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Summary

DNA sequencing and restriction mapping provide us with information on DNA sequence
evolution within populations, from which the phylogenetic relationships among the sequences can
be inferred. Mutations such as base substitutions, deletions, insertions and transposable element
insertions can be identified in each sequence. Theoretical study of this type of sequence evolution
has been initiated recently. In this paper, population genetical models for sequence evolution under
multiple types of mutation are developed. Models of infinite population size with neutral mutation,
infinite population size with deleterious mutation and finite population size with neutral mutation
are considered.

1. Introduction

Recent applications of DNA sequencing and re-
striction mapping to determine genetic variation at
the molecular level in natural populations (Kreitman,
1983; Aquadro et al. 1986; Miyashita & Langley,
1988; Stephan & Langley, 1989) also give much
information on sequence evolution within a popu-
lation. Such information is not only quantitatively but
also qualitatively different from allozyme data, be-
cause the phylogenetic relationships between the
sequences can be inferred, and the various types of
mutations such as base substitutions, deletions,
insertions and transposable element insertions, can be
distinguished. These different types of mutations will
evolve with different characteristics; for example, the
mutation rate at which base substitutions are created
may not be similar to that of transposable element
insertions. Theoretical models allowing more than
one type of mutational event must be developed in
order to extract from comparative sequence data
information on relative rates of these distinct substitu-
tional processes. The evolution of transposable ele-
ments presents interesting problems (Langley et al.
1983; Ohta, 1984; Ginzburg et al. 1985; Kaplan et al.
1985). The problem of whether or not transposable
elements are deleterious to the organism carrying
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them could be investigated by using models accounting
for multiple mutational events in sequence evolution.

Golding et al. (1986) proposed a neutral model with
infinite population size to analyse such data at the
molecular level (also see Golding, 1987). The main
assumptions of their model are summarized below. In
a randomly mating, infinite population with discrete
non-overlapping generations, two types of mutational
events, a and /?, can occur in a DNA sequence. Only
one-way mutation is assumed for a-type mutations,
but both forward and backward /?-type mutations are
assumed. An example of an a-mutational event for
which backward mutation can be neglected is base
substitution. The /?-mutational events occur reversibly.
This mutational process could well describe the
insertion of transposable elements when the backward
mutation rate depends on the number of/?-mutations
that this sequence has accumulated. Each sequence
has its unique most recent distinguishable ancestor
that is the most recent ancestor whose sequence is not
the same as the present sequence. Assuming that at
most one mutational event occurs in each generation
for each sequence and there is no recombination, then
the most recent distinguishable ancestor may differ
from the present sequence by one more or one less /?-
mutation, or the same number of /?-mutations. In the
last case, the two sequences must differ by one a-
mutation. Because each sequence can be classified by
its accumulated number of /?-mutations and by the
accumulated number of/^-mutations of its most recent
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distinguishable ancestor, this model uses not only
present genetical states but also phylogenetic relation-
ships.

The fundamental quantity of this model is the
frequency of the sequence that has //?-mutations at the
itth generation, whose most recent distinguishable
ancestor has y/?-mutations. This quantity is gk(J, i),
j=i,i+l. It is assumed that a-mutational events
occur at the rate u1 irreversibly, and a sequence
accumulating //^-mutations mutates to the state
accumulating /+1 /^-mutations with the rate w2, and
to the state accumulating i—1 /3-mutations with the
rate iu3 per generation, where ux, u2 and w3 are positive
constants. The model is described by a system of
difference equations for gk(J, /). Assuming every
mutational event is neutral, Golding et al. (1986)
obtained analytical results at equilibrium. Because
of the discrepancy between the results of this
model and some experimental data (see Section 5),
they questioned whether deleterious selection for
/?-mutational events could account for the observed
discrepancy. Only numerical analysis of the infinite
population, deleterious mutation model was done.
There is an alternative model, however, that may also
remove this discrepancy, and that is a finite population
model with neutral mutation.

In this paper, mathematical analyses of sequence
evolution with multiple mutational events are de-
veloped for three cases: infinite population size,
neutral mutations; infinite population size, deleterious
mutations; and finite population size, neutral mu-
tations. The generating function method is used
systematically, because the model is described by
linear difference equations. In Section 2, equilibrium
solutions and transient solutions are obtained for the
infinite population model with neutral mutation. The
infinite population model with deleterious mutation is
considered analytically in Section 3 and the finite
population model with neutral mutation in Section 4.
Finally, some of the implications of these results are
discussed in Section 5. In particular, whether the effect
of finite population size (random sampling drift) can
remove the discrepancy between the results of the
infinite population model with neutral mutation and
some experimental data is discussed.

2. Infinite population model with neutral mutation

Consider the model with neutral mutation described
in the previous section. For mathematical simplicity,
it is assumed that any number of /^-mutations can be
accumulated in a sequence. The frequency of the
sequence that has j/3-mutations at the kth generation
is fk(i). By definition,

A(0 = **('-1,0+**(',

where gk( - 1,0) = 0.

,0,

The difference equations for gk(J, i) and fk{i) are

8t+iU, 0 = (1 - Uf)gtU, i) + vltfk(j), (2.1)

/ t+1(0 = (1 - ii, - iu3)fk(i) + ujk(i-1)

+ ('+1) «•/.('+1) (2-2)

where
Ui = u1 + u2 + iu3, vj( = u2{j = i- 1), = ujj = i), =

Equations (2.1) and (2.2) are linear difference
equations which are solved by the generating function
method. Let the generating function for/j.(j) be

(-0

Multiplying £' and (2.2) and summing from / = 0 to
oo,

• (2-3)

(i) The equilibrium solution

Let the equilibrium values of gk(j, i),fk(f) and Fk(g) be
gU,i),A0 and F(£), respectively. From (2.3),

(2.4)

By (2.1) and (2.5),

'(iu3/Ut)M (7 = ' - ! )

(uJUt)M (7 = 0

(7 = '+ !)•

= 0,1,2,.

where r = u2/u3. The solution for (2.4) that satisfies
the condition for the generating function that
F(l) = 1, is F(£) = exp{r(£- 1)}. Since J[i) is the co-
efficient of % in F(£),

rte-/n. (2.5)

(2.6)

(ii) The transient solution

Since (2.3) is a linear differential-difference equation,
it can be solved explicitly. The expression of the
solution is, however, very complicated. For this reason
a continuous time approximation for the discrete time
model defined by (2.1) and (2.2) is used. Let F(£,/),
g(j, i, t) and J{i, t) be the quantities in the continuous
time approximation corresponding to Fk(g), gk(j,i)
and fk(i), respectively. A careful consideration is
necessary about the procedure to obtain an ap-
propriate approximating continuous time model when
some of the parameters in the difference equation
have stochastic effects (Iizuka, 1987). In this case,
however, each parameter has only deterministic effect.
Then assuming that uu u2 and u3 are small order
quantities, the appropriate approximating differential
equations for (2.1) and (2.3) are

4g(7,», 0
dt

(2.7)
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(2.8)

Since (2.8) is a linear first-order partial differential
equation, it can be solved by the standard method
(John, 1982). The general solution to (2.8) is

where <f> is an arbitrary function. Let

be the generating function corresponding to the initial
distribution. The solution to (2.8) satisfying F(£, 0) =

for each £(0 *S £ «: 1) is

(2.9)

(2.10)

Then
xexp{r(l-<

= exp{- r< l -

k-Oj-0

On the other hand, by (2.7),

, i, 0 = e-u<<{vjt j^fU, s) e"<° ds + go(j, /)}. (2.11)gU,

The explicit expression for g(j, i, t) is obtained by
substituting (2.10) into (2.11). Since this expression is
still complicated, the special case of the initial
condition /„(/) = S(0 (Stj = 1 if i = j , = 0 otherwise) is
considered. This initial condition corresponds to the
case where every sequence in the initial generation has
accumulated no /?-mutation. Under this initial con-
dition,

M t) = {(1 - e -V)r} (exp{-r( l -g- .«)}/i! . (2.12)

The asymptotic form of/(*, t) for / -»• oo is

/(/,/) ^r'{l-(/-r)e-">'}<T7i! (t^oo). (2.13)

Substituting (2.13) into (2.11),

gU,i,t) * vi(i*e-'{\/Ut-e-.'O-0/(U,-u3)

-V/U(-(j-r)/(Ut-u3)]e-v<<}/j\

+ S(og<)U,i)e-u'' «->oo). (2.14)

The F(£,, t), ftj, t) and g(J, i, t) converge to the equi-
librium values F(£), fit) and g(j, i), respectively, as
f-»- oo.

3. Infinite population model with deleterious mutation

Following Golding et al. (1986), assume that the a-
mutational events are neutral but the /?-mutational
events are deleterious. The fitness for a sequence that
has i/?-mutations is w(. Assuming that mutation occurs
first and is followed by selection,

(3.1)

(3.2)
= {(1 -"z-iu

where Wk = £ £0/*0) wi ' s t n e mean fitness at the kth
generation. In the following, the multiplicative case,
where w( = (l — s)' and s is a positive constant is
considered.

Assuming equilibrium (3.2) gives the following
ordinary differential equation for F(£), neglecting the
terms higher than or equal to the second order in s, u2

and «3 (see Appendix).

A l ) + w(£-'

The general solution to (3.3) is

= 0. (3.3)

where B(g) = (g_^)('/<«
^ = M2/(M3 + s), and C is a constant. Since F(£) is a
generating function, it must be expanded to a power
series in £. In general, B(£) can not be expanded to a
power series in g. For this reason 5(g) must be a
constant, that is, (dF/dg)(l) = q. A. solution satisfying
this and F(l) = 1 (the condition for the generating
function) is F(£) = zxp{q{£-\)} and

qie-«/i\. (3.4)

Let W be the equilibrium value of Wk. By (3.4),

On the other hand, by (3.1), #(./, i) = w({(l - t / , ) ^ , 0
-Then,

(j = i-

0 = 0

4. Finite population model with neutral mutation

This model incorporates the effect of random sampling
drift into the neutral model in Section 2, so the
population now has effective size N. A continuous
time approximation is used. An appropriate ap-
proximating continuous time model is a diffusion
model because the stochastic factor for the frequency
change is only the random sampling drift, assuming
u(,i= 1,2,3 and \/N are small order quantities. In
this section, different notations from the previous
sections are used, because the following quantities are
random variables (with expected values equal to the
corresponding quantities in Section 2). The frequency
of the sequence that has //^-mutations at time t and
whose most recent distinguishable ancestor has jfl-
mutations is x(J,i,t),(j = i,i±l). The frequency of
the sequence that has //?-mutations at time / is y(i, i).

16-2
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The x(j, i, t) and y(i, t) are diffusion processes charac-
terized by the following diffusion operators:

i-Oj-t-1

dxUJ)

•hl-^*nMw.£*«M

"dxU,if

, (4-1)

where an = a/(a + 2«), a = 1 /Nu3 and n A i = min
{«, /}. In the case of / =j,

E[y(if\ = e'2r £ anr
n+2t n\

!('-*)! («-^)!]}2- (4.6)
J

By £[X0] =/(0 a n d (4.6), the variance is

dy(i)

(4.2)

where x( — 1,0) = _y(— 1) = 0. The operators J5f and
si define a diffusion model corresponding to the
discrete time model with mutation and random
sampling drift. Let

where z(i, i) = (x(i — 1, i, t), x(i, i, t), x(i+ 1, i, t)). By the
general theory of diffusion processes (Stroock &
Varadhan, 1979), the following Kolmogorov back-
ward equations hold, for arbitrary smooth functions
AX(t)) of X{t) and g(Y(t)) of Y(t).

dE[fjX(t))]
dt

dEjgjYO))]
dt = E[s/g(Y(t))\,

(4.3)

(4.4)

where <£f and stfg are the functions obtained by
operating <£ and si to /and g, respectively. Further,
E[.] denotes the expectation with respect to the
stochastic effect by random sampling drift. Here, note
that

E[x(j, i, 0] = g(j, U i) and E{y(i, /)] = ft, t),
where ^(7, i, t) and ft, t) are given by (2.11) and (2.10).

In the following, the equilibrium state is considered.
The equilibrium values for x(j, i, f), y(i, t), z{i, f), X(t)
and Y(t) are x(j, i), y(j), z{i), X and Y, respectively. By
(4.3) and (4.4), E[&j{X)] = 0 and E[jrfg(Y)] = 0.
Note that

j\ = gU,i) and E[y(i)]=ft),
where g(j,i) and/(/) are given by (2.6) and (2.5).

The following results (see Appendix):

-my.(n-my.]), (4.5)

(4.7)

Although the expression (4.7) is complicated, a simple
inequality for the variance can be obtained (see
Appendix):

(4.8)

Here, consider an estimation of

Var [x(j, 0] = E[xU, 02] - E[x(j, i)]*.

By E[2AX)} = 0,

+ 2Nvj

where Cov [y(j), x(j, 0] =
xE[x(j,i)]. Applying

(4.9)

/, 0] - E[yU)]

Cov [j<y), xU, 0] < {Var [>̂ (0] Var [x(y, /)]}*

and (4.8) to (4.9), there is an inequality for

+ Rlf}/(l+2NUl))K (4.10)

where R}1 = vjtr
j(l—e~rr1/j\)/ujl. Here, note that

a[x(j, 0] ->• 0 as Nu3 ->• 00 as expected.
On the other hand, substituting J{X) = x(J, i)2 into

E[J?AX)] = 0, gives

(\+2NUi)E[x(j,iy) = E[x(j,i)]

T h e n 0] ". 0-

xgU,Q}/V+2NU(). (4.11)

The following statements result by applying (4.10)
and (4.11), with C an arbitrary but fixed positive
constant:

[rj if iV£/<^2feCyJ0[i-

then <r[x(j, i)] < C.

[II] If NU, ^ {g(j, i)Mj, 02

then O-[JC(7, /)] ^ C.
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5. Discussion

The models elaborated above may be applied to data
on DNA sequence evolution if base substitutions are
considered to be a-mutational events (for which
backward mutation can be neglected) and insertions
of transposable elements are considered to be yS-
mutational events. The /?-mutational events occur
reversibly and the backward mutation rate depends
on the number of /?-mutations that this sequence has
accumulated, which describes the insertion of trans-
posable elements if each transposable element has a
constant rate of loss from a sequence region under
consideration. Newly introduced transposable ele-
ments seem to come mainly from outside the region,
provided the number of transposable elements existing
in each sequence is small, so that the rate of increase
of the number of transposable elements is independent
of the number of transposable elements accumulated
in the region under consideration.

In this paper, it has been assumed for mathematical
simplicity that each sequence can accumulate an
infinite number of /?-mutations. Golding et al. (1986)
and Golding (1987) considered a finite boundary
condition, so at most n/tf-mutations can be accumu-
lated in each sequence. Their boundary condition at n
is

£*+i(«>«) = (1 -«"3)£("=") + (Mi + "2)£ k(n-\,n).

This is inadequate because of the term u2gk(n — \,ri).
As a result of this,

g(n, n) = + nu3)}f{n).

This equilibrium value shows that g(n, ri) > 0 even if
ul = 0. By definition, g(n, n) must be zero, however, in
the case of no a-mutational events (ux = 0). In this
sense, their boundary condition is not correct, but it
may be considered as an approximation where every
sequence accumulating more than n /limitations is
regarded effectively as a sequence with M/7-mutations
(Langley, personal communication). Applying this
grouping idea to the results of the present paper, the
following expression for the terminal class fk(n) and
gk(n, n) is obtained.

/*(«)= S/.(0, (5-1)
l-n

#*(», n) = gk(ji, n)+gk(n + 1, n) + £ fk(i). (5.2)
l -n+l

Substituting the results of the previous sections into
(5.1) and (5.2), the effect of grouping can be seen.

First, consider the infinite population model with
neutral mutation. The equilibrium results are exactly
the same as the results of Golding et al. (1986) except
the terminal class of their formulation. The results of
this study for the transient solution show that the rate
of convergence to the equilibrium state is roughly u3.
This can be clearly seen in (2.12) and (2.14). The
statistical analysis of Golding et al. (1986) assumes

that the equilibrium state is achieved at least ap-
proximately, which is equivalent to assuming that
exp{ — u3t} a; 0, that is, u3 is not small. On the other
hand, if the mutation rate u3 is small, the condition on
the rate of approach to equilibrium suggests that no
test of any sort could be carried out using the
equilibrium frequencies since the rate of approach to
equilibrium is slow.

Next, consider the infinite population model with
deleterious mutation. The effect of such selection on
J[i) is to replace u3 by u3 + s in the result of the infinite
population model with neutral mutation [see (2.5) and
(3.4)]. In this sense, the effect on _/(/) of deleterious
selection against accumulating /^-mutations is the
same as inflating the backward mutation rate for fi-
mutational events. On the other hand, the effect on
g(j, i) of deleterious selection is not the same as that
of backward mutation for /S-mutational events. It is
shown in (3.5) thatg(i—\,i) and g(i, i) are greater than
the corresponding quantities in the infinite population
model with neutral mutation (replacing u3 by u3 + s in
the later case). The g(i + 1, i) is smaller than that of the
infinite population model with neutral mutation. In
other words, the effect of deleterious selection on
g(j, i) is inflating the value of g(i— \,i) and g(i, i) and
reducing the value of g(i+ 1, i). This result seems to be
consistent with the results of Golding et al. (1986).
Their data analysis assuming an infinite population
model with neutral mutation showed a disagreement
with the data of transposable elements (Aquadro et al.
1986) owing to an inflation in the value of g{i— \,i)
estimated from the data. They introduced the effect of
deleterious selection against transposable elements
and their numerical analysis showed an agreement
with the data. The reason for agreement seems to due
to the effect of deleterious selection on g(j, i) in the
model described here.

Logically, however, there is another possibility, and
that is a finite population model with neutral mutation.
The smaller the population size, the stronger are the
stochastic effects due to random sampling drift. This
means that the discrepancy in g(i—\,i) between
theoretical results with neutral mutation and that
estimated from the data may disappear because of
stochastic effects if the effective size of population is
small enough. The results of Section 4, especially [I],
provide some quantitative information on this prob-
lem. Applying the infinite population model with neu-
tral mutation to the experimental data, Golding et al.
(1986) analysed 29 chromosomes in the Adh region
of Drosophila melanogaster (Aquadro et al. 1986). The
frequency of sequences that have one transposable
element and whose most recent distinguishable an-
cestor has no transposable element, 8/29, estimated
from the data is not consistent with that predicted by
the infinite population model with neutral mutation.
Here, the results of the finite population model with
neutral mutation are applied to these data. Define 6
by 6 = 4Nu, where u is the base substitution rate per
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generation. Since the data of the Adh region of D.
melanogaster contains 13 kb (Aquadro et al. 1986),
Ml = 13000 u and d = 47V«1/13000. Let i= \, j=0
and C = Z>/l-96 in [I], where D = 8/29-g(0,1) and
g(0,1) is given by (2.3). Note that the absolute values
of Mj, u2 and «3 are not necessary, but relative values
of «2 and u3 to u1 are needed. First, consider the case
of MX = u2 = u3. Here, if 6 ^ 2-49 x 10"2, then
l-96a[x(0,1)] < £>. Next, consider the case of u2 = u3

= U!/4. In this case if 6 ^ 2-34 x 10~2, then l-96o--
[x(0,1)] < D. Finally, consider the case of M2 = u3 =
4MX. In this case, if 0 ^ 1-61 x 10"2, then l-96<r[x(0,1)]
^ D. These results give sufficient conditions that the
data is not consistent with the finite population model
with neutral mutation. Note that, in this case, the use
of a single standard deviation, <r[x(0,1)], to detect
differences between an expected model and observed
data seems to be conservative, because a single class
could be beyond 1-96 standard deviations and
remaining data is sufficiently well behaved (see
Golding et al. 1986). On the other hand, the estimated
value for 6 using the data of Aquadro et al. (1986) is
d = 1/156 = 6-41 x 10"3. Because d > S, it is difficult
to conclude definitely that the stochastic effect of
random sampling drift cannot explain the discrepancy
and it is necessary to introduce the effect of deleterious
selection, although the necessity of deleterious
selection is suggested. Further statistical analyses seem
to be necessary to resolve this problem. For this
purpose, the relative mutation rates of the trans-
posable element insertions to that of base sub-
stitutions, which are relatively unknown, must be
specified.

In this paper, the mutation scheme proposed by
Golding et al. (1986) has been assumed, although
other mutation schemes could be proposed. For
example, consider the problem that the first and
second codon positions are neutral or selected. In this
case, the a-mutations represent changes in the third
codon position and the ^-mutations represent changes
in the first and second codon positions. The backward
mutation rate for /^-characters is a constant much
smaller than the forward mutation rate and does not
depend on the number of the /^-mutations that the
sequence have accumulated. In this way, the models
of this paper and their extensions could be applied to
various kinds of sequence data as more detailed
molecular population genetics data become available
for population samples.

Appendix

(i) Derivation of (3.3)

By (3.2) and w( = ( l -

(Al)

at equilibrium. Here, H{£) is defined by

= £ {(1 -u2-iu
(-0

(A 2)

where F'(x) = (dF/dE) (x). By Taylor expansion,

and

where

|ej ^ (s2/2) max \F"(x)\, \e2\ ^ s max \F"(x)\

and
d2F

F"() ()

Since F"(g) = S " , i(i+ l)Mg «£ F'\\) for 0 < £ <
1 and F"(\) = r2 if s = 0 by (2.5) and the value of
F"(\) for s > 0 must be smaller than that for 5 = 0,

< < 1

This means that e1 is a quantity of order s2 and e2 is
a quantity of order s. Neglecting the terms higher than
or equal to the second order in s, u2 and u3,
H(0^(l-u2 + u20 P® + {u3 - («, + s) £} F'(0.

(A3)

On the other hand, multiplying both sides of (A 1) by
£' and summing from i = 0 to oo gives /•"(£) =
H(g)/H(\). The (3.3) is obtained by applying this
formula and (A 3).

(ii) Derivation of (4.5)

Denote E[y(i)y(J)] by C(j. Substituting g(Y) =
y(f)y(j) into E[sfg(Y)] = 0 gives

2 + (i+j)Nu3}Ctj = Nu^C^ + C,^)

+ Nu3{(i+ 1) Cl+lii + C/+ 1) CtJ+1} + S(]M, (A 4)

Let G(E,,7j) = S M - O Q ^ V
 b e t h e generating function

for Cfi. By (A 4),

l)}, (A 5)

where a = \/Nu3. The general solution to (A 5) is

, V) = e>*+i-4 £ a j r (g- 1) (r, - \f/k\
I

(A 6)

+ (i+\)u3J{i+\)}(\-sy/H(\),
where ak = a/(a + 2k) and <f> is an arbitrary function
(John, 1982). Since G(£,7j) is a generating function, it
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must be expanded in a power series in £ and y. Hence
(j> must be 0. Using a relation

gives (4.5).

(iii) Derivation of (4.8)

First, note that Var [y(i)] is the coefficient of (£•>))' in
the power series expansion of

k-l

ak{r(i- \){TJ- \)f/k\.

By (4.7) and ak sS <z/(2 + a) for k > 1, Var [X0] < A,,
where Du is the coefficient of (£97)' in the power series
expansion of

which is equal to the right-hand side of (4.8).

The author would like to thank G. B. Golding, R. R.
Hudson, N. Kaplan, C. H. Langley and T. Mackay for their
valuable comments.
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