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Abstract. We study the effects of small random errors on the asymptotic distribution
of points in the basin of a hyperbolic attractor.

Leaving precise statements and generalities for later, we give an indication of the
type of result in this paper. Let l / c R " b e a neighbourhood of a compact attracting
set, i.e. fU <= u for some map / Suppose that as we apply / to any point xe U,
instead of obtaining the precise value fx, the possible outcomes are given by the
uniform distribution on an e-disk centred at fx. Now we start this process at some
arbitrary point and let fie be the asymptotic distribution. Our result says that if

is a hyperbolic attractor, then fic tends to the so-called Bowen-Ruelle-Sinai measure
on A as e -» 0.

Recall that, according to the theory of Bowen, Ruelle and Sinai ([B], [BR], [Si]),
if A c U is a hyperbolic or Axiom A attractor, then

I n-i
- I 8An ,=o

tends to the B-R-S measure for Lebesgue-a.e. xe U. Our result then can be inter-
preted as a statement of stochastic stability for hyperbolic attractors, in the sense
that the asymptotic distributions of points in these systems are not drastically altered
by the cumulative effects of small random errors.

Results very similar to ours were first obtained by Y. Kifer [Kl], [K2]. His technical
hypotheses do not coincide with ours, but more importantly, our perspectives are
quite different. We view this process as the random composition of maps nearby /
(see [F]), and our goal is to demonstrate that under the constraints of our hypotheses
this type of stochastic stability is a direct consequence of the persistence of hyperbolic
structures and their equilibrium state measures.

1. Preliminaries and statement of result
Let/: M±> be a C2 diffeomorphism of a finite dimensional Riemannian manifold.
Let U <= M be an open subset with compact closure and suppose that fU <= U. All
the processes we consider take place inside U. We assume that the errors that may
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occur as we app ly / to x depend entirely on the point x. This puts us into the context
of a Markov chain with stationary transition probabilities.

For xeU, let p{-\x) be a probability on the Borel subsets of U. We think of
p(A\x) as the probability of sending x into the set A. Thus for instance the probability
of starting at x0 and being in A,, A2,... ,An successively is

J An-X J A ^ 2 JA,
p(An\xn-1)p(dxn-i\xn_2)

Definition (1.1). Given transition probabilities p{ • \x), a Borel probability measure
/A on U is said to be invariant if

/j,(A)= p(A\x) dfji(x)

for every Borel set A.

Let M(U) denote the space of Borel probability measures on U, always endowed
with the weak topology. The dirac measure at x is denoted by Sx.

PROPOSITION (1.2). (1) Ifx>-+p( • \x) is continuous, then an invariant measure exists.
(2) If p(-\x) is absolutely continuous with respect to Lebesgue measure (written

p( • \x)« Leb.) for every x, then so are the invariant measures.
(3) Suppose for e > 0, /j,e is an invariant measure corresponding to transition prob-

abilities pE, and pc( • \x)-> Sfx uniformly in x a s e - > 0 , then all limit points of fie are
f-invariant.

Proof. We prove (1), leaving the rest as a straightforward exercise for the reader.
Define £:M(U)±> by

for every continuous function <f>: L/-»R. Suppose /xn-»ju,. Since xt-»j <j>(y) p(dy\x)
is continuous, it follows that

which verifies the continuity of if. Now pick any ixoeM(U). Limit points of the
sequence (1/n) £ "Jo <2Vo are the fixed points of Z£, which are easily seen to satisfy
definition 1.1. •

We return briefly to the uniform diffusion example mentioned in the introduction.
One way of describing it is as follows: Let Dc={ae U": \\a || < e} and write/„ = / + a.
Then

pc(A\x)=ve{aeDe:faxeA},

where ve is normalized Lebesgue measure on De. Keeping this example in mind we
study the following class of Markov chains:

Let ft be a set of maps from U into itself. We consider transition probabilities
of the form

p(A\x)=v{geil:gxeA},
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where v is a probability on H. It is easy to verify that as long as H c C°( U), the
space of continuous maps from U into itself endowed with the C°-topology, and
i> is a Borel measure with compact support, then x >-»/>( • \x) is continuous and hence
this process has an invariant measure.

Next we turn to the conditions we wish to impose o n / : U±>.

Definition (1.3). A compact/-invariant set Ac M is said to be uniformly hyperbolic
or simply hyperbolic if there is a continuous splitting of the tangent bundle over A
into a direct sum of two invariant subbundles E"@ES and that there are numbers
c > 0 and A > 1 s.t. for all xeA and n > 0,

oe £'(*)

ve Eu(x)

Via a standard change of metric we may - and will - assume that c = 1.

Definition (1.4). An invariant set A<= M is called a hyperbolic attractor with basin
t/ if:

(1) U is an open set s.t. /£/<= U and

(2) A is a uniformly hyperbolic set; and
(3) / | A has a dense orbit.

By the spectral decomposition theorem [B] every hyperbolic attractor A can be
decomposed into finitely many components Ai, . . . ,Afc with /Ai = A2, /A2 =
A3, . . . ,/A)c = Aj. For simplicity we shall consider/*|Ai and call i t /

Definition (1.5). LetA<= [/be a hyperbolic attractor with basin t/. The Bowen-Ruelle-
Sinai measure (written 'B-R-S measure' from here on) is the unique measure fi with
the property that for Lebesgue-a.e. xe U,

I n - l

n j=o

For further information regarding the theory of hyperbolic attractors see [B] or [Sh].
We now state the main result of this paper. Let L( •) denote the Lipschitz constant

of a map. For fe C2( 0) and a, p > 0, let

We put the C1 metric on fta>/3(/) (which makes it compact).

THEOREM (1.6). Let f be a C2 diffeomorphism of M and suppose that A<= M is a
hyperbolic attractor with basin U. Let a > 0 be sufficiently small and let j8 > L(Df).
For each e > 0, let ve be a Borel probability measure on £la_p{f) with ve -» 8f as e -> 0
and let /j.e be an invariant measure for the process defined by

IfpA'\x)« Leb.foreverye>Oandxe U, then fie tends to the B-R-S measure as e-*0.

We thank Y. Kifer for a suggestion in the formulation of this theorem.
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2. Skew product representation
We shall represent the type of Markov chains under consideration as skew products.
Part A of this section concerns the measure-theoretic aspects of this representation
while part B is about the topological-differential structure of the resulting object.

(A) This subsection has nothing to do with hyperbolic attractors. Let X be a compact
metric space and let ft be a compact subset of C°(X). Let ilz denote the bi-infinite
product of il with itself and define F: Az x X ±D by

F(g, x) = (erg, gox)

where g = (- • • g-igogi • • ) and cr:ilz*=> is the shift transformation, i.e. (crg)n =
(g)n+1. If v is a measure on il, let vz denote the product measure of v with itself
on fiz. Finally, let px: il

z x X -* ilz and p2: il
z x X -* X be projections onto the first

and second factors respectively.

PROPOSITION (2.1). Let v be a Borel probability measure on il and suppose that fi
is an invariant measure for the process defined by

p(A\x) = v{g:gxeA}.

Then F"(vz x n) converges weakly to an F-invariant measure fi* on ilz x X. Moreover,

Here F"(vzxfi)(E) is defined to be {vzxn){F~nE).

Proof. First we observe that once weak convergence is extablished, n* is automati-
cally F-invariant. Also, /»i/x* = vz is obvious. To prove weak convergence let S3n be
the o--algebra on f l z xX generated by sets of the form E = A x B where B c X and
^ c r i - n ^ are Borel sets and A = {\['_^+1)H)x A. We write mn = F"(vzXfj,) and
will show that mn+1\$)n = mn\@ln for all n>0 by verifying this for Ee $)„.

Let mn{ • \g) denote the conditional probability of mn on the fibre above g. Then

• • • g l l£) ifgeA,

otherwise,

so that

mn(E) = ^n(g~Jn- • -gZ\E)

Now

mn+1(E)=[ ti(g--\n+l)---gZ\E)d( U v)
JflxA \-(n+l) /

To see that the inner integral equals At(gl), • • • g~\E), observe that for C c X,

I
That p2fJ-* = M follows easily. •
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(B) We now return to the situation where/: Ui=> contains a hyperbolic attractor.
Let P > L(Df) be fixed and for small a write ila = ila,p(f) (see the end of § 1 for
definitions).

Consider the skew product F: illx 0 ±= as in § 2(A). For g e ill, let Ug denote
the U-fibre over g and write the fibre map as Fg: Ug -» Uag. Then F is a homeomorph-
ism of illx U onto a subset of itself. Each fibre map Fg is C1 with L(DFg)<p
and (g, x)i-»DFg(x) is continuous. Let A = f~ln20 F"(ill x {/)• Then A is a compact
F-invariant set, fibre-wise attracting.

By the 'tangent space' at (g, x) we refer always to the tangent space to Ug at x.
Likewise TA = {J{gx)£-A Tlvc)Ut.

PROPOSITION (2.2). For sufficiently small a > 0, there is a continuous splitting of TA
into E"@ES and there exists X > 1 s.t. for all (g, x)eA and n > 0,

veE»(g,x)^\\DFg(x)v\\>X\\v\\,

veEs(g, x)=>||DFg(x)»|| sX-'HI.

To prove this proposition we invoke the 'invariant cones argument', the standard
argument used to prove the persistence of hyperbolic structures. We refer the reader
to [Sh, chapters 7 & 8] for a detailed proof.

From here on we fix a small enough for the conclusion of proposition (2.2) to
hold and write il = ila. For (g, x) e A, we define

Wu(g, x) = {(g, y) e ilz x 0: d{F~"{g, x), F-"(& y)) •* 0 as n •* oo}.

The same proofs that work in the single transformation case show that for every
(g, x) e A, Wu(g, x) is an immersed submanifold of Ug and that Wu(g, x) <= A. We
shall call

WU(A)= U W"(g,x)
(g,x)eA

the 'unstable manifolds of A'. These unstable manifolds form a continuous lamina-
tion of the compact set A.

We remark that the result of § 2(A) is clearly not affected by our using the C1

metric on il.

3. Measure absolutely continuous on unstable manifolds and proof of theorem
Our proof of theorem (1.6) relies heavily on the Radon-Nikodym derivatives of
certain measures along ^"-manifolds. First we give precise definitions.

Consider the hyperbolic attractor/: A ±3. If L c W(x) is open in the leaf topology,
let d" denote the induced Riemannian metric on L and mu the corresponding
Riemannian measure. Let V be a Borel subset of A. Suppose V is the disjoint union
of a continuous family of open W- disks and p. is a Borel probability measure on
A with fiV>0. For xeV, let VX denote the W"-disk in V containing x and let nx

denote the conditional probability measure of fi on V*.

Definition (3.1.) (1) We say that fi has absolutely continuous conditional measures
on W-manifolds if for every V<= A above, /J,X« m" for /i-a.e. x
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(2) Suppose fj. has absolutely continuous conditional measures on W. We say
that the densities of/j, on W" have bounded ratio if there exist B, S > 0 s.t. for every
V above, p = dfix/ dm" satisfies

B p{z2) '

for m"-a.e. zu z2e Vx with d"{zu z2) < 5, fi-a.e. x.

We omit the corresponding definitions for measures on A. The generalization is
quite obvious.

Recall the following characterization of B-R-S measures:

THEOREM ([B], [Si]). The B-R-S measure is the unique f-invariant Borelprobability
measure on A with absolutely continuous conditional measures on W.

Recall also that the B-R-S measure can be realized as the weak limit as n-»oo of
fm, where m = normalized Lebesgue measure on U.

Proof of theorem 1.6. Let {ve, e >0} be Borel probability measures on O, converging
weakly to Sf as e-»0, and let {/j,e} be invariant measures of the corresponding
processes. In § 4 we prove the following lemma.

LEMMA (3.2). Let a > 0 be sufficiently small. Then for each e > 0 , there is a unique
F-invariant Borel probability measure mE on A satisfying:

(1) p,m£ = vz
e; and

(2) me has absolutely continuous conditional measures on Wu-manifolds.
Moreover, the densities of all the me on W" have bounded ratios with a common bound
depending only on F.

Now it follows from the hypothesis on vE and proposition 1.2 (2) that each /j,e« Leb.
on U. Let /x* = limn^ao Fn(v^x/j.e), as guaranteed to exist by proposition 2.1.

LEMMA (3.3). /u.* = mE.

This lemma is also proved in § 4. Let m* be a limit point of mc as e -»0. The bounded
ratio property of the densities of mE on W" is passed on to m*. Since m* is supported
on the single fibre over g with gn =f for all n, p2m* is /-invariant and so it must
be the B-R-S measure on A. Quoting proposition 2.1 again we see that

which is the desired conclusion. •

We remark that for our purposes it is not really necessary to prove lemma 3.2. One
could show directly that /u,* has absolutely continuous conditional measures on
Wu- manifolds. We leave that as an exercise.

4. Proofs of lemmas
Before giving the proofs of lemmas 3.2 and 3.3 we establish the following preliminary
result.
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LEMMA 4.1. Let L be an open disk in W"(g, x) for some (g, x)eA and let mL be the
normalized Riemannian measure on L. Then any limit point JJ. of

1 " - i .
- I F'mL
n ,=o

has absolutely continuous conditional measures on Wu-manifolds. Moreover, the
densities of n on Wu have bounded ratio with B and S depending only on F.

The proof of this is almost identical to the corresponding one for a single hyperbolic
attractor. We include a sketch for completeness.

Proof. For 8>0, let Wu
s(g,x) = {(g,y)e Wu(g,x): du(x,y)<5} where d" and mu

are analogous to d" and m" in ftzx U. First there exist A, 8>0 s.t. for every
(g, x) € A, if z,, z2e W%(g, x) then

\j(DFg\E
u)Zl -J(DFg\E")z2\ < Adu(zu z2).

This follows from the uniform Lipschitzness of the E "-bundle along W^-manifolds.
(See e.g. § 6.1 of [HP]. A uniform bound on L(Dg) for all geft is needed here.)
From this and the fact that d"{F-nzx, F-"z2) < l-"d"(z1, z2), for all zx,z2e W"(g, x)
we obtain the following important estimate: there exists B>0 such that for all
(g, x) e A, and all zx, z2 e Wu

s(g, x) and n > 0,

B | / ( £ ^ | £ " ) | '

Suppose (l/«k) XTio1 F'mL^ fj, for some subsequence {nk}. We construct certain
canonical neighbourhoods of A. Let T be an embedded disk in U having the same
dimension as the bundle dimension of Es and with the property that for all g e ilz,
T is transverse to W"( A)| Ug. Let 1 = (ilz x T) n A. Then assuming S is small enough,
y~ U(gX)e2 Ws(g, x) is the disjoint union of a continuous family of W^-disks. We
may assume that /A V> 0 and /x(d V) = 0 (by shrinking 2 or S if necessary).

For each n, let Ln = {z e L: F"z e Ws(g, x) for some (g, x) e 2 but F"L 7> Wu
s(g, x)}.

Since F expands distances uniformly along W", mL{Ln)^0 as n-»oo, so we can
realize n as Hm^^il/nk)Y, F'(mL\(L-L^).

Suppose F n ( L - L n ) = ^ ( g , x ) , (g ,x)eS and

dFn(mL\(L-Ln))
Pn= d~m~» '

on Wu
s(g, x). Then

for all zlt z2e ^ ( g , x). These inequalities continue to hold for the conditional
measures of the limit /a.. •

Proof of lemma 3.2. Pick a pf-generic point g. Let L c ^"(g, x) for some x, let fi
be a measure constructed as in the last lemma and let me be an ergodic component
of (i. Since ergodic components of a measure contain entire M^"-leaves, me has
absolutely continuous conditional measures on W" as well. Also, vz is ergodic with
respect to the shift transformation, so we may assume pxmt - vz.
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To prove uniqueness first consider/: A ±=. Let x, ye A be nearby points. Define
[x, y] to be the unique point in W$(x)n Ws

s(y). Suppose S is small enough that
Na(x) = {[>,, z2]: z, e Wg(x), z2e Ws

s{x)} is well defined for every x e A. Then there
exist xu...,xk s.t. Uj=i JV«/4(̂ i) ̂  A. By the topological mixing property of /
([B,p.72]), there exists N s.t. for all i, j , 1< i, ;<fc, fNNs/4(x,) 'crosses' JVs(x,-),
meaning that fNNs/A(Xi) contains an entire W-leaf in Ns(xj).

In the skew product F: O* x U±>, [(g, x), (g, y)] and Ns(g, x) have the obvious
meanings. If a is small enough, then the Hausdorff distance between A and Ug n A
is small and / N is near FN\Ug. So for every geilz, there exist x , , . . . , xfc e l/g n A
and yv ,._..,ykz Ua»g n A-such that U L , Ns/2(g, xt) = Ug n A, Uf=, ^V«/2(o-Ng, ^) =>
C4~gnA, and FNNs/2{g, x,) 'crosses' NS/2(<rNg, )>j) for every i , /

Now let me |g be the conditional probability of mc on Ug for some rf-generic g
and suppose (me\g)Ns/2(g, x,)>0 for some i. Because the densities of me on Wu

are strictly positive wherever they are defined, there is a Wu-disk Lo in Ns/2(g, x,)
with the property that mu-a.e. z e Lo is wiE-generic. The absolute continuity property
of the Ws-foliation restricted to Ug ([PS, p. 4]) then tells us that every ^"-disk L
in N8/2(g, x,-) has the property that m"-a.e. ze L is mE-generic. It follows from this
and our choice of the x,'s and y/s that m"-a.e. z in every Vy"-leaf in [ / / g nA is
me-generic, which proves the uniqueness of mr with respect to (1) and (2) in the
statement of lemma 3.1. •

Proof of lemma 3.3. First there is an open set Vc Qz x U containing A s.t. for every
ge£lz, Ugn V is foliated by W*(A). It follows from lemma 3.2 and the absolute
continuity of this Ws-foliation on each Ug that (vzxLeb.)-a.e. (g, x) in V is
me-generic. The same is true for (vz x Leb.)-a.e. (g, x) in O2 x U since F"(Clz x [ / ) c
V for all n greater than some n0. This together with the fact that fic« Leb. implies
that (pzx/j,e)-almost every point is m£-generic.

To complete the proof, let <j>: Az x U -» U be a continuous function. Then

I <f>dms= I l i m - V
J J n-ao n j=o

= lim f j

This research was supported in part by NSF.
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