;.

Now using (4), choose idempotents ey, . .., e,, central in .Sy, each e; € 4,
(implying orthogonality). Since S is simple, S = Se;S for any ¢ from which
we see that

6) So=eSo+ 2, SesS_a

Oxa€ A

Certainly e;Sy C 4, and for a # 0, S,e;S_, is either zero or contained in a
minimal element B of U, repeating a previous argument. This B must be one
of the 4,, for B ## A4, implies BA,; = 0 and if this occurs for all j, B = BS, =
B(), A;) = 0. Also B # A, for otherwise (S,e:5_4)2 C (S.e:5_2)4; = 0 by
(5). This cannot occur because Sy contains no non-zero nilpotent ideals. Using
the directness of the sum Sy = >~ 4;and (6) it follows readily that e,Sy = 4.
Thus D1 e; is an identity element for Sqand hence for all of S because S, =
SeS—aSa T S0Sa M S.Sp. Now both the primitive algebra 4 and its socle .S are
dense rings of linear transformations of a vector space V over a division
algebra D. To say that S has an identity element is to say that [V : D] < oo,
because every element of S has finite rank. Thus 4 is the complete ring of
linear transformations of V.

4, Semi-prime algebras. We now prove Theorem 1.1. Suppose that L is
a diagonable subspace of an algebra A over a field k of characteristic 0, that L
possesses at most 2# — 1 roots, and that the centralizer of L satisfies a poly-
nomial identity of degree m. If A is any homomorphic image of 4, then L is
a diagonable subspace of 4, in fact with no more roots than L because A, (L) =
AL (L). In particular, the centralizer of L in 4 is a homomorphic image of the
centralizer of L in 4 and hence satisfies the same polynomial identity as
A¢(L). For the sake of completeness, we include here an argument due to
Amitsur [1] which allows us to assume that A4 is semi-prime. Assuming the
truth of 1.1 for semi-prime algebras and supposing 4 to be an arbitrary algebra
satisfying the hypotheses of this theorem, we let NV be the lower nil radical of
A and deduce that Si(ai, ..., as) € N for any choice of ay, ..., as € 4,
d=mnm. Let A" = Il en Ay, A = {(ay, ..., aa): a; € A}, Ay = A for all X
and L' = {f,: x € L}, where for each x € L, f, is defined by f,(\) = x, for
every N\. Then L’ is diagonable in 4’ with the same roots as L in 4 because
every f € A’ can be written f = ) f, where f, € A4, (L) is defined by f,(\) =
a-component in 4 of f(\). We see here that 4,/ (L') = {f: f(\) € A, for all A}
= Ilxea Ao (L)s. Thus the centralizer of L’ in A’ satisfies the same polynomial
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identity as 44(L). As above, this means that S;(f1, . . ., fq) is in the lower nil
radical of 4’ and hence is nilpotent for every fi, ..., fa € A’. Choosing f; as
that element of A’ such that f;(\) = a; for N = (a1, ..., ag) we obtain
Salay, ..., ag)t = 0 for some integer [ and for all A = (ay, ..., a;). In other

words, S,..! is an identity for 4.

So we now assume that 4 is semi-prime. In this case, 4 is the subdirect
sum of the prime algebras 4/P, P ranging over the prime ideals of 4. As
homomorphic images of A4, each of the algebras A/P has finitely diagonable
subspaces whose centralizers satisfy the same identity as 4(L). If each prime
algebra A /P satisfies S,,, certainly 4 does too. Thus we may assume that 4
is prime.

In this case, following Martindale [6], we let C(C k) be the extended
centroid and S = AC the central closure of A. As a subspace of S, L is diagon-
able and S,(L) = A.(L)C because C centralizes A; A,(L)C C S,(L) is easily
seen, and for the converse, if s = > ;a,; € Sand a; = Y qca Giq relative to L,
then s = Yo (O_; @iac;) showing that S = >, 4o (L)C and S, (L) = 4.(L)C.
Also the centralizer of L in S, So(L) = A¢(L)C satisfies the same polynomial
identity as does Ao(L) (see the proof of Theorem 1, p. 225 of [5]). Since S is
a prime algebra over C, our Theorem 3.1 shows that S satisfies a generalized
polynomial identity and hence is primitive with non-zero socle by Theorem 3
of [6]. Our Theorem 3.2 indicates that S is the complete ring of linear trans-
formations of a vector space which is finite dimensional over a division ring D,
and a theorem of Amitsur [6, Theorem 5] reveals that D is finite dimensional
over its centre. Thus S is finite dimensional central simple and satisfies .S,
by Theorem 2.3. Since 4 is a subalgebra of S, 4 too satisfies .S,,.
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