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ALGEBRAS WITH A DIAGONABLE SUBSPACE 
WHOSE CENTRALIZER SATISFIES 

A POLYNOMIAL IDENTITY 

E. G. GOODAIRE 

1. I n t r o d u c t i o n . The l i terature concerning rings with polynomial ident i ty 
contains several theorems in which the existence of a polynomial identi ty on 
a subring implies the existence of such an identi ty on the ring itself. Belluce 
and Jain showed in 1968 tha t a prime ring will satisfy a polynomial identi ty 
provided it contains a right ideal with zero left annihilator which satisfies 
a polynomial identi ty [2]. This present paper was inspired by papers of 
Montgomery [7] and Smith [10] in which the P.I . subrings of interest were 
centralizers of certain elements in the ring. These authors have subsequently 
extended their work to the centralizers of separable subalgebras [8] ; we extend 
to centralizers of certain subspaces. 

In a previous work of this author [3], the notion of a diagonable subspace of 
an algebra over a field k was defined. This is a subspace L with the property 
t ha t the linear transformations ad x: a i—» (a, x) = ax — xa for x G L are 
simultaneously diagonalizable. Equivalently, the algebra A is the direct sum 
of the subspaces 

Aa = Aa(L) = {a £ A: (a, x) = a(x)a for all x ^ L j 

the «'s called roots of L in A being maps (easily seen to be linear) L —» k. The 
subspace L is finitely diagonable if the set A of roots is finite. Any idempotent 
or more generally any algebraic element whose minimal polynomial splits into 
distinct linear factors over k spans a finitely diagonable subspace as does any 
Car tan subalgebra of a finite dimensional simple Jordan algebra (with k 
algebraically closed and of characteristic 0) when embedded in the universal 
enveloping algebra. A Car tan subalgebra of a finite dimensional simple Lie 
algebra becomes a diagonable subspace of the universal enveloping algebra 
though not finitely diagonable. The centralizer of a diagonable subspace L 
plays an impor tant role in the representation theory of the algebra. If one 
calls a module \-weighted, X a linear functional on L, if it contains a non-zero 
element which is annihilated by some power of x — X(x) for every x in L, then 
for any X, there is a one-to-one correspondence between the irreducible X-
weighted modules of the algebra and those of the centralizer of L. In the case 
where L is spanned by a separable element of the kind described above (and 
this includes the aforementioned case of the Cartan subalgebra of a Jordan 
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algebra) then any module is X-weighted for some X and this implies t ha t the 
centralizer of L is actually " la rge" enough to distinguish between all irreducible 
representat ions of the algebra. 

I t is reasonable to expect t ha t the algebraic s t ructure of the centralizer of 
a diagonable subspace should be closely tied to t h a t of the algebra itself, and 
in [3] we did give several results which subs tant ia te this expectation. T o these 
we here add another ; namely, the existence of a polynomial ident i ty for the 
centralizer of a finitely diagonable subspace implies the existence of a poly­
nomial ident i ty for the entire algebra. 

T H E O R E M 1.1. Let A be an algebra over afield k of characteristic 0 which possesses 
a finitely diagonable subspace L with no more than 2n — 1 roots. Then if the 
centralizer of L satisfies a polynomial identity of degree m, A satisfies the standard 
identity Snm if A is semi-prime, else some power of Snm. 

Any finite set 12 of commuting algebraic elements each of whose minimal 
polynomials has dist inct roots in the base field spans a finitely diagonable 
subspace (see 2.1 and 2.2 of [3]). T h u s we obtain immediately the following 
corollary, which for the case card 12 = 1 is a consequence of a theorem of 
Smith [10]. 

COROLLARY 1.2. Let A be an algebra over a field k of characteristic 0 and sup­
pose 12 is a finite set of commuting separable elements of A with all minimal 
polynomials splitting in k. Then if the centralizer of 12 satisfies a polynomial 
identity, A satisfies a standard identity if A is semi-prime, else some power of a 
standard identity. 

2. Centra l s i m p l e a lgebras . In this section, we characterize diagonable 
elements of central simple algebras (finite dimensional over a field) as linear 
combinations of orthogonal idempotents and use this fact to establish Theorem 
1.1 in this special si tuation. By a {finitely) diagonable element, we simply mean 
an element x which spans a (finitely) diagonable subspace. In this case, we 
will always identify a root a with the scalar a(x). T h e following general result 
about algebraic diagonable elements is crucial. 

L E M M A 2.1. Let x be a diagonable algebraic element in an algebra A (with 1) 
over a field k of characteristic 0. Assume that the minimal polynomial of x is 
irreducible. Then x is central. 

Proof. Let q be the minimal polynomial of x and let Aa, a £ k, be any (non­
zero) root space. Since Aaq(x) = 0, it is readily checked t ha t q(x + a)Aa = 0. 
But q(x)Aa = 0 and so the polynomials q(t) and q{t + a) cannot be relatively 
prime. Assuming as we may tha t they are monic, they are equal because they 
are irreducible. Now comparing the terms in q(t) and q(t + a) of degree 
(deg q) — 1 we find a = 0; i.e., A = A0 and x is central . 

PROPOSITION 2.2. Suppose A is a finite dimensional central simple algebra over 

https://doi.org/10.4153/CJM-1977-029-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-029-6


ALGEBRAS 279 

a field k of characteristic 0. Then an element of A is diagonable if and only if it is 
a linear combination of orthogonal idempotents. 

Proof. If x = 2 ï aieî i s a linear combination of the orthogonal idempotents 
ei, . . . , en (which we assume have sum 1 with no loss of generali ty) , every 
a 6 A can be Avritten a = Y^tj eiae^ Since e iae j (̂  -f*-aj—ai j X IS diagonable. 
For the converse, suppose the minimal polynomial for x is Til q^\ where 
gi, . . . , qs are distinct irreducible monic polynomials. Then since A is semi-
prime, so is AQ [3, Theorem 5.4] and thus each n{ = 1; otherwise, I I I qt(x) 
would be a nilpotent element in the centre of A0. Using a s tandard argument , 
we can write 1 = ^[ eu ei, . . . , es being orthogonal idempotents which com­
mute with x and are such tha t qi{x)ei = 0 for all i. I t follows tha t qt is the 
minimal polynomial of xt = xet. Denote by Ai(et) the algebra etAei. This is 
central simple over k because it is isomorphic to E n d ^ Veu where A is iso­
morphic to E n d ^ V, the ring of linear transformations of the vector space V 
over division ring D. Since Ai{ei) ad x = Ai{et) ad %i C ^4i(e*)> w e s e e a s i n 

[3, 2.2] t ha t xf is a diagonable element of Ai(ei) and hence xt = a^e^ a{ 6 k by 
Lemma 2.1. Thus x = x(J2t ei) = ILI aiei-

One feature of the root s t ructure of semi-prime algebras tha t we will find 
very useful in what follows is th i s : 

(1) If A is semi-prime with 1 and aa is a non-zero element of a root space Aa, 
a ^ 0, then aaA_a ^ 0 and A-aaa ^ 0. 

T o see this, simply notice t ha t if aaA-a = 0, then aaA is a right ideal of A not 
meeting A0. Hence it is nilpotent by [3, Lemma 5.3], an impossibility. In 
particular, the remark (1) implies t ha t in a semi-prime ring with 1, the number 
of roots, including 0, is always odd. We are now in a position to prove Theorem 
1.1 for finite dimensional central simple algebras. 

T H E O R E M 2.3. Let A be a central simple algebra of finite dimension over a 
field k of characteristic 0. Suppose L is a finitely diagonable subspace of A with 
no more than 2n — 1 roots whose centralizer satisfies a polynomial identity of 
degree m. Then A satisfies Snm and [A : k] S \{nm)2. 

Proof. We have A o^ D t for some division algebra D, central over k. Let t ing 
K be any maximal subfield of D containing k, D 0 f c K ^ Ks, s = [D : k], using 
a result in Herstein [4, p. 96]. Thus A <g>kKc^Dt®kKc^Ksi. Since Kst 

satisfies S2st, so does A. Also [A : k] = (st)2 so we may complete the proof by 
establishing st S I nm. For this, we first note tha t the finite dimensionality of 
A implies t ha t any collection of centralizers of diagonable elements in A has 
minimal elements (with respect to inclusion), and thus there is some x £ L 
for which the centralizer of L is just the centralizer of x [3; Theorem 6.2]. In 
our notat ion, AQ(L) = A0(x). By Proposition 2.2, 

t 

(2) x = J^aiei 
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is a linear combination of orthogonal idempotents which we may assume are 
primitive with sum 1. Suppose t ha t the number of dis t inct at appearing in (2) 
is I. Then some oij occurs as a coefficient r t imes, r ^ / / / . T h u s Dr is a subring 
of A0(x) and consequently satisfies a polynomial ident i ty of degree m. By 
Kaplansky 's famous theorem (see for instance [4; p. 157]), [Dr : k] ^ [ra/2] 2 ; 
i.e. rs S [m/2] and so st ^ (t/r)[m/2]. Since r ^ / / / , st ^ \ ml. Now write 
x = ]£i Ptfi where Pi, . . . , pi are the distinct at and each fj is the sum of all 
the e / s which had the same coefficient in (2). Then the J / s have sum 1 and so 
A = J^ijfiAfj. Since A is prime, 0 ^ f%Afj C A^-^(x) and so the non-zero 
roots of x are precisely the set of Pj — pu i and j running from 1 to I. We con­
clude the proof by establishing t h a t this set is of cardinali ty a t least 2/ — 1, 
and hence I ^ n and st ^ J nm as required. 

Because its characteristic is 0, we can consider k to be a vector space over 
the rationals. Let 7 1 , . . . , yp be a basis for the subspace [ /spanned by Pi, . . . , Pi 
and order U be declaring XI1 r Ci % > 0 if the first non-zero r* is positive. Assume 
tha t (3i is the largest fit with respect to this ordering. Then Pi — p2, Pi — Pz, 
. . . , Pi — Pi are / — 1 different positive elements of U yielding together with 
their negatives and 0, a total of 2(7 — 1) + 1 = 2/ — 1 different elements 
Pj ~ Pi-

3. P r i m e a lgebras . We prove in this section two theorems on which our 
main Theorem 1.1 heavily depends. 

T H E O R E M 3.1. Let A be a prime algebra over a field k of characteristic 0 and L 
a finitely diagonable subspace. Then if the centralizer of L satisfies a polynomial 
identity, A satisfies a generalized polynomial identity. 

Proof. Denote by Â the vector space over the rat ionals (the prime field of k) 
spanned by the set A of roots of L. Since A is finite, Â has a finite basis «i, . . . , 
an relative to which Â may be ordered jus t as in the previous section. Let 
a G A be a maximal root in this ordering. Then for any positive root P, a + p 
cannot be a root and so AaAp = 0 (because AaA$ C Aa+(3). Also —a will be 
a minimal root and so A$A-a = 0 for any negative root p. We recall here the 
earlier remark (1) and its implication t ha t 7 is a root if and only if —7 is also 
a root. Let aa and a_a be arb i t rary (non-zero) elements of Aa and A-a respec­
tively such t h a t ct-aQa 7^ 0. Then f(u) = aaua-a Ç AQ for any u G A. Now as in 
Herstein [4, p. 156-7], we may assume A0 satisfies a multil inear homogeneous 
ident i ty of the form 

g(xi, . . . , xt) = xi . . . xt + X a^Xad) . . . xaU). 
invest 

Then A certainly satisfies the generalized polynomial ident i ty g(f(yi), . . . , 
f(yt))- This is a non-trivial ident i ty because the term involving yu . . . , yt in 
this order is aayia-aaayia-a . . . aayta^a which is non-zero because of the prime-
ness of A and the fact t h a t a^aaa 9^ 0. 
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T H E O R E M 3.2. Let A be a primitive algebra over a field k of characteristic 0 
with non-zero socle. Suppose L is a finitely diagonable subspace whose centralizer 
satisfies a polynomial identity. Then A is the complete ring of linear transforma­
tions of a vector space finite dimensional over a division ring D. 

Proof. Let S denote the socle of A. Then as a two-sided ideal of A, S is 
homogeneous, 5 = S0 + X)ô a<EA Sa relative to the collection A of roots of L in 
A. For if s G S, we can write 5 = ^«eA ua with ua G Aa. Because S is two-
sided, the commutator (s, x) = J^a^o a(x)ua is i n l a n d hence so is ( ( s , x ) , x ) = 
E ^ o a ( x ) 2 « a . Generally 

(3) XI oi(x)3ua = Sj 

is in S for any positive integer j . Now ua = 0 except for a in some finite set 
{«i, a2, . . . , a.n) C A and since the at are linear functionals on L and k is 
infinite, there is some x £ L for which the scalars a i (x ) , a 2 ( # ) , . . . , «w(^) a r e 

distinct (the union of the finitely many subspaces which are the kernels of 
a i — OLJ cannot be all of L). Then letting j run from 1 to n, the matr ix of 
coefficients of the system of linear equations given by (3) is an invertible 
Vandermonde matrix. Consequently each ua with a ^ 0 is in S, bu t then so 
is Uo = s — X ^ o ua. We next recall t ha t 5 is a von Neumann regular ring: 
for every u G S, there is a A G 5 such t ha t u = uvu, and the homogeneity of 5 
implies t ha t if u G Sa , we may assume z; G S_a. In particular, SaS-aSa = Sa for 
for all a G A and also S0 is a von Neumann regular ring satisfying the same 
polynomial identi ty as Ao. A key point in proving this theorem is the observa­
tion t h a t 

(4) Any non-zero (two-sided) ideal of S0 contains a central idempotent . 

Firstly, as a von Neumann regular ring S0 is semi-prime and so any non-zero 
ideal I a t least contains some central element u by Rowen's result [9]. Then 
choosing v G S0 such t ha t uvu = u, e = uv is an idempotent in I which is 
central because eso = uvsG = vsQu = vs^eu = uvsQe = esQe = es0uv = eusov = 
USQV — Souv = sGe for any SQ G SO. 

Now define for each non-zero a G A, 7a = SaS_a . Amongst the minimal ele­
ments in the set U of non-zero intersections of these ideals, choose I = PUçAi 
Ia with Ai of maximal cardinality. Since S is simple, S = SIS, and so S0 = 
2Z/36A SpIS-p. Now for any & G A, SpIS-p C Pl^Ai S^IaS-0, and S0IaS-0 C £*+/? 
if a + ]8 ^ 0 (because SaS^ C Sa+^) and SpIaS-p = SpS-pSpS-p = S^S_^ = 7^ 
if a + /3 = 0. As a consequence, SpIS-p is contained in HOÇA' /« for some set 
A' C A of the same cardinality as Ai. Thus if SpIS-p is not zero, neither is 
PlaçA' la which must then be a minimal ideal of U by the definition of I. We 
thus see t h a t S0 is a sum of ideals Ai, . . . , ^4W, minimal elements of U, each 
4̂ i = HaçA; /a, all the Ai s of the same maximal cardinality. Assuming the A / s 
are distinct, their intersections and hence products in pairs is 0, by minimality. 
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Moreover, 

(5) AtSfiAt = 0 for any p ^ 0. 

If this were not so for some part icular /3, we would have 0 9^ A iS$Sa C A iSp+a 

for any a £ A* and so 0 ^ A Jp+a C AtC\ Ip+a by (1). This forces fi + a G A* 
because of the maximali ty of A*. Repeat ing this a rgument with a replaced by 
f3 + a, we see t ha t 2(3 + OL £ A*. I t follows tha t w/3 + a £ A, for any a G A* 
and integer w, a contradict ion to the finiteness of At. 

Now using (4), choose idempotents eu . . . , en, central in S0, each ef £ /I * 
(implying or thogonal i ty) . Since S is simple, S = SetS for any i from which 
we see t h a t 

(6) So = efSo + 22 SaeiS-a. 

Certainly etSo C Au and for a ^ 0, SaeiS-a is either zero or contained in a 
minimal element B of £/, repeating a previous argument . This i3 must be one 
of the Aj, for B ^ Aj implies BA j = 0 and if this occurs for all j , B = BS0 — 
B(EAj) = 0. Also B 7* Au for otherwise (Sae,S_a)2 C {S^.S-^A, = 0 by 
(5). This cannot occur because S0 contains no non-zero nilpotent ideals. Using 
the directness of the sum S0 = 2] Aj and (6) it follows readily t ha t etSo = A t. 
T h u s 5Zï et is a n ident i ty element for S0 and hence for all of S because Sa = 
SaS-aSa C SoSa P\ SaSo. Now both the primitive algebra A and its socle S are 
dense rings of linear transformations of a vector space V over a division 
algebra D. T o say tha t S has an identi ty element is to say tha t [V : D] < oo, 
because every element of S has finite rank. T h u s A is the complete ring of 
linear t ransformations of V. 

4. S e m i - p r i m e a lgebras . We now prove Theorem 1.1. Suppose t h a t L is 
a diagonable subspace of an algebra A over a field k of characterist ic 0, t h a t L 
possesses a t most 2n — 1 roots, and t ha t the centralizer of L satisfies a poly­
nomial identi ty of degree m. If Â is any homomorphic image of A, then L is 
a diagonable subspace of Â, in fact with no more roots t h a n L because Âa(L) = 
Aa(L). In particular, the centralizer of L in Â is a homomorphic image of the 
centralizer of L in A and hence satisfies the same polynomial ident i ty as 
Ao(L). For the sake of completeness, we include here an a rgument due to 
Amitsur [1] which allows us to assume tha t A is semi-prime. Assuming the 
t r u th of 1.1 for semi-prime algebras and supposing A to be an arb i t ra ry algebra 
satisfying the hypotheses of this theorem, we let N be the lower nil radical of 
A and deduce tha t Sd(ai, . . . , ad) £ N for any choice of aiy . . . , ad Ç A, 
d = nm. Let A' = ITX^A A\, A = {(ai, . . . , ad): at G A], A\ = A for all X 

and Id = {fx: x £ L], where for each x (z L, fx is defined by fx(\) — x, for 
every X. Then U is diagonable in A' with the same roots as L in 4̂ because 
e v e r y / £ yl' can be w r i t t e n / = YJ fa where fa £ Aa'(L') is defined by / a (X) = 
«-component in 4 of / (X) . We see here t ha t Ad (U) = {/ : /(X) G X for all X} 
= IIxçA ^4«(£)x- T h u s the centralizer of L' in A' satisfies the same polynomial 
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identi ty as AQ(L). A S above, this means tha t 5 d ( / i , . . . , fd) is in the lower nil 
radical of A' and hence is nilpotent for e v e r y / i , . . . , fd £ A'. Choosing ft as 
t ha t element of Af such tha t /*(A) = a* for X = (ai, . . . , ad) we obtain 
5d(ai, . . . , ad)

1 = 0 for some integer / and for all X = (#i, . . . , ad). In other 
words, Snm

l is an identi ty for A. 
So we now assume tha t A is semi-prime. In this case, A is the subdirect 

sum of the prime algebras A/P, P ranging over the prime ideals of A. As 
homomorphic images of A, each of the algebras A/P has finitely diagonable 
subspaces whose centralizers satisfy the same identi ty as AQ(L). If each prime 
algebra A/P satisfies Snm, certainly A does too. Thus we may assume tha t A 
is prime. 

In this case, following Mart indale [6], we let C ( C k) be the extended 
centroid and S — AC the central closure of A. As a subspace of S, L is diagon­
able and Sa{L) = Aa{L)C because C centralizes A ; Aa(L)C C Sa(L) is easily 
seen, and for the converse, if 5 = X^ a fc f £ S and at = J ^ A dia relative to L, 
then 5 = Xl« (Ht ai<*Ci) showing tha t 5 = ]Ta Aa(L)C and Sa(L) = Aa(L)C. 
Also the centralizer of L in S, SQ(L) = A0(L)C satisfies the same polynomial 
identi ty as does A0(L) (see the proof of Theorem 1, p. 225 of [5]). Since 5 is 
a prime algebra over C, our Theorem 3.1 shows tha t 5 satisfies a generalized 
polynomial identi ty and hence is primitive with non-zero socle by Theorem 3 
of [6]. Our Theorem 3.2 indicates t ha t S is the complete ring of linear t rans­
formations of a vector space which is finite dimensional over a division ring D, 
and a theorem of Amitsur [6, Theorem 5] reveals t ha t D is finite dimensional 
over its centre. Thus S is finite dimensional central simple and satisfies Snm 

by Theorem 2.3. Since A is a subalgebra of S, A too satisfies Snm. 
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