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Evolution of genetic variability in a spatially heterogeneous
environment: effects of genotype—environment interaction
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Summary

Classical population genetic models show that disruptive selection in a spatially variable
environment can maintain genetic variation. We present quantitative genetic models for the effects
of disruptive selection between environments on the genetic covariance structure of a polygenic
trait. Our models suggest that disruptive selection usually does not alter the equilibrium genetic
variance, although transient changes are predicted. We view a quantitative character as a set of
character states, each expressed in one environment. The genetic correlation between character
states expressed in different environments strongly affects the evolution of the genetic variability.
(1) If the genetic correlation between character states is not + 1, then the mean phenotype expressed
in each environment will eventually attain the optimum value for that environment; this is the
evolution of phenotypic plasticity (Via & Lande, 1985). At the joint phenotypic optimum, there is
no disruptive selection between environments and thus no increase in the equilibrium genetic
variability over that maintained by a balance between mutation and stabilizing selection within
each environment. (2) If, however, the genetic correlation between character states is + 1, the mean
phenotype will not evolve to the joint phenotypic optimum and a persistent force of disruptive
selection between environments will increase the equilibrium genetic variance. (3) Numerical
analyses of the dynamic equations indicate that the mean phenotype can usually be perturbed
several phenotypic standard deviations from the optimum without producing transient changes of
more than a few per cent in the genetic variances or correlations. It may thus be reasonable to
assume a roughly constant covariance structure during phenotypic evolution unless genetic
correlations among character states are extremely high or populations are frequently perturbed.
(4) Transient changes in the genetic correlations between character states resulting from disruptive
selection act to constrain the evolution of the mean phenotype rather than to facilitate it.

1. Introduction

Evolution in a spatially variable environment can
produce changes in both the mean phenotypes of
quantitative (polygenic) traits and their additive
genetic variances and covariances. Thus a theory of
the process of adaptation of quantitative traits to a
heterogeneous environment requires dynamical equa-
tions for both the average phenotype (Via & Lande,
1985) and the genetic variability. In this paper we
present a model describing the evolution of the genetic
covariance structure of a quantitative trait that is
under selection in a spatially variable environment.
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Genotype—environment interaction (g—e) clearly
affects the evolution of the mean phenotype in a
patchy environment (Via & Lande, 1985); the extent
of g—e also strongly influences both the equilibrium
genetic variability and the evolutionary dynamics of
the additive genetic variances and covariances.

Our models use Falconer’s (1952) idea that a
metrical character expressed in two environments can
be considered to be two genetically correlated
character states each of which is expressed in only one
of the environments. For example, the body size
expressed by an insect population in which some
individuals develop on each of two host plant species
can be considered to be two character states, for
example ‘body size on plant species 1 and ‘body size
on plant species 2° (Via, 1984 b). The additive genetic
variance of each character state can be estimated
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within the environment in which it is expressed; the
additive genetic covariance between the character
states expressed in different environments measures
the extent to which they have the same genetic basis
(Falconer, 1981). For example, an additive genetic
correlation between character states of + 1 means that
the same alleles or sets of alleles make proportional
contributions to the phenotypic value of the character
state expressed in each environment. When the genetic
correlation between character states is not perfect,
changes in gene frequencies that affect a character
state expressed in one environment may not affect
other character states proportionally.
Genotype—environment interaction is equivalent to
genetic variation in phenotypic plasticity (Via &
Lande, 1985) and its magnitude is a reflection of the
genetic correlations between character states expressed
in different environments. Significant g—e generally
corresponds to a genetic correlation between character
states that is less than + 1 (Robertson, 1959; Yamada,
1962; Fernando, Knights & Gianola, 1984; Via,
1984 5). Because previous work shows that additive
genetic correlations of +1 are evolutionary special
cases (Via & Lande, 1985), it is important to be able
to detect them empirically. However, estimates of
genotype—environment interaction per se do not
directly measure the magnitude of the genetic
correlations between character states expressed in
different environments, and so estimates of g—e are less
useful than genetic correlations in modelling pheno-
typic evolution in a heterogeneous environment
(Robertson, 1959; Via, 1984b; Via & Lande, 1985).
Estimates of the additive genetic correlation between
character states can be obtained by performing a
standard half-sib breeding design (Falconer, 1981)
and allowing some members of every family to develop
in each of the environments (e.g. Via, 1984a).
Phenotypic evolution in a heterogeneous environ-
ment can thus be considered as a problem in the
evolution of a correlated suite of character states.
Although each character state is only expressed in a
particular environment, it is subject to correlated
responses to selection acting on the character states
expressed in all the other environments experienced by
the population (Via & Lande, 1985). If character states
expressed in different environments have a less than
perfect genetic correlation, they have the potential for
somewhat independent evolution. Classical genetic
models for the maintenance of genetic variation that
concern one locus with two alleles (reviewed in
Hedrick, Ginevan & Ewing, 1976; Felsenstein, 1976)
have not incorporated this possibility. Furthermore,
previous treatments of the effects of spatial variation
on quantitative genetic variation in a single character
(Bulmer, 1971, 1980, ch. 10; Slatkin, 1978 ; Felsenstein,
1977, 1979) have considered only the special case in
which there is no g—e, that is, in which the genetic
correlation of character states in different environ-
ments was assumed to be + 1. Our models allow the
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genetic correlation between character states expressed
in different environments to assume any value from
—1to +1.

We first describe the evolutionary dynamics of the
genetic covariance structure for a population under
simultaneous selection in two environments. Four
basic forces are involved: stabilizing selection within
environments, disruptive selection between environ-
ments, pleiotropic mutation and recombination. We
then present the equilibrium genetic covariance matrix
of the character states. When the genetic correlation
between character states in different environments is
+ 1, the equilibrium genetic variance in each environ-
ment is increased by permanent disruptive selection.

For the situation in which the genetic correlation
between character states is not =1, disruptive
selection between environments has only a transient
effect on quantitative genetic variances and covarian-
ces; temporary increases in genetic variance may result
from periods of disruptive selection during the
evolution of the mean phenotype toward a new

optimum. Disruptive selection can thus inflate the
observed genetic variation for populations in a

heterogenous environment that are frequently sub-
jected to temporal fluctuations in selection. The
magnitude of this transient effect is estimated
analytically and illustrated with numerical examples.

If genetic variances and covariances change during
the course of evolution in a spatially variable
environment, the evolutionary trajectory of the mean
phenotype could be altered relative to that expected
for a constant covariance structure (Via & Lande,
1985). Numerical analyses of the models presented
here suggest, however, that the mean phenotype can
generally be perturbed several phenotypic standard
deviations from the joint optimum phenotype before
the genetic covariance structure is changed by more
than a few per cent during re-adaptation of the mean
phenotype. Therefore, if the joint optimum phenotype
does not change very often or by very much,
evolutionary changes that occur in the genetic
covariance structure may not produce substantial
alterations in the trajectory of the mean phenotype
that is predicted using a constant covariance matrix.

2. The model
(i) Assumptions

The model assumes a large panmictic population with
discrete non-overlapping generations. Zygotes are
dispersed randomly into different habitat types or
environmental patches where they develop and
undergo natural selection. We assume that the
environment is ‘coarse-grained’ such that a given
offspring only experiences selection in one habitat type
in its lifetime. The order of events in the life cycle thus
consists of individual development and selection
within environments, followed by random mating and
dispersal of zygotes. Under ‘soft’ selection (cf.
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Christiansen, 1974) the contribution of each patch to
the mating pool is constant each generation. A
fraction, ¢;, of the population experiences the ith
environment; this is the same as the ¢; in Levene’s
(1953) and Christiansen’s (1974) models. The charac-
ters of interest here are quantitative traits that play
ecological roles in the adaptation of populations to
different environmental circumstances (e.g. morphol-
ogy, physiological pathways, behaviour and life
history traits). For each character considered, a
different phenotypic value may be expressed in each
environment, corresponding to a condition of ‘ pheno-
typic plasticity’ for that character (Bradshaw, 1965;
Via & Lande, 1985). Within environments, each
character state is assumed to be under stabilizing
selection; these models are therefore not applicable to
major components of fitness that are subject to
continual directional selection.

The pleiotropic effects of alleles at the ith locus on
two character states (one character with a possibly
different expression in two environments) may be
written as a vector Xx; = [x;,;, X;,)7, where T indicates
transposition. Similarly, the vector of phenotypic
values for the two character states can be written as
z=[z,, z,]7. We assume that all of the genetic
variation is additive. The phenotypic value for a
particular character state can then be written as the
sum of genetic and environmental effects as:
z=x+e=2X(x;+x;)+e, where x; and x; are the

1

allelic contributions from the two parents. Before
selection in any environment, x and e are assumed to
be independent with 2 = 0 so that z = x. Although we
consider a single character expressed in two environ-
ments for notational simplicity, the equations that
follow can be generalized to apply to more characters
or additional environments by increasing the dimen-
sions of the vectors and matrices.

The 2 x 2 covariance matrix of allelic effects at the
ith and jth loci on the character states expressed in
each environment can be written as C;; = E[(x;—X,)
(xj—ij)r]. For i = j, C; is the covariance matrix of
allelic effects of the ith locus on the character states
when genetic covariances among the states are
attributable to pleiotropy. For i#j, C; is the
covariance matrix of allelic effects due to linkage
disequilibrium. The total effect of the alleles at the ith
locus on the phenotype is defined as

C=ZC, D)

With random mating there is no covariance between
uniting gametes (Lande, 1977, 1980, 1984), and so the
additive genetic variance—covariance matrix is

G=2ZEC,=2EC, V)

Although C,; need not generally be symmetric, G is
symmetric. In this way, each character state can be
described by a phenotypic mean (Z,, k=1, 2), a
genetic variance (G,,), and a genetic covariance with
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the character states expressed in the other environ-
ments (Gy;, k # j). In the 2 x 2 case examined here, the
genetic variances of the character states expressed in
different environments are on the diagonal of the
matrix G, and the genetic covariance between the
character states is off the diagonal. If more than one

‘character were studied in each environment, G would

have the variances and covariances of characters
within environments in blocks on the diagonal, and the
covariances between character states expressed in
different environments in the off-diagonal blocks.

Selection is assumed to be weak so that the
composite distribution in the mating pool of allelic
effects carried by individuals that were selected in
different environments will be approximately Gaus-
sian. In a coarse-grained environment, each individ-
ual experiences only one environment and thus
expresses only one of the possible character states. The
phenotypic covariance among character states in the
two environments is therefore undefined (Falconer,
1981, p. 284). However, for the purpose of dynamical
analysis, we can take P,,=0 because selection
operates independently in each environment. The
phenotypic covariance matrix, P, can thus be written
as

_(Py 0)
p=(" ).

(i) Dynamics of the genetic covariance structure

The matrices of allelic effects on the character states
can be altered by four forces: stabilizing selection
within each environment, disruptive selection between
environments, mutation and recombination. Each of
these will be considered in turn in order to formulate
an expression for the evolutionary change in C,,
and thus in G, that is expected each generation.

(1) Stabilizing selection within each environment.
To approximate the action of weak stabilizing
selection, a Gaussian form is assumed for the
fitness function in the kth environment: w,(z,)
= exp { —(zx —0.)%/2w}, where 8, is the phenotypic
optimum in the kth environment and w,, is the width
of the stabilizing selection function for the character
state expressed in environment k.

Using the partial regressions of allelic effects on the
phenotype expressed in each environment (Lande,
1977, 1980), the net effects of stabilizing selection over
all environments on the covariance matrix of allelic
effects at loci i and j can be written as

2

kz_:l —q,C (W, +P)IC,, T €))

where we define

w? 0 w 0
W, = ( 0‘ oo) and W, = ( 0 o ) @)
2

The off-diagonal elements of W, are zero because
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selection acts independently in each environment and
the width of the fitness function for the unexpressed
character state in each environment is co because that
character state is not exposed to selection.

(2) Disruptive selection between environments. For
the panmictic population considered here, the distrib-
ution of genotypic values before selection is identical
in both environments because individuals are assumed
to enter the environments at random. Even though
each individual expresses only one of the two possible
character states, the genotypic values of the unex-
pressed character state in each environment can
change by correlated response to selection on the
expressed character state (Via & Lande, 1985).
Differences in selection between environments will
cause the vectors of mean genotypic values to differ in
each environment after selection. Then, when indivi-
duals from all environments mix in the random mating
pool, any differences in the vectors of genotypic values
among groups selected in different environments will
increase the genetic variances in the mating pool. For
the two-environment case, the effect of disruptive
selection on the matrix of allelic effects is written as

Dy; = ¢, (X} —xF@) (xF O —xF@)T )

with superscripts indicating the environment in
which selection is occurring and asterisks denoting a
value after stabilizing selection. Thus, X,*V = (X;,*®,
X;,*®)7 is the vector of mean allelic effects at the
ith locus in the first environment after stabilizing selec-
tion.

Using the fact that selection acts independently in
each environment, the difference in mean allelic effects
between portions of the population that are selected
in different environments can be calculated by
subtracting the regressions of allelic effects at the ith

locus on the total genotypic value (X = 2X x;) in each
i

of the two environments (Lande, 1977, 1980):

X, * —X,*® = yi(l) + Ciz(;—l[y*(l) —xD] _',{i(z)
—C,GR*® —X). (6)

In a panmictic population with random dispersal, the
mean allelic effects in each environment before
selection are identical, X,V = x; (. For soft selection,
the overall mean fitness of the population can be
defined as W = W @ W,9%:, where W, is the mean
fitness in the kth environment (Via & Lande, 1985).
Defining the gradient operator V =(V,, V,)" =
(8/0%,, 0/8%,)T, we have Vin W, = G }(x*®) —x()
(Lande, 1979). Because fitness in each environ-
ment depends only on the character state that is ex-
pressed there, VIn W, = (V,In W,,0)Tand VIn W, =
(0, V,In W,)7, and (6) can be re-written as

X ¥ X, *®@ = C,[VIn Wl— Vin Wz]

-<[("5") G mw)] @
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Multiplying this result as in equation 5 yields
Dy = ¢,9.C;,
[ (V,In W)z _VilnWV,In P_Vz]c T @®
L-V,In#,V,In#, (V,1n W,)? iz

where V.In W, = (0, —z,)/(w,2+ Py,) for the
Gaussian fitness function.

The effect of disruptive selection between environ-
ments on the dynamics of the genetic covariance
structure is completely accounted for by D;;. Equation
8 illustrates that when the mean phenotype vector of
the population is at the joint optimum, the effect of
disruptive selection vanishes because V, In W, = 0 for
all k. Although the action of disruptive selection
always increases the genetic variances, (8) also shows
that the direction of change in the covariance depends
on the relative signs of the forces of selection in the two
environments: selection of the two character states in
the same direction in both environments decreases the
genetic covariance between the states, while the genetic
covariance increases when the character states are
selected in opposite directions in the two environments
(see example in Fig. 1). Thus the changes in the genetic
covariance between the two character states that are
produced by disruptive selection are opposite to those
that would facilitate evolution of the mean phenotype.

(3) Mutation. Mutations of small effect are assumed
to produce an approximately multivariate normal
distribution of allelic effects that is centred on the
current mean allelic effect. Because a symmetric
distribution of allelic effects is postulated, pleiotropic
mutations influence the genetic covariance among
character states but leave the covariance due to linkage
disequilibrium unaffected. Mutation rates are assumed
to be constant and equal for all alleles at a given locus
although the rates may vary among loci. The 2x2
covariance matrix of mutational effects for alleles at
loci i and j in gametes can therefore be written as

where J,; = 1 for i = j, and J;; = 0 for i #; (Lande,
1980). Models for estimation of the equilibrium
genetic variance under mutation-selection balance
that do not assume a Gaussian distribution of allelic
effects have been formulated (Turelli, 1984), but
dynamical equations based on such models are not
currently available. To justify an approximately
Gaussian distribution of allelic effects at each locus,
we assume that stabilizing selection is weak and
per-locus mutation rates are high (Turelli, 1984).

(4) Recombination. The recombination fraction
between loci i and j is defined as r;; > 0 for i # j, and
r; = 0. As described in Lande (1980), recombination
reduces the magnitude of covariance of allelic effects at
loci iand j such that the contribution of recombination
to A4Cy; is

(10)

—ryCy
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From these four classes of terms (equations 3, 8, 9,
10) the change per generation in the covariance
matrices of allelic effects for the two-environment case
is

4C;; = —q,Ci, (W, + P)!C,,7

—¢,Ci,(Wy+P)1C;, T+ D+ 0,U; —ryCyy. - (11)

The first two terms correspond to the weighted effects
of stabilizing selection in the two environments, the
third term is the effect of disruptive selection on the
mean phenotype expressed in different environments,
the fourth is the effect of mutation, and the last is the
effect of recombination.

From equation (11), the dynamics of the genetic
covariance matrix for an arbitrary number of loci that
contribute equally to the phenotypic variance, have
equal mutational parameters (U; = U), and between
which there is free recombination (r;; = 4, for i # ) is
written as

In this symmetrical case, C;, = C;, and D;; = D;; = D,
so substituting (11) into (12),

4G = 2n[—nq,Ci,(W, + P)7'C;,T—ng,Ci (W, + P) !
“Cy,"+U—[(n—1)/2]Cy;+nD]. (13)

(iii) Equilibrium genetic variance

Genetic correlation between character states not + 1.
When |G| # 0, that is, when the genetic correlation
between the character states is not + 1 and both states
have non-zero genetic variance, the optimum mean
phenotype in each environment will eventually be
attained by the population. When the mean phenotype
vector is at the joint optimum, there is no force of
directional selection on the population, that is,
Viln W, =0 for k = 1, 2 and D;; vanishes from (11).
Thus disruptive selection between environments is not
expected to contribute to the equilibrium genetic
variance maintained in a population that has attained
the joint optimum phenotype; in such a situation, the
equilibrium solution for (11) is determined by a
balance between pleiotropic mutation, recombination
and the total force of stabilizing selection over all
environments. Under weak selection (w,2> Py,) and
loose linkage, C;; ~ C,, and (11) has an approximate
solution of the form derived by Lande (1980),
C,; ~ WHW-1UW-i wi (14)
where W is constructed as a weighted sum of the
matrices for the individual fitness functions for each
environment such that W=t = ¥ g, Wil W is thus a
k

diagonal matrix with elements w,?/q,. When the

A
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mutational variances of the character states expressed
in each environment are the same, we can write

v=u(y 1)

where B is the correlation of pleiotropic mutational
effects on the character states. In this section, |f| is
assumed to have a magnitude less than unity. For
simplicity, we also assume that w, =w,=w,
P,=P,,=P, and q, =q, =13 Then, substituting
(15) into (14), the equilibrium matrix of allelic effects
for the ith locus is
2uw?

Cy~ v 5

[x/(1+ﬂ)+\/(1—ﬂ) VU+p—-v(1-P)

Lv+p—v(1-5 v({I+h+v(1-p)

From (16a), the observed genetic correlation, y, can be
written as

Y= [VIA+H)—-v(I-BI/IVI+H+vV(1-p)
=pB/1+v(1-p)

For reasons explained in the Appendix, the equilib-
rium genetic correlation in (165) will always be closer
to zero than is the correlation of mutational effects,
<8l <1

In the model discussed here, there is no selection for
the different character states to be correlated (W is
diagonal), but there can be correlation in the matrix
of mutational effects (8 # 0). It is of interest that
equation 16a is of the same form as the equilibrium
genetic structure derived by Lande (1984, equations
13a, b) when there is correlational selection (W not
diagonal) but the characters are genetically independ-
ent. Note, however, that the equilibrium variance here
is larger by a factor of 4/2 over that derived by Lande
(1984) for two characters expressed in a single
environment; in the present model, selection is
effectively weakened because only part (in this case,
one-half) of the population is selected in each
environment each generation.

Genetic correlation between character states is + 1.
When the genetic correlation between the character
states expressed in two environments is + 1, the joint
optimum phenotype may never be attained if the
population is introduced into a new environment or
the current environmental circumstances change (see
Via & Lande, 1985 for examples). When the popula-
tion mean deviates from the joint optimum phenotype,
V.In W, # 0, disruptive selection between environ-
ments contributes to the equilibrium genetic variance
(equations 8, 11). In the derivation of the equilibrium
genetic variance for this situation, the same assump-
tions of symmetry made in the formulation of (16) are
employed. At the point of equilibrium, the joint mean
phenotype is equally far from the optimum in each
environment, V, In W, = —¢V, In W,, where & =41

(15)

]. (16a)

(165)
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Fig. 1. Time course of change in the additive genetic
variances of character states expressed in different
environments or the additive genetic correlation between
the character states following perturbations of the mean
phenotype vector from the joint optimum. The changes in
the genetic variance and genetic correlation over time are
shown as a proportion of the equilibrium values
[(G(H—G)/G, (y(£)—$)/7). Insets indicate the direction of
evolution of the mean phenotype vector after a
perturbation along either the major axis (A, C) or the
minor-axis (B, D) of the genetic variation. Location of the
mean phenotype immediately following the perturbation is
denoted by the asterisk. In all cases the equilibrium
genetic correlation is $ = 0-78, and because the examples
are highly symmetrical (see text) the equilibrium

has the same sign as the genetic correlation between
character states; that is, the forces of selection in the
two environments are of equal magnitude but are
directed perpendicular to the axis of the genetic
correlation. When selection is weak, W ~ W+ P, and
when the genetic correlation between the character
states is +1,

1 ¢ L 1 ¢
CizzCﬁ=c(£ l) and for i #J, Ci?'_b(g 1)

an
where b is a constant reflecting the magnitude of
variance due to linkage disequilibrium. At equilib-
rium, when 4C;; = 4C;; =0, (11) becomes

c2<l 6‘) rl (co‘2 0)_(V1 In W,)2 (l 8)]
e 1/12\0 w™? 4 e 1
1 ¢ 1 ¢
. = =3I 1
(e ]) u(e 1) fori=jand (18a)
2(1 a) 1 (ar2 0) _(Vl In W,)? (] s)]
¢ e 1/12\0 w2 4 e 1

.(1 g)z_b(' 8) fori#j. (18b)
e 1 e 1

The two terms inside the square brackets correspond
to the forces of stabilizing and disruptive selection,
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heritability is the same for the character states expressed
in each of the two environments, A2 = 0-42. The
environments have equal frequency, and the characters
are equally variable, influenced by 10 equally mutable
pleiotropic loci with free recombination. The magnitude
of the perturbations (noted on the insets as d) are in units
of phenotypic standard deviations (¢,): in A and C,

6 = 330, while in B and D the perturbation that
produced roughly the same increase in the genetic
variance was only = 4-3¢,,. Although a perturbation in
any direction temporarily increases the genetic variance
(A, B), the sign of the change of the genetic correlation
depends on the sign of the equilibrium genetic correlation,
7, and the direction of the perturbation (C, D).

respectively. Equating (184) and (185) allows us to
conclude that at equilibrium b = —2u, which is
consistent with the magnitude of linkage disequilib-
rium predicted for the one character case (Bulmer,
1980, p. 178).

Assuming that u # 0, the equilibrium variance can
be approximated by multiplying (18a) to yield four
identical equations with the solution

uw?

€= «/ I —w*(V,In W,)* (194)
With Gaussian fitness functions, V,In W, ~—(z,
—0))/w?. The equilibrium mean phenotype is a
function of the initial conditions: Zz, =3[z, (0)
—&7,(0)+ (6, +¢6,)]. Using this expression for Z,
the solution in (19) can be written in terms of initial
conditions as

2 u
c=e ~/ (B0 -0 =G 0

If the width of the fitness function () is not very small
or the equilibrium mean phenotype is not very far
from the optimum, (z, —6,)? < w?, the denominator in
(19) will be positive and less than unity. Then c in (19)
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will be larger than the diagonal elements of C;; in (16)
for genetic correlations close to 1, illustrating the
increase in genetic variance expected from disruptive
selection between environments that persists at
equilibrium in this special case.

It should be noted that our formulae (18, 19) assume
weak selection and break down in the case of no
mutation, u# =0, because of the approximation
W~ W4+P. Bulmer (1980, ch. 10) analysed more
precisely the maintenance of genetic variability by
disruptive selection on a single character in the
two-niche model in the absence of mutation. In
agreement with Felsenstein (1977), Bulmer (1980)
found that in the absence of mutation, variance due
to linkage disequilibrium was zero, that is, when u = 0
b=0.

(iv) Transient effects of disruptive selection on the
genetic covariance

When a population is perturbed away from the joint
optimum, the genetic variance will increase and the
genetic covariance between the character states will be
changed by the force of disruptive selection between
environments as described in (8). In order to estimate
the maximum genetic variance attained by populations
that are perturbed from the phenotypic optimum and
to track the effect of the decreasing D,; term on the
genetic covariance matrix, the dynamics of G were
studied numerically. For the numerical examples, (11)
was coupled to equations describing the evolution of
the mean phenotype (Via & Lande, 1985, Equation 5).
The numerical examples were started with the mean

0-10 ~
(A) y=078

0 T

10 20

30

Perturbation of mean phenotype from optimum (ap)

Fig. 2. The maximum increase expected in the genetic
variance following perturbations of the mean phenotype
of different magnitudes and directions, expressed as a
proportion of the equilibrium genetic variance

[(Gmax —G)/G]. For each of three values of the genetic
correlation (j = 0-78, 0-38, 0), the proportional increase in
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phenotype at various distances from the optimum on
one of the eigenvectors of the dynamical system
for the mean phenotype, y, = (1/v/2)(1, 1)7 or
¥, = (14/2)(1,—1)7 (Via and Lande, 1985). Initially,
G was at equilibrium values that were estimated by
iterating (11) with the mean phenotype at the optimum
until the variance in successive generations was stable
to 5 decimal places; in these symmetrical examples,
G, =G, =G, q,=¢q, =14 and 10 equally mutable
loci with free recombination contributed to the
variability.

Results of the numerical studies indicate that when
populations at the equilibrium genetic covariance
structure are perturbed from the phenotypic optimum,
the genetic variance increases to a maximum and then
declines gradually back to the equilibrium value (Fig.
1 A, C). The genetic correlation between the character
states also changes temporarily (Fig. 1 B, D). The sign
of this change in the genetic correlation depends both
on the sign of the equilibrium genetic correlation, 7,
and the direction of the perturbation of the mean
phenotype. Often, the equilibrium genetic covariance
matrix will not be re-attained until many generations
after the mean phenotype has already reached its
optimum.

In most cases the mean phenotype can be perturbed
a considerable distance from the phenotypic optimum
before disruptive selection causes an increase in
genetic variation or a change in the genetic correlation
of more than a few per cent (Fig. 2). Fig. 2 also shows
that for Gaussian fitness functions, the maximum
increase in genetic variance due to disruptive selection
expressed as a proportion of the equilibrium variance

the genetic variance for perturbations in the directions of
the major and minor axes of the genetic variation (see
insets for Fig. 1A and B) are shown as solid and dotted
curves, respectively. When § = 0, these curves are
coincident.
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[(G max — G)/G] increases rapidly as the deviation from
the optimum becomes greater; this is expected from
(8). Finally, Fig. 2 illustrates that for 770, the
maximum amount of change in the genetic variance
during re-adaptation of the mean phenotype is much
greater for perturbations of the mean in the direction
of the minor axis of the genetic variation (against the
genetic correlation) than it is for perturbations of the
same magnitude in the direction of the major axis of
the genetic variation.

Unequal mutational parameters for different loci. To
determine whether asymmetry in mutational parame-
ters across loci could produce a qualitative change in
the results of the numerical examples discussed above,
equation (11) was iterated for an additive genetic
correlation of zero (§ =0), produced by summing
mutational effects over two classes of loci: five loci had
B =+0-5, and five loci had f = —0-5. If selection in
a given direction were to produce more rapid change
in the covariance structure for one class of loci than
for the other, it would be noted as a difference between
the dynamics of G for the symmetrical and asymmet-
rical cases (both with $ = 0). No such difference was
found in numerical examples in which two character
states were selected to change either in the same
direction or in different directions. Thus the results of
the symmetrical cases illustrated in Figs. 1 and 2 are
robust with respect to differences among loci in
mutational parameters.

3. Discussion

The effect of a heterogeneous environment on genetic
variability is a classical problem in population
genetics. Single-locus genetic models suggest that
polymorphism may often be maintained by spatial
variation in selection (reviewed in Hedrick et al. 1976;
Felsenstein, 1976). The models presented here extend
the classical ‘multiple-niche’ models of evolution in
variable environments in two ways: (1) we consider
selection on quantitative (polygenic) traits instead of
only the fitnesses of single-locus genotypes, and (2) we
describe the dynamics of genetic variability in addition
to the evolutionary equilibria.

We consider a simple 2-environment situation and
regard a character expressed in these two environ-
ments as a pair of genetically correlated character
states (Falconer, 1952; Via, 1984b; Via & Lande,
1985). In the coarse-grained model discussed here, any
individual experiences only one environmental type
and expresses only one of the possible character states.
Each character state is independently selected toward
an intermediate optimum phenotype in the environ-
ment in which it is expressed.

Under certain special conditions, the magnitude of
the genetic correlation between character states
expressed in different environments can affect the
equilibrium genetic variability that is maintained in a
polygenic trait under selection in a spatially variable
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environment. If the genetic correlation between the
character states expressed in different environments is
+ 1, the joint optimum phenotype will not be attained
and there will be a persistent force of disruptive
selection to move populations in each environment
closer to the optimum phenotype for that habitat type.
In such a circumstance, the genetic variance that
would be maintained by balance of mutation and
stabilizing selection within each environment is
augmented by the effect of disruptive selection
between environments (equations 18, 19). This result
was also obtained by Felsenstein (1977), Slatkin
(1978) and Bulmer (1980, ch. 10). The amount by
which the equilibrium genetic variance is augmented
by such a force of disruptive selection increases
non-linearly (equation 19) with the distance of the
equilibrium mean phenotype vector from the joint
optimum.

In contrast, if the genetic variances of both the
character states are greater than zero and the genetic
correlation between the states is not + 1, the average
phenotype expressed in each environment will event-
ually reach the optimum value (Via & Lande, 1985).
The equilibrium genetic variances of the two character
states are then determined by a balance between
mutation and the forces of stabilizing selection acting
within environments (equation 16). For a pair of
character states under independent forces of selection
that are less than perfectly genetically correlated, there
is thus no unique effect of disruptive selection in a
heterogeneous environment on the genetic covariance
structure of the character states; in such a case, the
equilibrium in (16) is of a form identical to that for
genetically distinct (not mutually pleiotropic) traits
that experience selection to become correlated (Lande,
1984, equation 134, b).

The occurrence of perfect genetic correlations among
character states is an empirical problem. At present,
few studies of natural populations exist that have
estimated the genetic correlations between character
states expressed in different environments (Via,
1984b; Weber, 1985; Shaw, 1986; Futuyma, personal
communication). Unfortunately, experimental studies
of this issue will require very large sample sizes to
statistically distinguish high from perfect genetic
correlations among character states.

If changes in the environment occur that alter the
phenotypic optimum in any environment, the genetic
covariance structure can be expected to change
temporarily as a result of the action of disruptive
selection between the environments (equations 8, 11).
After such a perturbation, genetic variances will
increase and, for a positive (negative) genetic
correlation, the genetic covariance between character
states will decrease (increase) if the character states in
the two environments are selected in the same
direction or increase (decrease) if they are selected in
different directions. As shown in Fig. 1, the change in
the genetic correlation between character states that is
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caused by disruptive selection between environments
is opposite to that which would facilitate the evolution
of the joint mean phenotype. Thus disruptive selection
does not break unfavourable genetic correlations
among character states expressed in different environ-
ments; rather, disruptive selection between environ-
ments acts to reduce favourable genetic correlations
among character states and thereby to increase
constraints on the evolution of the average phenotype.

Unlike single-locus models with only two alleles, the
mean and the variance in quantitative genetic models
are not completely determined by a single allele
frequency, and can be assumed to evolve nearly
independently. Thus one assumption of our models is
that a perturbation of the mean phenotype vector from
its joint optimum does not alter the effect of stabilizing
selection within environments on the dynamics of the
genetic variance (equations 3, 13). After a perturbation
of the mean phenotype vector, the dynamics of G are
determined solely by the approximately quadratic
decay of the force of disruptive selection between
environments as the mean phenotype vector moves
towards the joint optimum (equation 8).

Numerical investigations of the dynamics of the
genetic covariance matrix (equation 13) suggest that a
population at the equilibrium genetic variance and
covariance can experience a single perturbation of the
mean phenotype vector by several phenotypic stand-
ard deviations from the joint optimum in most
directions without an increase in the genetic variance
or a change in the genetic correlation between the
character states of more than a few per cent (Figs.
1, 2). The magnitude of the change in G for a given
perturbation depends critically on the value of the
genetic correlation between the character states; when
the genetic correlation is not zero, evolution of the
Joint mean phenotype ‘against’ the genetic correlation
(along the minor axis of genetic variation) will proceed
more slowly than will evolution in the other direction.

The numerical examples in Fig. 2 suggest that the
genetic covariance structure can be expected to remain
nearly constant through time if the phenotypic
optimum and the width of the fitness function (w) are
relatively stable and populations are perturbed only
rarely and by moderate amounts. Under such
circumstances, the dynamics of evolution of the joint
mean phenotype in a large population inhabiting a
heterogeneous environment may be reasonably de-
scribed by models that assume a constant genetic
covariance matrix (e.g. Via & Lande, 1985). If,
however, the phenotypic optimum in any of the
environments experienced by a population frequently
shifts, or if the population is often perturbed more
than a few standard deviations in a direction against
the genetic correlation (see Fig. 1), the transient
increases in the genetic variances caused by disruptive
selection could accumulate. We analysed the transient
effects of only a single episode of disruptive selection.
The extent to which the cumulative effects of repeated
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episodes of disruptive selection between environments
may affect the genetic variability in natural popula-
tions is an empirical problem which will require
long-term studies of natural selection and population
structure in heterogeneous environments.
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Appendix

In this model there is no selection for the character
states expressed in different environments to be
correlated because selection is assumed to operate
independently in each environment. Nonetheless,
stabilizing selection within environments does act to
change the genetic covariance between the character
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states. Following the derivation in Lande (1977, p.
494), with equal strengths of stabilizing selection in
two environments (0, = W, = W), ¢, = ¢, = 1, y as the
additive genetic correlation between the character
states, and v as the proportional decrease in the genetic
variance in each environment after selection, the
genetic variances after selection (denoted by asterisks)
are

Gy * = Gyo* = H(1 —0)+ (1 —0p»)]Gy, (AT)
= [1-(@/2)(1+)]G,,

and

Gp* = H(1—0)+ (1 —0))G,, A2

= (1-v)G,,

Thus, the genetic covariance between the character
states expressed in different environments decreases as
a result of forces of stabilizing selection acting
independently on each character state within environ-
ments. Equations A1 and A 2 illustrate that for
|y] <1, the covariance between the character states
actually decreases faster than the variance, because
the covariance is affected equally by stabilizing
selection in both environments, while the variance of
each character state decreases less in the environment
where it is not expressed.
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