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Abstract In this paper, we construct the first examples of complex surfaces of general type with

arbitrarily large geometric genus whose canonical maps induce non-hyperelliptic fibrations of genus
g = 4, and on the other hand, we prove that there is no complex surface of general type whose canonical

map induces a hyperelliptic fibrations of genus g > 4 if the geometric genus is large.
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210 X. Lü

1. Introduction

Let S be a smooth projective surface of general type over C and KS its canonical divisor.

Denote by φn the map determined by the complete linear system |nKS|. We call φ1 the

canonical map, and φn (n > 2) the pluri-canonical maps of S.

Much progress has been made in the study of the pluri-canonical maps; see for instance,

Reider’s method [15]. However, the case of canonical map is different. Most of the methods

used in the study of the pluri-canonical maps are no longer valid. In [2], Beauville first

studied the canonical map systematically.

In this paper, we are mainly interested in the case when the image of the canonical map

is a curve, in which case we say that S admits a canonical fibration or S is a canonically

fibered surface. In fact, by blowing up the possible base points of the rational map φ1 and

the Stein factorization, one obtains a fibration f : X → B, which is called a canonical

fibration following Sun [17]. Denote by g the genus of a general fiber.

S

φ1
��

Xoo

f
��xx

Ppg(S)−1 oo ? _Σ Boo

The following result was established in [2].

Theorem 1.1 (Beauville). If S admits a canonical fibration of genus g and χ(OS) > 21,

then 2 6 g 6 5, and

K 2
S > 3pg(S)− 6.

In the same paper, Beauville also constructed examples of canonically fibered surfaces

with g = 2 and 3, where the geometric genus can be arbitrarily large. See also [3, 14, 19,

20, 25, 26] for such examples. We also refer to [13] for a systematical study of canonically

fibered surfaces with g = 2. In [20], Xiao improved the above inequality in the case when

g = 2 (with one exception where S is minimal with K 2
S = 1 and pg(S) = 2):

K 2
S > 4pg(S)− 6, if g = 2.

In fact, the above inequality holds for all canonically fibered surfaces, cf. [23, 24]. The

following questions arise naturally (cf. [21, Problem 6]).

(1) Does there exist any surface of general type with a canonical fibration of genus

g = 4 or 5 with arbitrarily high geometric genus.

(2) When S admits a canonical fibration of genus g, find the largest c(g) such that

K 2
S > c(g) · pg(S)+ some constant.

As mentioned above, Xiao proved that c(2) = 4. Beauville showed in [2] that c(g) >
2g− 2. More precisely, he proved

K 2
S > (2g− 2)(pg(S)− 1).

In [16, 17], Sun proved that
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Theorem 1.2 (Sun). (i) If S admits a canonical fibration of genus g and pg(S) > 2g−
2, then

K 2
S >

(
2g− 2+

2g− 2
2g− 1

)
(pg(S)− 1)−

8(g− 1)2

2g− 1
.

(ii) If S admits a canonical fibration of genus g = 3, then

K 2
S > 21

4 pg(S)− 71
6 .

(iii) If S admits a canonical fibration of genus g which is hyperelliptic, then

K 2
S >


2
(

g−
1
g

)
(pg(S)+ 1)− 8(g− 1) if g(B) = 0,

2
(

g−
1
g

)
pg(S) if g(B) = 1.

In particular, there is no surface of general type admitting a hyperelliptic canonical

fibration of g = 5 if either g(B) = 1 or pg(S) > 53− 15q(S).

Very recently, Chen [5] studied the non-hyperelliptic canonical fibration of genus 5,

which together with Sun’s result confirms that there is no surface of general type with

a canonical fibration of genus g = 5 if either g(B) = 1 or pg(S) > 1952. However, it has

been always mysterious whether there exists a surface of general type with a canonical

fibration of genus g = 4 or not.

Our main results are the following.

Theorem 1.3. (i) There exist a sequence of surfaces of general type with arbitrarily

large geometric genus which admit non-hyperelliptic canonical fibrations of genus

g = 4.

(ii) There exists no surface of general type which admits a hyperelliptic canonical

fibration of genus g > 4 if either g(B) = 1 or pg(S) > 212− 72q(S).

Remarks 1.4. (i) Together with Chen’s result [5], our examples settle the question of

which genera can appear in a canonical fibration.

(ii) It is not difficult to construct surfaces of general type which admit hyperelliptic

canonical fibrations of genus g = 2 or 3 as remarked above; see also Example 4.10.

Hence the bound on the genus appearing in a hyperelliptic canonical fibration is

sharp.

Outline of the exclusion of hyperelliptic canonical fibrations of genus g > 4. Let S be

a surface admitting a hyperelliptic canonical fibration, and f : X → B be the induced

fibration of curves of genus g > 2. It is well known that the base B is either elliptic or

rational. The technique differs in these two cases.

In the case when B is elliptic, the relative canonical divisor K X/B = K X . Hence one

deduces a decomposition (announced in [7], and a complete proof can be found in the

recent paper [4])

f∗OX (K X ) = L⊕F ,
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212 X. Lü

where L is an ample line bundle on B with h0(L) = pg(S), and F is a unitary subbundle

on B with rankF = g− 1. We will show that, up to a suitable étale base change, F
becomes trivial (cf. Proposition 4.1). Together with the slope inequality for hyperelliptic

fibrations with positive relative irregularity (cf. [9, Theorem 1.4]), we prove that

Theorem 1.5. Assume that S admits a hyperelliptic canonical fibration of genus g. If the

base B is elliptic, then g 6 3, and

K 2
S >

{
4pg(S) if g = 2,
8pg(S) if g = 3.

(1.1)

If the base B is rational, then we do not have such a decomposition for f∗OX (K X ), and

the above technique does not work any more. Write

K X = Z +M = D+ V +M,

where D (resp. V ) is the horizontal (resp. vertical) part of the fixed part Z contained in

|K X |, and M is the moving part. It is clear that M ≡ (pg − 1)F , where F is a general

fiber of f . To obtain a lower bound on K 2
S , it suffices to bound the canonical degree of D,

i.e., the intersection K X D, from below. This will be done by applying the hyperelliptic

involution on X together with the Riemann–Roch theorem on the associated ruled surface

(cf. Lemmas 4.5 and 4.7). As a consequence, we show that

Theorem 1.6. Assume that S admits a hyperelliptic canonical fibration of genus g. If the

base B ∼= P1, then

K 2
S > 3(g− 1)

(
pg(S)− 2

)
. (1.2)

Remarks 1.7. (i) The idea of bounding the canonical degree of D using the

hyperelliptic involution on X and the Riemann–Roch theorem on the associated

ruled surface goes back to Sun [16, 17]. In fact, Sun has studied in [16] the case

when the horizontal fixed part D = (2g− 2)C with C being a section of f , and

obtained the same bound (1.2) in this special case.

(ii) The inequality (1.2) together with (1.1) improves Sun’s bound in the case when

S admits a hyperelliptic canonical fibration of genus g = 3. When g = 2, (1.1) has

already been proved by Xiao [20]; while (1.2) is weaker than Xiao’s.

Combining the above bound together with the logarithmic type Miyaoka–Yau

inequality for surfaces of general type, we exclude the existence of a surface of general

type with a hyperelliptic canonical fibration over P1 of genus g > 4.

Organization. Our paper is organized as follows. In § 2, we do some preliminaries and

introduce the notations. In § 3, we construct a sequence of surfaces of general type which

admit non-hyperelliptic fibrations of genus g = 4. In § 4, we exclude the existence of

surfaces of general type with a hyperelliptic canonical fibration of genus g > 4 along the

idea illustrated above.
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Figure 1. Canonical fibration.

2. Preliminaries

In this section, we recall some facts and fix the notations.

We always work over the complex number. By a surface we mean a smooth projective

two-dimensional variety, and by a curve in a surface we mean a reduced one-dimensional

subvariety. An integral divisor (or simply a divisor) is a finite sum
∑

ni Ci , where Ci ’s

are irreducible curves and ni ∈ Z. A rational divisor is a finite sum
∑

ri Ci , where Ci ’s

are irreducible curves and ri ∈ Q. A divisor D =
∑

ni Ci is said to be effective, denoted

by D > 0, if ni > 0 for any i ; it is said to be nef (numerically effective) if DC > 0 for any

irreducible C in the surface. Linearly and numerically equivalent relations between two

divisors will be denoted by ‘≡’ and ‘∼num’, respectively. Similar notions apply also to the

rational divisors.

Let S be a smooth projective surface of general type over C and KS its canonical

divisor. Denote by pg = h0(KS) the geometric genus, by q = h1(KS) the irregularity, and

by χ = χ(OS) the Euler characteristic of the structure sheaf. The canonical map, denoted

by φ1, is the map determined by the complete linear system |KS|.

We are interested in the canonically fibered surfaces, i.e., the surfaces whose canonical

map has one-dimensional image. By Stein factorization and minimal blowing up the

possible base points, we obtain a relatively minimal fibration f : X → B of genus g > 2,

which we call a canonical fibration following Sun [17], see Figure 1.

It is well known that the base B is either rational or elliptic. Xiao proved in [19] that

either g(B) = q = 1, or g(B) = 0 and q 6 2. Let Z be the fixed part of |K X |, and F be

a general fiber of f . Then there exists an effective divisor Z on X , and a line bundle L
on B with pg = h0(L), such that

K X = Z + f ∗(L) ∼num Z +
(

pg − 1+ g(B)
)
F,

and that

f∗OX (K X ) = L⊕F0, (2.1)

where F0 is a locally free sheaf on B with rankF0 = g− 1 and h0(F0) = 0.

When the fibration f induced by the canonical map is hyperelliptic, we say S has a

hyperelliptic canonical fibration. In this case, the hyperelliptic involution on the general

fiber of f realizes the surface X (up to the blowing-up of the isolated fixed points of

hyperelliptic involution) as a double cover of a ruled surface.

We end this section by the following observation, which will be used to prove

Theorem 1.6 in § 4.2.
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Lemma 2.1. Let ρ : P̃ → P be a sequence of blow-ups of a geometrical ruled surface

ϕ : P → B. Let ϕ̃ = ϕ ◦ ρ : P̃ → B be the induced fibration and 0̃ ⊆ P̃ a general fiber of

ϕ̃. Then for any irreducible curve C̃ ⊆ P̃ with α := C̃ · 0̃ > 0, one has

h0(C̃ + d0̃) > χ(OP̃ )+ (α+ 1)d + 1
2 (C̃

2
− K P̃ · C̃)

= 1− g(B)+ (α+ 1)d + 1
2 (C̃

2
− K P̃ · C̃). (2.2)

Proof. This follows directly from the Riemann–Roch theorem. In fact, since (K P̃ − C̃ −
d0̃) · 0̃ = −3 < 0, one has

h2(C̃ + d0̃) = h0(K P̃ − C̃ − d0̃) = 0.

Hence

h0(C̃ + d0̃) > χ(C̃ + d0̃)

= χ(OP̃ )+
1
2 ((C̃ + d0̃)2− K P̃ · (C̃ + d0̃))

= χ(OP̃ )+ (α+ 1)d + 1
2 (C̃

2
− K P̃ · C̃).

This proves (2.2).

3. Non-hyperelliptic canonical fibration of genus g = 4

In this section, we will construct the first examples of surfaces of general type

with arbitrarily large geometric genus whose canonical maps induce non-hyperelliptic

fibrations of genus g = 4.

3.1. The construction

In this subsection, we construct a series of surfaces Sn fibered over P1.

Let P = P1
×P1, Dt = {t}×P1

⊆ P with t = 0, 1,∞, and 1 ⊆ P be the diagonal.

Let 90 : Y0 → P be the cyclic triple cover of P1 branched over D0+ D1+ D∞. Then

Y0 ∼= E ×P1, where E is the elliptic curve obtained by a cyclic triple cover πE : E → P1

branched over {0, 1,∞}. Let ϕ0 : Y0 → P1 be the projection. Denote by C0t ⊆ Y0 the

inverse image of Dt for t ∈ {0, 1,∞}, and by H0 ⊆ Y0 the inverse image of 1. Then

C0t · H0 = 1 for t ∈ {0, 1,∞}.
Let ψ1 : P1

→ P1 be the cyclic triple cover branched over {0,∞}, and Y1 = Y0×P1,ψ1
P1

the fiber product. Let ϕ1 : Y1 → P1 be the induced fibration. Denote by C1t ⊆ Y1 the

inverse image of C0t , and by H1 ⊆ Y1 the inverse image of H0. Then C11 intersects

H1 transversely at three points, which are mapped by ϕ1 to three different points

{q11, q12, q13} ⊆ P1.

Let ψ2 : P1
→ P1 be the cyclic triple cover branched over {q12, q13}, and Y2 = Y1×P1,ψ2

P1 the fiber product. Let ϕ2 : Y2 → P1 be the induced fibration. Denote by C2t ⊆ Y2 the

inverse image of C1t , and by H2 ⊆ Y2 the inverse image of H1. The inverse image ψ−1
2 (q11)

consists of three points, which we denote by {q21, q22, q23}.

Let ψ3 : P1
→ P1 be the cyclic triple cover branched over {q22, q23}, and Y3 = Y2×P1,ψ3

P1 the fiber product. Let ϕ2 : Y2 → P1 be the induced fibration. Denote by C3t ⊆ Y3 the
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inverse image of C2t , and by H3 ⊆ Y3 the inverse image of H2. The inverse image ψ−1
2 (q21)

consists of three points, which we denote by {q31, q32, q33}.

Continuing this process, we obtain a sequence of surfaces Yn together with divisors

{Cn0,Cn1,Cn∞, Hn} ⊆ Yn .

{Cnt , Hn}_�

��

· · ·_�

��

{C2t , H2}_�

��

{C1t , H1}_�

��

{C0t , H0}_�

��

{Dt ,1}_�

��
Yn

9n

3:1
//

ϕn

��

· · · //

��

Y2
92

3:1
//

ϕ2
��

Y1
91

3:1
//

ϕ1
��

Y0
90

3:1
//

ϕ0
��

P

pr2

��
P1 ψn

3:1
// · · · // P1 ψ2

3:1
// P1 ψ1

3:1
// P1 P1

By construction,

Yn ∼= E ×P1, ∀n > 0.

Moreover, Cnt is mapped to a point under the projection Yn → E for t ∈ {0, 1,∞}. Let

0n ⊆ Yn be a general fiber of ϕn . Note also that the curve E is just the elliptic curve

given by

y3
= x(x − 1),

and the cover πE : E → P1 is given by (x, y) 7→ x . Hence for any general x0 ∈ P1, one

has the following linear equivalence relation

π∗E (x0) ≡ RE ,

where RE ⊆ E is the reduced ramified divisor of πE . Hence for any general x0 ∈ P1,(
90 ◦ · · · ◦9n

)∗(
{x0}×P1)

=
(
91 ◦ · · · ◦9n

)∗(
9∗0 ({x0}×P1)

)
≡
(
91 ◦ · · · ◦9n

)∗(C00+C01+C0∞
)

= Cn0+Cn1+Cn∞,

and therefore,

Hn =
(
90 ◦ · · · ◦9n

)∗
(1)

≡
(
90 ◦ · · · ◦9n

)∗
(31+32)

=
(
90 ◦ · · · ◦9n

)∗
(31)+

(
90 ◦ · · · ◦9n

)∗
(32)

= Cn0+Cn1+Cn∞+ 3n0n,

where 31 = {x0}×P1
⊆ P and 32 = P1

×{x0} ⊆ P are the two general fibers on P.

When n > 1, let 0n1 ⊆ Yn be the fiber of ϕn over qn1. Then

Rn = Cn0+Cn1+Cn∞+ Hn +0n1

is 2-divisible. Hence we can construct a double cover

πn : Xn → Yn,
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branched exactly over Rn . By a minimal resolution of the singularities, we obtain a smooth

surface Sn . Moreover, Sn admits a fibration fn : Sn → P1 induced by ϕn , and the genus

of a general fiber of fn is g = 4.

Sn = X̃n

fn

��

��

π̃n // Ỹn

��
ϕ̃n

��

Xn

hn
��

πn // Yn

ϕn

��
P1 P1

3.2. The invariants

In this subsection, we will prove that the surfaces Sn ’s (n > 2) constructed in the last

subsection admit non-hyperelliptic canonical fibrations of genus g = 4. To this aim, we

first compute the invariants of Sn as follows.

Proposition 3.1. Let fn : Sn → P1 be the fibration constructed in the last subsection. Then

the following statements hold.

(i)

K 2
Sn
= 4(3n

− 4), χ(OSn ) =
1
2 (3

n
− 1). (3.1)

(ii)

q(Sn) = 1, pg(Sn) =
1
2 (3

n
− 1). (3.2)

(iii) Let Fn ⊆ Sn be a general fiber of fn. Then KSn −
3n
−3
2 Fn is effective and KSn is nef

if n > 2.

Proof. (i) As π is a double cover branched over Rn , we may assume that πn is determined

by

OYn

(
Rn
)
≡ L⊗2

n

for some suitable invertible sheaf Ln . To resolve the singularities of the double cover πn ,

we perform the canonical resolution.

Sn = X̃n X (t)
ηt //

π̃=π (t)

��

X (t−1) ηt−1 //

π (t−1)

��

· · ·
η2 // X (1)

η1 //

π (1)

��

X (0)

π (0)=π

��

Xn

Ỹn Y (t)
ξt // Y (t−1) ξt−1 // · · ·

ξ2 // Y (1)
ξ1 // Y (0) Yn

where ξi ’s are successive blowing-ups resolving the singularities of R(0) := Rn ; and the

map π (i) : X (i)→ Y (i) is the double cover determined by

OY (i)
(
R(i)

)
≡
(
L(i)

)⊗2

with {
R(i) = ξ∗i

(
R(i−1))

− 2[mi−1/2]Ei ,

L(i) = ξ∗i
(
L(i−1))

⊗OY (i) (−[mi−1/2]Ei ) ,
(3.3)
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where Ei ⊆ Y (i) is the exceptional divisor of the blowing-up ξi , mi−1 is the multiplicity of

the singular point yi−1 ∈ R(i−1), ‘[ ]’ stands for the integral part, and L(0) = Ln .

By the construction in the last subsection, the singularities of the branch locus Rn are

one of the following.

(1) The intersection between Hn and Cn0: Hn intersects Cn0 in exactly 3n−1 points,

each of which is a simple singularity of Hn of multiplicity 3. Hence each point in

Hn ∩Cn0 is a simple singularity of Rn of multiplicity 4. In fact, locally around an

intersection point of Hn and Cn0, the map 90 ◦ · · · ◦9n is given by

u = x3, v = y3,

and Hn (resp. Cn0) is given by x3
− y3

= 0 (resp. y = 0). Denote by En0 ⊆ Ỹn the

set of exceptional curves over Hn ∩Cn0. The local picture is as follows.

r
((((((((((((

Cn0

} Hn

An intersection point between Hn and Cn0.

(2) The intersection between Hn and Cn∞: this case is completely the same as the above

case. That is, Hn ∩Cn∞ consists also of 3n−1 points, each of which is a singularity

of Rn of multiplicity 4. Denote by En∞ ⊆ Ỹn the set of exceptional curves over

Hn ∩Cn∞.

(3) The intersection between Hn and Cn1, but not over {qn1, qn2, qn3}: there are

3n−1
− 1 points in

{
Hn ∩Cn1

}
\
{
ϕ−1(qn1+ qn2+ qn3)

}
, each of which is again a simple

singularity of Rn of multiplicity 4. The local situation is exactly the same as above,

so we omit the local computation. Denote by En1 ⊆ Ỹn the set of exceptional curves

over
{

Hn ∩Cn1
}
\
{
ϕ−1(qn1+ qn2+ qn3)

}
.

(4) The singularities over {qn1, qn2, qn3}: these are singularities of multiplicity of at

most three, which are negligible for the double cover. In fact, locally around an

intersection point of Hn and Cn1 over qn1, the map 90 ◦ · · · ◦9n is given by

u = x, v = y3,

and Hn (resp. Cn0, resp. 0n1) is given by x − y3
= 0 (resp. y = 0, resp. x = 0). The

rest singularities can be worked out similarly, and the resulted picture looks as

follows.

r
r
r

over qn1

Cn0

Hn

Cn1

Cn∞

xn0

xn1

xn∞

r
r
r

over qn2

Cn0

Hn

Cn1

Cn∞

yn0

yn1

yn∞

r
r
r

over qn3

Cn0

Hn

Cn1

Cn∞

zn0

zn1

zn∞
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Let R̃n = R(t) ⊆ Ỹn be the branch locus of π̃ , and ξ := ξ1 ◦ · · · ◦ ξt : Ỹn → Yn the

composition of the blowing-ups. Then by the formulas for double covers (cf. [12, § 1]),

one gets that (where E = En0+ En1+ En∞)

K 2
Sn
= 2

(
KỸn
+

1
2 R̃n

)2
= 2

(
ξ∗
(
KYn +

1
2 Rn

)
− E

)2

= 4(3n
− 4);

χ(OSn ) = 2χ(OỸn
)+ 1

4

(
KỸn
+

1
2 R̃n

)
· R̃n

= 2χ(OYn )+
1
4

(
ξ∗
(
KYn +

1
2 Rn

)
− E

)
·
(
ξ∗(Rn)− 4E

)
=

1
2 (3

n
− 1).

This proves (3.1).

(ii) Since χ(OSn ) = pg(Sn)− q(Sn)+ 1, it suffices to prove q(Sn) = 1 in view of (3.1).

Note that Yn ∼= E ×P1 by construction. It follows that

q(Sn) > q(Yn) = 1.

On the other hand, the direct computation shows that the geometric genus of Fn1 is

g(Fn1) = 1, where Fn1 is the fiber of fn over qn1. Hence the geometric genus of Fn1 is

g(Fn1) = 1. Thus by [8, Lemma 4.1],

q(Sn) 6 g(Fn1) = 1.

Therefore, q(Sn) = 1 as required.

(iii) Let E ′n0 ⊆ Ỹn (resp. E ′n∞ ⊆ Ỹn) be the exceptional curve over xn0 (resp. xn∞), and

E ′n1 ⊆ Ỹn be the union of the exceptional curves over {xn1, yn1, zn1}. Denote by Cnt ⊆ Ỹn
the strict transform of Cnt for t ∈ {0, 1,∞}. Then by construction, we have

Cnt = ξ
∗(Cnt )− Ent − E ′nt , ∀t ∈ {0, 1,∞}.

Note also that

KYn +
1
2

Rn ≡ Cn0+Cn1+Cn∞+
3n
− 3
2

0n .

Let E = En0+ En1+ En∞, E ′ = E ′n0+ E ′n1+ E ′n∞, and 0̃n ⊆ Ỹn be a general fiber of ϕ̃. Then

KSn = π̃∗n

(
KỸn
+

1
2

R̃n

)
= π̃∗n

(
ξ∗
(

KYn +
1
2

Rn

)
− E

)
= π̃∗n

(
ξ∗
(

Cn0+Cn1+Cn∞+
3n
− 3
2

0n

)
− E

)
= π̃∗n

(
3n
− 3
2

0̃n +Cn0+Cn1+Cn∞+ E ′
)

=
3n
− 3
2

Fn + π̃
∗
n
(
Cn0+Cn1+Cn∞+ E ′

)
.
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Hence KSn −
3n
−3
2 Fn is effective as required. Moreover, one verifies easily that there is

no (−1)-curve contained in π̃∗n
(
Cn0+Cn1+Cn∞+ E ′

)
if n > 2. Therefore, KSn is nef if

n > 2; this is because any possible (−1)-curve of Sn would be contained in the fixed part

of |KSn |, and hence in π̃∗n
(
Cn0+Cn1+Cn∞+ E ′

)
. This completes the proof.

The above proof shows that for n > 2,

KSn =
3n
− 3
2

Fn + π̃
∗
n
(
Cn0+Cn1+Cn∞+ E ′

)
.

Together with (3.2) one sees that π̃∗n
(
Cn0+Cn1+Cn∞+ E ′

)
is the fixed part and 3n

−3
2 Fn

is the movable one of the linear system |KSn |. Hence it follows that

Theorem 3.2. If n > 2, then the surface Sn admits a non-hyperelliptic canonical fibration

of genus g = 4.

Remark 3.3. In our construction, the choice of the fiber 0n1 is not essential. More

precisely, we construct the double cover of Yn branched over Cn0+Cn1+Cn∞+ Hn +0n1.

If we replace 0n1 by 0n , where 0n is any fiber of ϕn , then we can also construct a

double cover of Yn branched over Cn0+Cn1+Cn∞+ Hn +0n , and the resulted smooth

surface S′n (by resolution of the singularities) admits also a non-hyperelliptic canonical

fibration of genus g = 4. In fact, if 0n is general, then the intersection between 0n
and Cn0+Cn1+Cn∞+ Hn is again negligible. The same computation applies without

any change to S′n . When it happens that 0n passing though a singular point of

Cn0+Cn1+Cn∞+ Hn , one can still show that S′n admits a non-hyperelliptic canonical

fibration of genus g = 4 by a further careful study of the canonical resolution. We leave

the details to the interested readers.

4. Hyperelliptic canonical fibration

In this section, we are going to exclude the existence of surfaces of general type with a

hyperelliptic canonical fibration of genus g > 4. Hence we assume in this section that S
is a surface of general type which admits a hyperelliptic canonical fibration of genus g.

Let f : X → B be the induced hyperelliptic fibration as in Figure 1. As remarked in § 1,

the technique differs in the elliptic and rational cases. We deal with in § 4.1 the elliptic

case, and in § 4.2 the rational case.

4.1. The case of elliptic base

In this subsection, we consider the case when the base B is elliptic, and prove Theorem 1.5.

Before going to the proof, we prove a general property relating to the triviality of the

unitary part contained in the Hodge bundle for a hyperelliptic fibration. The idea of the

proof goes back to [9].

Proposition 4.1. Let f : X → B be any non-trivial hyperelliptic fibration of g > 2, and

ωX/B = OX (K X − f ∗K B) the relative canonical sheaf. Assume that

f∗ωX/B = A⊕F (4.1)
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is the decomposition of the Hodge bundle f∗ωX/B into its ample and unitary part (cf.

[4, 7]). Then after a suitable finite étale base change, F becomes trivial, i.e.,

F ∼= O⊕r
B , where r = rankF .

Proof. To prove the statement, we may assume that F 6= 0. By construction, F
corresponds to a unitary representation of the fundamental group

ρ : π1(B) −→ U (r).

If the image of ρ is finite, then using the quotient π1(B)→ Im(ρ), one can construct a

finite étale cover B̃ → B. Moreover, after this base change, the pull-back of F corresponds

to the trivial representation. In other word, F becomes trivial and we are done. Therefore,

it suffices to derive a contradiction if ρ has infinite image.

By the stable reduction theorem (cf. [1, 6]), there exists a base change φ : B̃ → B
of finite degree, possibly ramified, such that the pull-back fibration f̃ : X̃ → B̃ is

semi-stable. According to [9, Theorem A.1], applying possibly a further base change,

we may assume that

f̃∗ωX̃/B̃ = Ã⊕O⊕r̃
B̃
, where Ã is ample. (4.2)

Here we recall that the pull-back fibration f̃ : X̃ → B̃ is constructed as follows. Let X1 be

the resolution of singularities of X ×B B̃. Then f̃ : X̃ → B̃ is just the relatively minimal

model of X1.

X̃ oo θ

f̃
��

X1
81 //

f1
��

X ×B B̃
80 //

��

X

f

��
B̃ B̃ B̃

φ // B

Note that there is an inclusion f̃∗ωX̃/B̃ ⊆ φ
∗ f∗ωX/B (cf. [18, p. 231]). As

rank f̃∗ωX̃/B̃ = rankφ∗ f∗ωX/B = g,

the quotient Q := (φ∗ f∗ωX/B)
/
( f̃∗ωX̃/B̃) is a torsion sheaf. Hence one gets a morphism:

p : f̃∗ωX̃/B̃ −→ φ∗F .

It follows that the quotient Q := (φ∗F)
/

p( f̃∗ωX̃/B̃) is also a torsion sheaf. Note that

deg(p( f̃∗ωX̃/B̃)) > 0, since it is a quotient of the Hodge bundle f̃∗ωX̃/B̃ . Note that

0 = degφ∗F = length (Q)+ deg(p( f̃∗ωX̃/B̃)).

Hence Q is zero, and the morphism p is surjective.

By construction, φ∗F comes from the following unitary representation

π1(B̃)
ρ̃ //

φ∗ $$

U (r)

π1(B)

ρ

;;
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If ρ has infinite image, then ρ̃ has also infinite image since φ∗
(
π1(B̃)

)
has finite index in

π1(B). Since Ã in (4.2) is ample, it maps to zero by p. Therefore we have a surjective

morphism:

p : O
⊕q f̃

B̃
−→ φ∗F .

Note that the trivial bundle O
⊕q f̃

B̃
corresponds to the trivial representation (hence also

unitary representation) of π1(B̃). Hence by [11], φ∗F is a direct summand of O
⊕q f̃

B̃
,

which implies that the representation ρ̃ corresponding to φ∗F is also trivial. This gives

a contradiction.

Proof of Theorem 1.5. We first show that g 6 3. In fact, since g(B) = 1, ωX/B =

OX (K X ). By the Riemann–Roch theorem together with the semi-positivity of f∗ωX/B ,

one sees that the locally free sheaf F0 appearing in (2.1) is semi-stable of degree zero.

Combining this with the decomposition (4.1), it follows that F0 is a unitary subsheaf.

According to Proposition 4.1, after a suitable étale base change φ : B̃ → B, the pull-back

fibration f̃ : X̃ → B̃ satisfies

f̃∗ωX̃/B̃ = L⊕O⊕(g−1)
B , for some ample line bundle L.

In other word, the relative irregularity q f̃ := q(X̃)− g(B̃) = g− 1. As the base change is

étale and f is non-trivial, f̃ is again a non-trivial fibration. Thus by [22, Theorem 1] (see

also [9, Proposition 3.2]), one gets g− 1 = q f̃ 6 g+1
2 , which shows that g 6 3.

Let f̃ be the pull-back fibration above. Since the base change is étale, it follows that

g(B̃) = g(B) = 1 and that

ω2
X̃/B̃ = K 2

X̃ = deg(φ) · K 2
X ,

deg f∗ωX̃/B̃ = χ(OX̃ ) = deg(φ) ·χ(OX ).

By [9, Theorem 1.4], one has the slope inequality

ω2
X̃/B̃ >

4(g− 1)
g− q f̃

· deg f∗ωX̃/B̃ = 4(g− 1) deg f∗ωX̃/B̃ .

Combining these together, we obtain that

K 2
S = K 2

X > 4(g− 1)χ(OX ).

Since q = g(B) = 1 by [19], χ(OX ) = χ(OS) = pg. Hence we complete the proof.

4.2. The case of rational base

4.2.1. Technical lemmas. Let σ be the hyperelliptic involution on X . Let ε : X̃ → X
be the blowing-up at the isolated fixed points of σ . Then σ lifts to an involution on X̃ , and

still denoted by σ by abuse of notation. By construction, the quotient surface P̃ = X̃/〈σ 〉
is smooth and ruled over P1. Let ρ : P̃ → P be a contraction of P̃ to a geometrical ruled

surface.

X

f
��

X̃εoo

f̃
��

π // P̃ = X̃/〈σ 〉

ϕ̃

��

ρ // P

ϕ

��
P1 P1 P1 P1
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Let F (resp. F̃) be a general fiber of f (resp. f̃ ), and 0̃ (resp. 0) its image in P̃ (resp.

P). Let
∑k

j=1 E j ⊆ X̃ be the union of the exceptional curves of ε, and

K X̃ = Z̃ + (pg − 1)F̃, K X = Z + (pg − 1)F.

Here Z̃ and Z are the fixed parts of |K X̃ | and |K X |, respectively, and

Z̃ = ε∗(Z)+
k∑

j=1

E j .

Lemma 4.2. Let C ⊆ Z̃ be any irreducible curve fixed by σ , i.e., σ(p) = p for any p ∈ C.

Then the multiplicity of C in Z̃ is even.

Proof. Let n be the multiplicity of C in Z̃ and p ∈ C be a general point. As C is fixed

by σ by assumption, we may assume that (analytically) locally around p, C is given by

y = 0, and the action of σ is given by

σ(x) = x, σ (y) = −y.

Take a general element ω ∈ H0(K X̃ ). Then locally around p, we can write

ω = ynh(x, y)dx ∧ dy, such that h(0, 0) 6= 0.

Moreover, locally around p, one has

σ ∗ω = −(−y)nh(x,−y)dx ∧ dy.

Since pg(P̃) = 0, the induced action of σ on H0(K X̃ ) is just the multiplication by −1.

Hence σ ∗ω = −ω, which implies that

ynh(x, y) = (−y)nh(x,−y).

Therefore n is even, since h(0, 0) 6= 0.

Corollary 4.3. There exists an effective divisor Z̃ ′ ⊆ P̃ (resp. effective Q-divisor Z ′ ⊆ P̃)

such that Z̃ = π∗(Z̃ ′) (resp. ε∗(Z) = π∗(Z ′)).

Proof. It is clear that Z̃ is σ -invariant. Hence it can be decomposed into sum of

σ -irreducible curves:

Z̃ =
∑

mi Zi .

Let Z ′i = π(Zi ). Then {
π∗(Z ′i ) = 2Zi if Zi is fixed by σ ,

π∗(Z ′i ) = Zi otherwise.

By Lemma 4.2, mi is even if Zi is fixed by σ . Hence

Z̃ = π∗(Z̃ ′), where Z̃ ′ :=
∑

mi Z ′i −
∑

Z i fixed by σ

mi Z ′i
2

> 0.
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Let
∑k

j=1 E j ⊆ X̃ be the union of the exceptional curves of ε, and
∑k

j=1 E ′j ⊆ P̃ their

images in P̃. By construction,
∑k

j=1 E j are contained in Z̃ and fixed by σ . Hence

Z ′ = Z̃ ′−
1
2

k∑
j=1

E ′j

is an effective Q-divisor, and satisfies that

π∗(Z ′) = π∗(Z̃ ′)−
k∑

j=1

E j = ε
∗(Z).

This completes the proof.

Let

K X = Z + (pg − 1)F = D+ V + (pg − 1)F, (4.3)

where D (resp. V ) is the horizontal (resp. vertical) part of the fixed part Z . In the rest

part of this subsection, we would like to derive a lower bound on the canonical degree of

D, i.e., the intersection K X D. We introduce the following notion.

Definition 4.4. A curve C ⊆ X (or C ⊆ X̃) is said to be σ -invariant (resp. σ -fixed; resp.

σ -irreducible) if σ(C) ⊆ C (resp. if σ(p) = p for any p ∈ C ; resp. if there is an irreducible

curve C0 such that either C = C0 = σ(C0) or C = C0+ σ(C0)
)
.

It is clear that both D and V in (4.3) are σ -invariant. In particular, D can be

decomposed into sum of σ -irreducible curves:

D =
t∑

i=1

ni Di , (4.4)

where each Di is σ -irreducible. Denote

βi = Di · F.

Then
t∑

i=1

niβi = 2g− 2. (4.5)

We arrange the indices such that Di is σ -fixed for 1 6 i 6 t0, and Di is not σ -fixed for

t0+ 1 6 i 6 t . For each 1 6 i 6 t , let D̃i ⊆ X̃ be the strict transform of Di , and C̃i ⊆ P̃
be its image. The σ -irreducibility of Di implies that C̃i is an irreducible curve for each

1 6 i 6 t .

Lemma 4.5. For 1 6 i 6 t0, one has

K X Di >
βi

2
(pg − 1)+

3
4
(K X + Di )Di =

βi

2
(pg − 1)+

3
4
(K P̃ + C̃i )C̃i . (4.6)
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Proof. Since Di is σ -fixed, it follows that Di ∼= D̃i ∼= C̃i and

ε∗(Di ) = D̃i , π∗(C̃i ) = 2D̃i . (4.7)

Together with the adjunction formulas, one obtains

K X Di = −D2
i + (K P̃ + C̃i )C̃i =

C̃2
i

2
+ K P̃ C̃i . (4.8)

By Corollary 4.3 and its proof, C̃i is the fixed part of the linear system |C̃i + (pg − 1)0̃|,
where 0̃ is a general fiber of ϕ̃. Thus,

h0(C̃i + (pg − 1)0̃
)
= pg.

Note that C̃i · 0̃ = Di · F . Combining the above equality with Lemma 2.1, one obtains

that

K P̃ C̃i > C̃2
i + 2βi (pg − 1).

From this together with (4.8), it follows that

K X Di >
3
2 C̃2

i + 2βi (pg − 1) = 3D2
i + 2βi (pg − 1).

Hence

K X Di >
βi

2
(pg − 1)+

3
4
(K X + Di )Di =

βi

2
(pg − 1)+

3
4
(K P̃ + C̃i )C̃i .

This proves (4.6).

Remark 4.6. In the case where Di is a section of f , one has βi = 1 and hence (4.6)

becomes K X Di >
1
2 (pg − 4), which has already been obtained by Sun [16].

Lemma 4.7. For t0+ 1 6 i 6 t, one has

K X Di > βi (pg − 1)+ (K P̃ + C̃i )C̃i . (4.9)

Proof. Assume that

ε∗(Di ) = D̃i +

k∑
j=1

b jE j ,

where E j ’s are the union of the exceptional curves of ε. Since Di is σ -irreducible and not

σ -fixed, one has π∗(C̃i ) = D̃i . Hence

2C̃2
i = D̃2

i = D2
i −

k∑
j=1

b2
j . (4.10)

Moreover, by Corollary 4.3 and its proof, C̃i is the fixed part of the linear system |C̃i +

(pg − 1)0̃|, where 0̃ is a general fiber of ϕ̃. Thus

h0(C̃i + (pg − 1)0̃
)
= pg.
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Note that C̃i · 0̃ =
1
2 Di · F . Combining the above equality with Lemma 2.1, one obtains

that

K P̃ C̃i > βi (pg − 1)+ C̃2
i . (4.11)

Let R̃ ⊆ X̃ be the ramification divisor of π . Then by construction,
∑k

j=1 E j ⊆ R̃ and

D̃i * R̃. Hence

(K X̃ + D̃i )D̃i =
(
π∗(K P̃ + C̃i )+ R̃

)
·π∗(C̃i )

= 2(K P̃ + C̃i )C̃i + R̃ · D̃i

> 2(K P̃ + C̃i )C̃i +

k∑
j=1

b j . (4.12)

Combining this with (4.10) and (4.11), one obtains that

K X Di = −D2
i + (K X̃ + D̃i )D̃i +

k∑
j=1

b j (b j − 1)

> −D2
i + 2(K P̃ + C̃i )C̃i +

k∑
j=1

b j +

k∑
j=1

b j (b j − 1)

= 2K P̃ · C̃i

> 2βi (pg − 1)+ 2C̃2
i

= 2βi (pg − 1)+ D2
i −

k∑
j=1

b2
j .

Therefore,

K X Di > βi (pg − 1)+
1
2

K X Di + D2
i −

k∑
j=1

b2
j


= βi (pg − 1)+

1
2

K X̃ D̃i + D̃2
i +

k∑
j=1

b j (b j − 1)−
k∑

j=1

b2
j


> βi (pg − 1)+ (K P̃ + C̃i )C̃i .

We use (4.12) in the last inequality above. This proves (4.9).

4.2.2. The bound. In this subsection, we derive a lower bound on K 2
S when B = P1,

and complete the proof of Theorem 1.3(ii). First, we prove the following proposition.

Proposition 4.8. Assume that pg > 3, and |KS| induces a hyperelliptic fibration. Then

the moving part of |KS| has no fixed point, i.e., X = S in Figure 1.

Proof. Assume that the moving part of |KS| has a fixed point. Then there exists a

(−1)-curve E contained in the fixed part of |K X | and it maps surjectively to B. If E is

fixed by the hyperelliptic involution σ , then by Lemma 4.5 one has

−1 = K X · E > 1
2 (pg − 1)− 3

2 > − 1
2 ,
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which is a contradiction. If E is not fixed by the hyperelliptic involution σ , then by

Lemma 4.7 one gets{
−1 = K X · E > 2(pg − 1)− 2 > 2 if σ(E) = E,
−2 = K X ·

(
E + σ(E)

)
> 2(pg − 1)− 2 > 2 if σ(E) 6= E .

We thus get a contradiction too. This completes the proof.

We next prove a lower bound on K 2
S when B = P1.

Proof of Theorem 1.6. We may assume that pg > 3. Hence X = S is already minimal

by Proposition 4.8. In particular, K X is nef. Therefore by (4.3), (4.5) together with

Lemmas 4.5 and 4.7, we obtain

K 2
S = K 2

X > K X D+ (pg − 1)K X F

>
t0∑

i=1

ni

(βi

2
(pg − 1)−

3
2

)
+

t∑
i=t0+1

ni
(
βi (pg − 1)− 2

)
+ 2(g− 1)(pg − 1)

>
t∑

i=1

ni

(βi

2
(pg − 1)−

3
2

)
+ 2(g− 1)(pg − 1)

= 3(g− 1)(pg − 1)−
3
2

t∑
i=1

ni

> 3(g− 1)(pg − 2).

This completes the proof.

Finally, we exclude the existence of hyperelliptic canonical fibrations of genus g > 4
when the geometric genus is large.

Proof of Theorem 1.3(ii). Assume that there exists a surface S of general type with pg >

212− 72q, which admits a hyperelliptic canonical fibration of genus g > 4. We will derive

a contradiction.

By Theorem 1.5, the base of the induced hyperelliptic fibration is B ∼= P1. Since pg >

212− 72q, it follows that pg > 3. Hence X = S and K X is nef by Proposition 4.8. We use

the notations introduced in § 4.2.1. Based on (4.3) together with Lemmas 4.5 and 4.7, we

obtain that

K 2
S = K 2

X > K X D+ (pg − 1)K X F

>
t0∑

i=1

ni

(βi

2
(pg − 1)+

3
4
(K X + Di )Di

)

+

t∑
i=t0+1

ni
(
βi (pg − 1)− 2

)
+ 2(g− 1)(pg − 1). (4.13)

Because each Di is fixed by the hyperelliptic involution for 1 6 i 6 t0, it follows that

every Di is smooth and they do not intersect each other for 1 6 i 6 t0. Hence by applying
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the logarithmic Miyaoka–Yau inequality (cf. [10]) to the pair
(

X,
∑t0

i=1 Di

)
, one obtains

that

3c2

(
X
∖ t0∑

i=1

Di

)
>

(
K X +

t0∑
i=1

Di

)2

.

Equivalently, one has

K 2
X 6 9χ(OX )+

t0∑
i=1

(K X + 2Di )Di

4
= 9(pg − q + 1)+

t0∑
i=1

(K X + 2Di )Di

4
.

Combining this together with (4.13), (4.5) and Lemma 4.5, we obtain that(
9− 3(g− 1)

)
(pg − 1)+ 18− 9q

>
t0∑

i=1

(3ni − 2
4

(K X + Di )Di +
K X Di

4

)
+

t∑
i=t0+1

ni

(βi

2
(pg − 1)− 2

)

>
t0∑

i=1

(12ni − 5
16

(K X + Di )Di +
βi

8
(pg − 1)

)
>

12(2g− 2)− 5
16

· (−2)+
1
8
(pg − 1).

By rearrangement, we get

pg 6
48g− 72q + 20

24g− 95
6 212− 72q, if g > 4.

This contradicts the assumption.

Remarks 4.9. (i) According to the proof, if S is a surface of general type admitting a

hyperelliptic canonical fibration of genus g > 4, then the base B ∼= P1, and

pg 6
48g− 72q + 20

24g− 95
.

In particular,

pg 6


212− 72q if g = 4,

10−
72q − 10

25
if g = 5.

(ii) X.-T. Sun points out to the author that the technique used in the case of the

rational base applies also to the case of the elliptic base. In fact, applying the method

here to the case of the elliptic base, one verifies without much difficulty that g 6 3 and

K 2
S > 3(g− 1)pg. However, this bound is a little weaker than that in (1.1) when g = 2 or

3.

We end this section by constructing a sequence of hyperelliptic canonical fibrations

of genus g = 3, where the geometric genus can be arbitrarily large. In fact, one shows

without difficulty that our examples are generalized-hyperelliptic surfaces, which were

systematically studied by Zucconi in [25, 26].
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Example 4.10. Let F be the hyperelliptic curve of genus 3 defined by u2
= v8
− 1, and

τ1 be the involution of F defined by τ1(u, v) = (−u,−v). Then τ1 has no fixed point, and

0 = F/〈τ1〉 is of genus 2. Let C0 be any hyperelliptic curve of genus g0 > 2, and σ0 the

hyperelliptic involution. Then τ := (τ1, σ0) is an involution on the product F ×C0, and

admits no fixed point. Hence the quotient surface S = F ×C0/〈τ 〉 is smooth, and admits

a (non-trivial) hyperelliptic fibration f : S→ P1
= C0/〈σ0〉. One computes easily that

K 2
S = 8(g0− 1), χ(OS) = g0− 1.

Moreover, by construction, S admits another fibration h : S→ 0 = F/〈τ1〉. Hence q(S) =
g(0) = 2, which implies that pg(S) = χ(OS)− 1+ q(S) = g0. It follows that

f∗OS(KS) ∼= OP1(g0− 1)⊕OP1(−2)⊕2.

Hence S is a surface of general type admitting a hyperelliptic canonical fibration of genus

g = 3. Moreover, when g0 goes to the infinity, the geometric genus of S can be arbitrarily

large.
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