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Abstract

Let A be a locally noetherian Grothendieck category. We construct closure operators on the lattice of
subcategories of A and the lattice of subsets of ASpecA in terms of associated atoms. This establishes
a one-to-one correspondence between hereditary torsion theories ofA and closed subsets of ASpecA. If
A is locally stable, then the hereditary torsion theories can be studied locally. In this case, we show that
the topological space ASpecA is Alexandroff.
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1. Introduction

The classification of subcategories of an abelian category is an important area widely
studied by numerous authors in recent years (see [1, 3, 10, 11]). The subject originates
from a result of Gabriel [1] classifying localising and Serre subcategories of R-Mod in
terms of specialisation closed subsets of SpecR, the prime spectrum of R, when R is a
commutative noetherian ring.

In 1997, Herzog [2] and Krause [6] gave a classification of localising subcategories
of finite type for locally coherent Grothendieck categories in terms of indecomposable
injectives. Recently, for an abelian category A, Kanda [4] defined and studied the
atom spectrum ASpecA of A, the class of atoms in A, which is analogous to the
prime spectrum of a commutative ring. As Kanda [4, 5] has shown, this notion is
easier to use, but the study of indecomposable injectives has a longer history.

Given an object M of A, we define the associated atoms of M, denoted by
AAss(M), a subclass of ASupp(M), by

AAss M = {H ∈ ASupp(M) | there exists H′ ∈ H which is a subobject of M}.

More generally, for any subcategory X of A, we define

AAss(X) =
⋃
M∈X

AAss M.
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Throughout this paper, A is assumed to be a locally noetherian Grothendieck
category. We will show that associated atoms of subcategories can construct closure
operators on the lattice of subcategories of A and the lattice of subsets of ASpecA.
We first show that hereditary torsion theories ofA correspond to closed subsets of the
topological space ASpecA. More precisely, we prove that the map F 7→ AAss(F )
establishes a one-to-one correspondence between torsion-free subcategories of A
corresponding to some hereditary torsion theory and closed subsets of ASpecA. The
inverse map is given by V 7→ AAss−1(V) (Theorem 2.7).

For any object M of A with injective envelope E(M), the localising subcategory
defined by M, denoted byX(M), consists of all objects N such that Hom(N,E(M)) = 0.
We prove that for any localising subcategoryX ofA, there exists an object M such that
X = X(M) (Proposition 2.17). Moreover, we prove that, for every α = H ∈ ASpecA
with monoform object H ofA, X(H) = X(α), where X(α) = ASupp−1(ASpecA \ {α})
(Theorem 2.10).

For every subcategory Y of A, let (T (Y),F (Y)) be the torsion theory cogenerated
by Y . It is shown that T (Y) is localising if Y is closed under subobjects and injective
envelopes (Theorem 2.12). We also show that Y is closed under subobjects, injective
envelopes and direct unions if and only if AAss−1(AAss(Y)) = Y . We note that
X(M) = T (AAss−1(AAss(M))) for any object M ofA.

We prove that the map Y 7→ F (AAss−1(AAss(Y))) is a closure operator on the
lattice of all subcategories Y of A and, symmetrically, V 7→ AAss(F (AAss−1(V)))
is a closure operator on the set of all subsets of ASpecA. Finally, in Theorem 2.19,
for an object M ofA, we determine AAssY(M) when M is finitely generated orA is
locally stable. As a corollary, we prove that the topological space ASpecA of a locally
stable Grothendieck category is Alexandroff (Corollary 2.21).

2. The main results

We first recall some concepts and definitions of abelian categories. Monoform
objects and the atom spectrum of an abelian category were defined by Kanda [4].

Definition 2.1.

(i) A nonzero object M in A is monoform if for any nonzero subobject N of M,
there exists no common nonzero subobject of M and M/N: that is, there does
not exist a nonzero subobject of M which is isomorphic to a subobject of M/N.
We denote the class of all monoform objects ofA by ASpec0A.

(ii) Two monoform objects H and H′ are said to be atom-equivalent if they have a
common nonzero subobject.

(iii) By [4, Proposition 2.8], the atom equivalence establishes an equivalence
relation on monoform objects; for a monoform object H, we denote
the equivalence class of H by H: that is H = {G ∈ ASpec0A | H and G
have a common nonzero subobject}.

(iv) The atom spectrum ASpecA of A is the quotient class of ASpec0A consisting
of all equivalence classes induced by this equivalence relation.
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(v) A subclass Φ of ASpecA is called open if, for any H ∈ Φ, there exists H′ ∈ H
such that ASupp(H′) ⊂ Φ. The open subclasses are also called closed under
specialisation as they correspond to the specialisation closed subsets of SpecA,
where A is a commutative ring (see [4]). A subclass Ψ of ASpecA is called
closed (or closed under generalisation) if ASpecA \ Ψ is open.

(vi) For an object M ofA, we define a subclass ASupp(M) of ASpecA by

ASupp M = {H ∈ ASpecA | there exists H′ ∈ H which is a subquotient of M}.

We also define the associated atoms of M, denoted by AAss(M), a subclass of
ASupp(M), by

AAss M = {H ∈ ASupp(M) | there exists H′ ∈ H which is a subobject of M}.

For any subcategory X ⊂ A, we define

ASupp(X) =
⋃
M∈X

ASupp M, AAss(X) =
⋃
M∈X

AAss M.

Obviously, ASupp(M) is an open subclass of ASpecA for any object M and it
follows that ASupp(X) is open for any subcategory X ofA.

Definition 2.2. An abelian categoryA is called a Grothendieck category if it has exact
direct limits and a generator. A Grothendieck category A is called locally noetherian
if there exists a generating set ofA consisting of noetherian objects.

Remark 2.3. If A is a locally noetherian Grothendieck category, by [4,
Proposition 5.2], noethA, the full subcategory of A consisting of all noetherian
objects, is skeletally small so that it is a noetherian abelian category. Thus
ASpec(noethA) forms a set. On the other hand, by [4, Proposition 5.3], ASpecA
coincides with ASpec(noethA) as topological spaces. This ensures that ASpecA is
a set. So we can replace the notion open (closed) subclasses of ASpecA by open
(closed) subsets.

Recall from [5] that ASpecA can be regarded as a partially ordered set together
with a specialisation order ≤ as follows. For any atoms α and β in ASpecA, we define
α ≤ β if and only if, for any open subclass Φ of ASpecA satisfying α ∈ Φ, β ∈ Φ. For
more details, we refer the reader to [5].

Definition 2.4. A torsion theory for A is a pair (T , F ) of subcategories of A
satisfying:

(i) Hom(T, F) = 0 for all T ∈ T , F ∈ F ;
(ii) if Hom(T, F) = 0 for all T ∈ T , then F ∈ F ; and
(iii) if Hom(T, F) = 0 for all F ∈ F , then T ∈ T .
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T is called a torsion subcategory and its objects are torsion objects, while F is
a torsion-free subcategory consisting of torsion-free objects. It is easy to see that
T is closed under quotients, direct sums and extensions, while F is closed under
subobjects, products and extensions.

A torsion theory (T ,F ) is called hereditary if T is closed under subobjects and
so, in this case, T is called a localising subcategory. If X is a subcategory of A
closed under subobjects, quotients, direct sums and extensions, then it is a localising
subcategory of some hereditary torsion theory (see [9, Ch. VI, Proposition 2.1]).

A radical functor r(−) ofA is a subfunctor of the identity functor I(−) :A→A in
the functor category Func(A,A) such that, for any object M ofA:

(i) r(r(M)) = r(M); and
(ii) r(M/r(M)) = 0.

In view of [9, Ch. VI, Proposition 2.3], every torsion theory (T ,F ) induces a unique
radical functor onA.

In the rest of this paper,A is a locally noetherian Grothendieck category.

Proposition 2.5. Let V be a closed subset of ASpecA. Then AAss−1(V) is a torsion-
free subcategory of a hereditary torsion theory ofA.

Proof. Since V is closed, U = ASpecA \ V is an open subset of ASpecA. Thus,
according to [4, Theorem 5.7], there exist a localising subcategory T = ASupp−1(U)
and a radical functor tT (−) such that, for every object M inA, the object tT (M) is the
largest subobject of M contained in T . Then T can be included in a hereditary torsion
theory (T ,F ), where F = {N ∈ A | tT (N) = 0}. We now assert that AAss−1(V) = F .
Assume that M ∈ AAss−1(V) from which we aim to show that tT (M) = 0. Suppose, on
the contrary, that tT (M) , 0. Then AAss(tT (M)) ⊆ ASupp(tT (M)) ⊆ ASupp(T ) = U.
But AAss(tT (M)) ⊆ AAss(M) ⊆ V , which is a contradiction. Conversely, assume that
M ∈ F . If AAss(M) * V , then there exists β ∈ AAss(M) \ V and so β ∈ U. Hence there
exists a monoform object H such that H = β and ASupp(H) ⊆ U = ASupp(T ). This
implies that H ∈ T , by [4, Theorem 5.7]. On the other hand, there exists a monoform
object H1 with β = H1 such that H1 is a subobject of M. Since H and H1 have a
common nonzero subobject, H1 contains a subobject H2 belonging to T . But this
implies that tT (M) is nonzero, which contradicts M ∈ F . �

Proposition 2.6. Let (T ,F ) be a hereditary torsion theory of A. Then ASuppT =

ASpecA \ AAss(F ) and so AAss(F ) is a closed subset of ASpecA.

Proof. Assume that α ∈ ASuppT . Since ASuppT is open, there exists a monoform
object H with α = H and ASupp H ⊆ ASuppT . Thus [4, Theorem 5.7] implies that
H ∈ T . On the other hand, if α ∈ AAssF , there exists a monoform subobject H1 ∈ F

with α = H1. But H and H1 have a common nonzero subobject belonging to F ∩ T =

0, which is a contradiction. Conversely, if α is not in AAss(F ), then tT (H) , 0 for
any monoform object H with α = H. Hence α ∈ ASupp(tT (H)) ⊆ ASupp(T ) because
tT (H) ∈ T . �
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Associated atoms establish a one-to-one correspondence between hereditary torsion
theories ofA and closed subsets of ASpecA.

Theorem 2.7. The map F 7→ AAss(F ) establishes a one-to-one correspondence
between torsion-free subcategories of A corresponding to some hereditary torsion
theory and closed subsets of ASpecA. The inverse map is given by V 7→ AAss−1(V).

Proof. Suppose that F is the class of all torsion-free subcategories corresponding to
some torsion theory and that C is the set of all closed subsets of ASpecA. In view
of Propositions 2.5 and 2.6, we can define the map F −→ C by F −→ AAss(F ) and
the map C −→ F by V 7→ AAss−1(V) for any F ∈ F and V ∈ C. It only remains to
show that AAss−1(AAss(F )) = F and AAss(AAss−1(V)) = V for anyF ∈ F and V ∈ C.
Assume that (T ,F ) is the hereditary torsion theory corresponding to F . For every
M ∈ AAss−1(AAss(F )), we prove that tT (M) = 0 and so M ∈ F . If AAss(tT (M)) is a
nonempty set, then AAss(tT (M)) ⊆ AAss(M) ⊆ AAss(F ) = ASpecA \ASupp(T ). On
the other hand, AAss(tT (M)) ⊆ ASupp(T ), which is a contradiction. The inclusion
F ⊆ AAss−1(AAss(F )) is clear. In order to verify the second equality, assume that
α ∈ V with α = H for some monoform object H. Then AAss(H) = {α} ⊆ V and
hence H ∈ AAss−1(V). Therefore α ∈ AAss(H) ⊆ AAss(AAss−1(V)). For the other
inclusion, assume that α ∈ AAss(AAss−1(V)). Then there exists M ∈ AAss−1(V) such
that α ∈ AAss(M) ⊆ V so that α ∈ V . �

Corollary 2.8. Let F be a torsion-free subcategory of A corresponding to some
hereditary torsion theory and let α ∈ AAss(F ). Then α ⊆ F .

Proof. For every monoform H with α = H, AAss(H) = {α}. Now Theorem 2.7 implies
that H ∈ AAss−1(AAss(F )) = F . �

Definition 2.9. Let M be an object of A with the injective envelope E(M). We recall
from [7] the localising subcategory defined by M, denoted by X(M), which is

X(M) = {N ∈ A | Hom(N, E(M)) = 0}.

We denote by Y(M) the torsion-free subcategory corresponding to X(M), which is

Y(M) = {N ∈ A | Hom(X,N) = 0 for all X ∈ X(M)}.

Observe that if N is an essential subobject of M, then X(N) = X(M).

For every α ∈ ASpecA, the topological closure of α, denoted by {α}, consists of all
β ∈ ASpecA such that β ≤ α. According to [4, Theorem 5.7], for each atom α, there is
a localising subcategory X(α) induced by α: that is X(α) = ASupp−1(ASpecA \ {α}).
We denote by Y(α) the torsion-free subcategory corresponding to X(α). Obviously,
AAss(Y(α)) = {α}.

We point out that any two monoform objects H and H1 with α = H = H1 have
a common nonzero subobject X that is essential in H and H1. This implies that
E(H) = E(H1) and so we denote E(H) by E(α) as it is independent of the choice of the
monoform object H.
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Theorem 2.10. Let α = H be an atom for some monoform object H of A. Then
X(H) = X(α).

Proof. Assume that M ∈ X(α) and so ASupp(M) ∩ {α} = ∅. We claim that
Hom(M, E(α)) = 0. Suppose, on the contrary, that there exists a nonzero element
f ∈ Hom(M, E(α)). Then Im f is a nonzero subobject of E(α) and AAss(Im f ) =

{α}. This forces α ∈ ASupp(M), which is a contradiction. Conversely, assume that
M ∈ X(H) and so Hom(M, E(α)) = 0. Without loss of generality, we may assume that
M is finitely generated. Then it follows, from [4, Theorem 5.9], that α < ASupp(M).
If M < X(α), then ASupp(M) * ASupp(X(α)) and so there exists β ∈ ASupp(M) such
that β < ASupp(X(α)). Hence β ∈ {α} and so β ≤ α. Now, since β ∈ ASupp(M),
α ∈ ASupp(M), which is a contradiction. �

The following proposition shows that the localising subcategory defined by an
object can be specified by the localising subcategory defined by its monoform
subobjects.

Proposition 2.11. Let M be an object ofA. Then X(M) =
⋂
α∈AAss(M)X(α).

Proof. By Matlis theorem and [4, Theorem 5.11], E(M) =
⊕

α∈AAss(M) E(α)µα . Now
assume that N ∈ X(M). Since X(M) is closed under direct limits, without loss of
generality, we may assume that N is finitely generated. Then

0 = Hom(N, E(M)) �
⊕

α∈AAss(M)

Hom(N, E(α))µα ,

which implies that Hom(N, E(α)) = 0 for all α ∈ AAss(M). Thus it follows, from
Theorem 2.10, that N ∈ X(α) for all α ∈ AAss(M). The converse is obtained by a
similar argument. �

For any subcategory Y of A, we denote by (T (Y), F (Y)) the torsion theory
cogenerated by Y: that is,

T (Y) = {T ∈ A | Hom(T,N) = 0 for all N ∈ Y},
F (Y) = {F ∈ A | Hom(T, F) = 0 for all T ∈ T (Y)}.

Theorem 2.12. Let Y be a subcategory ofA. Then
⋂
α∈AAss(Y)X(α) ⊆ T (Y). Moreover,

if Y is closed under subobjects and injective envelopes, then T (Y) =
⋂
α∈AAss(Y) X(α)

and so T (Y) is a localising subcategory ofA.

Proof. Assume that M ∈
⋂
α∈AAss(Y) X(α). It follows, from Proposition 2.11, that

M ∈ X(N) for every object N in Y; and hence Hom(M,N) = 0 for every object N in Y .
For the second claim, suppose that M ∈ T (Y) and α ∈ AAss(Y). By the assumption, Y
contains a monoform object H such that E(α) = E(H) ∈ Y . Then, using Theorem 2.10,
M ∈ X(α) and so T (Y) ⊆

⋂
α∈AAss(Y)X(α). �

Remark 2.13. It follows immediately from Theorem 2.12 that if Y is a subcategory
of A closed under subobjects and injective envelopes, then T (Y) =

⋂
M∈Y X(M). In

particular, for any object M of A, one can easily check that (X(M),Y(M)) is the
hereditary torsion theory cogenerated by AAss−1(AAss(M)).
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Proposition 2.14. Let Y be a subcategory of A. Then F (AAss−1(AAss(Y))) is the
smallest torsion-free subcategory ofA containing Y corresponding to some hereditary
torsion theory. In particular, if S is the lattice of all subcategories of A, then
F : S → S, given by Y 7→ F (AAss−1(AAss(Y))), is a closure operator.

Proof. As AAss−1(AAss(Y)) is closed under subobjects and injective envelopes,
according to Theorem 2.12, F (AAss−1(AAss(Y))) is a torsion-free subcategory
corresponding to a hereditary torsion theory. Assume that (T ,F ) is a hereditary
torsion theory such that Y ⊆ F . It follows, from Theorem 2.7, that AAss−1(AAss(Y)) ⊆
F . In order to prove F (AAss−1(AAss(Y))) ⊆ F , it suffices to show that T ⊆
T (AAss−1(AAss(Y))). Assume that M is an arbitrary object belonging to T . Then
Hom(M, F) = 0 for all F ∈ F and so Hom(M, F) = 0 for all F ∈ AAss−1(AAss(Y)).
This implies that M ∈ T (AAss−1(AAss(Y))). The second claim is straightforward. �

Proposition 2.15. Assume V is a subset of ASpec(A). Then V = Ass(F (Ass−1(V))),
where V is the closure of V in the topological space ASpecA. In particular, if L is the
lattice of all subsets of ASpecA, then Φ : L→ L, given by V 7→ Ass(F (Ass−1(V))), is
a closure operator.

Proof. Since AAss−1(V) is closed under subobjects and injective envelopes, according
to Theorem 2.12, F (Ass−1(V)) is a torsion-free subcategory corresponding to a
hereditary torsion theory. It then follows, from Proposition 2.6, that Ass(F (Ass−1(V)))
is a closed subset of ASpecA containing V . Now assume that D is any closed subset
of ASpecA containing V . Then AAss−1(V) ⊆ AAss−1(D). But, in view of Proposition
2.5, AAss−1(D) is a torsion-free subcategory corresponding to a hereditary torsion
theory and hence F (AAss−1(D)) = AAss−1(D) so that F (AAss−1(V)) ⊆ AAss−1(D).
Consequently, it follows, from Theorem 2.7, that AAss(F (AAss−1(V))) ⊆ D. The
second claim is straightforward. �

We recall from [8] that a proper subobject N of an object M is atomical if
AAss(M/N) has just one element. If M is a noetherian object, then an atomical
decomposition of a subobject L of M is obtained by writing L as a finite intersection
L = L1 ∩ · · · ∩ Ln of atomical subobjects Li of M, so that:

(i) the decomposition is irredundant; and
(ii) AAss(M/Li) , AAss(M/L j) for i , j.

Proposition 2.16. Let Y be a subcategory of A. Then Y = AAss−1(AAss(Y)) if and
only if Y is closed under subobjects, injective envelopes and direct unions.

Proof. The ‘only if’ part is clear and so we only prove the ‘if’ part. Clearly,
Y ⊆ AAss−1(AAss(Y)) and so we have to prove the reverse of this inclusion. Assuming
that M ∈ AAss−1(AAss(Y)), we have AAss(M) ⊆ AAss(Y). Since Y is closed under
taking direct unions, we may assume that M is finitely generated. This implies that
AAss(M) = {α1, . . . , αn} is a finite set. Since Y is closed under subobjects, there exist
monoform objects Hi ∈ Y such that αi = Hi. On the other hand, using [8, Propositions
2.5 and 2.7], the zero subobject of M has an atomical decomposition 0 =

⋂n
i=1 Qi such
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that AAss(M/Qi) = {αi} and M is embedded in
⊕n

i=1 M/Qi. But E(M/Qi) = E(Hi)
for each i, and since Y is closed under injective envelopes, we deduce that M/Qi ∈ Y .
Therefore

⊕n
i=1 M/Qi ∈ Y and, consequently, M ∈ Y . �

Proposition 2.17. For every hereditary torsion theory (T ,F ) of A, there exists an
object M of F such that T = X(M) and F = Y(M).

Proof. (i). It suffices to show that T = X(M) for some object M of F . For every
α ∈ ASpecA \ ASupp(T ), let H(α) be a monoform object such that α = H(α). Put
M =

⊕
α<ASupp(T ) H(α). Then

X(M) =
⋂

α∈AAss(M)

X(α) =
⋂

α<ASupp(X)

X(α) = T ,

where the first equality follows from Proposition 2.11 and the third follows from
[5, Corollary 6.9]. On the other hand, the construction of M shows that AAss(M) =

AAss(F ). Hence it follows, from Theorem 2.7, that M belongs to F . �

Lemma 2.18. Let M be an object ofA. Then Y(α) ⊆ Y(M) for every α ∈ AAss(M).

Proof. Since α ∈ AAss(M), there exists a monoform object H with H = α such that H
is a subobject of M. Then X(M) ⊆ X(H) = X(α) so that Y(α) ⊆ Y(M). �

From [1], a localising subcategory T of the Grothendieck category A is called
stable if the injective envelope in A of any object of T is also an object of T .
Furthermore, a Grothendieck category is said to be locally stable if any localising
subcategory is stable. We notice that if A is a commutative noetherian ring, then
Mod-A is a locally stable category.

Theorem 2.19. Assume that M is an object ofA. Then⋃
α∈AAss(M)

{α} ⊆ AAss(Y(M)).

Furthermore, if M is finitely generated orA is locally stable, then

AAss(Y(M)) =
⋃

α∈AAss(M)

{α}.

Proof. For every α ∈ AAss(M), it follows, from Lemma 2.18, that Y(α) ⊆ Y(M)
and so {α} = AAss(Y(α)) ⊆ AAss(Y(M)). Thus

⋃
α∈AAss(M) {α} ⊆ AAss(Y(M)). In

order to verify the the second claim, we first assume that M is a finitely generated
object; and hence it suffices to show that

⋂
α∈AAss(M) ASupp(X(α)) ⊆ ASupp(X(M)).

To do this, assume that β ∈
⋂
α∈AAss(M) ASupp(X(α)). Then, for every α ∈ AAss(M),

there exists a monoform object H(α) ∈ X(α) such that β = H(α). Since M is
finitely generated, it follows, from [4, Theorem 2.9], that AAss(M) is a finite set.
Consider AAss(M) = {α1, . . . , αn}. Then H(α1), . . . ,H(αn) have a common nonzero
subobject X ∈

⋂
α∈AAss(M) X(α) = X(M) so that β ∈ ASupp(X(M)). Now assume that
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A is locally stable and that N ∈ Y(M). We show that AAss(N) ⊆
⋃
α∈AAss(M) {α}.

Consider β ∈ AAss(N) and a monoform subobject H of N with β = H. Then H ∈
AAssY(M) = ASpecA \ ASuppX(M). This implies that H < X(M). Then, in view
of Proposition 2.11, there exists α ∈ AAss(M) such that H < X(α). Thus ASupp(H) *
ASuppX(α) and ASupp(H) ∩ {α} , ∅. Now assume that γ ∈ ASupp(H) ∩ {α}. By
[8, Proposition 4.11], Min ASupp(H) = AAss(H) = {β} and so β ≤ γ. This fact,
together with γ ≤ α, forces β ≤ α, which implies that β ∈ {α}. �

Corollary 2.20. Assume that M is an object ofA. Then

ASupp(X(M)) ⊆
⋂

α∈AAss(M)

ASupp(X(α)).

Furthermore, if M is finitely generated orA is locally stable, then

ASupp(X(M)) =
⋂

α∈AAss(M)

ASupp(X(α)).

Proof. From Proposition 2.11,X(M) ⊆ X(α) for every α ∈ AAss(M). This implies that
ASupp(X(M)) ⊆ ASupp(X(α)) and the first inclusion follows. To prove the equality,
we use Theorem 2.19: that is,

ASupp(X(M)) = ASpecA \ AAss(Y(M)) = ASpecA
∖ ⋃
α∈AAss(M)

{α}

=
⋂

α∈AAss(M)

(ASpecA \ {α}) =
⋂

α∈AAss(M)

ASupp(X(α)). �

A topological space X is called Alexandroff if the intersection of any family of open
subsets of X is also open.

Corollary 2.21. If A is locally stable, then the topological space ASpecA is
Alexandroff.

Proof. Let {Ur}r∈Λ be a family of open subsets of ASpecA and, for every r ∈ Λ,
assume that Tr = ASupp−1(Ur) is the corresponding localising subcategory of A.
We show that

⋂
Λ Ur is an open subset of ASpecA. For every r ∈ Λ, according

to Proposition 2.17, there exists an object Mr such that Tr = X(Mr). Hence, using
Corollary 2.20,⋂

Λ

Ur =
⋂
Λ

ASupp(Tr) =
⋂
Λ

ASupp(X(Mr)) =
⋂
Λ

⋂
α∈AAss(Mr)

ASupp(X(α))

=
⋂

α∈AAss(⊕Λ Mr)

ASupp(X(α)) = ASupp(⊕ΛMr). �
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