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Tubular Free by Cyclic Groups Act Freely
on CAT(0) Cube Complexes

Jack Button

Abstract. We identify when a tubular group (the fundamental group of a ûnite graph of groups with
Z2 vertex and Z edge groups) is free by cyclic and show, using Wise’s equitable sets criterion, that
every tubular free by cyclic group acts freely on a CAT(0) cube complex.

1 Introduction

When dealingwith ûnitely presented groups, itmaywell be the case that knowledge of
how they act geometrically allows us to prove purely group theoretic facts. An extreme
example of this occurs with a word hyperbolic group, because if it acts properly and
cocompactly on a CAT(0) cube complex (which will therefore be ûnite dimensional
and locally ûnite), we can conclude by the results of Agol and Wise [1, 17] that it will
be the fundamental group of a virtually special cube complex, and therefore has a
ûnite index subgroup that embeds in a right angled Artin group (RAAG) by [12].
In this case we say our group is virtually special, and then any property that holds
for all subgroups of RAAGs will hold virtually for this hyperbolic group. However,
hyperbolicity is certainly needed here: if we remove this condition then the Burger–
Mozes groups in [6] act properly and cocompactly on a 2-dimensional CAT(0) cube
complex, but they can be simple groups that will certainly not be virtually special.

In this paper we will consider two families of groups that all contain Z2 and there-
fore cannot be hyperbolic but are generally considered to be well behaved. _e ûrst is
non-hyperbolic free by cyclic groups (here free by cyclic will always mean (ûnite rank
free) by Z groups). It was proved in [11] that if a free by cyclic group is word hyper-
bolic, then it does act properly and cocompactly on a CAT(0) cube complex and so
has the above strong group theoretic properties. Now if a free by cyclic group is not
word hyperbolic, then it contains Z2 (as shown in [2] for the irreducible case and [5]
in general), so we can ask: does such a group always have a “nice” geometric action on
a CAT(0) cube complex? Of course it depends on what is meant by nice, but in [10]
Gersten displayed a free by cyclic group that cannot act properly and cocompactly on
any CAT(0) space. Moreover, this group is not virtually special (see the next section).

_e other class of groups we consider in this paper are what have been called the
tubular groups: namely the fundamental group of a ûnite graph of groups with all
vertex groups isomorphic to Z2 and all edge groups isomorphic to Z. _ese have
been considered from both a geometric and group theoretic point of view. In [3]
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they were shown to have interestingDehn functions, and their quasi-isometric classes
were considered in [8]. However, they can be a badly behaved group theoretically, as
they need not be linear, residually ûnite, or even Hopûan. As for the existence of
nice geometric actions, the Gersten group is in fact also a tubular group, so proper
and cocompact actions on a CAT(0) cube complex will not always exist. However
in [18] Wise looked at the question of when a tubular group has a free action on a
CAT(0) cube complex. As all our groups are torsion free and because proper here
means topologically proper (a compact set can only have ûnitely many elements that
translate it to an image that intersects this set), acting properly and acting freely mean
the same thing in this context. In [18, Corollary 5.10] the tubular groups acting freely
and cocompactly on a CAT(0) cube complex are classiûed, though these are quite
restrictive. However, on removing the cocompactness hypothesis, the main result
in [18, _eorem 1.1] gives a condition (in terms of what are called equitable subsets
of the vertex groups) that determines exactly when a tubular group acts freely on
a CAT(0) cube complex (though this complex might not be ûnite dimensional, nor
locally ûnite). From this he was able to show that a wider range of tubular groups
have a free action on a CAT(0) cube complex, in particular his non-Hopûan example
in [16] and the Gersten group, but he also used this condition to give examples of
tubular groups with no such actions. A�erwards in [19] a criterion for when a tubular
group acts freely on a ûnite dimensional CAT(0) space was developed, and in the
forthcoming paper [20] it is shown that this is equivalent to the group being virtually
special.

Here we take the intersection of these two classes of groups, namely the tubular
groups that are also free by cyclic. We ûrst identify in Proposition 2.1 exactly which
tubular groups are free by cyclic, which are those groups having a homomorphism to
Z that is non-zero on all edge groups. _is always holds if the underlying graph is a
tree. [18, Conjecture 1.8] states that every free by cyclic group acts freely on a CAT(0)
cube complex. Using such a homomorphism we then show in _eorem 2.4 that any
tubular free by cyclic group satisûes Wise’s equitable subsets condition and therefore
does have a free action on a CAT(0) cube complex.

2 Tubular Free by Cyclic Groups Act Freely

Given a ûnite graph of groups G(Γ) with all vertex groups isomorphic to Z2 and all
edge groups isomorphic to Z, we can produce a presentation for the resulting funda-
mental group G, which will be referred to as a tubular group, in the usual way. We
ûrst pick a maximal tree in Γ and contract each edge by forming an amalgamated free
product. As Z2 has an obvious 2-generator 1-relator presentation and we need to add
1 relator each time when performing the amalgamation, this process creates a pre-
sentation with 2v generators and 2v − 1 relations if there are v vertices. Having done
this, we then introduce a stable letter for each of the b edges le� (b being the ûrst
Betti number of the graph Γ) and form HNN extensions identifying the remaining
cyclic subgroups, thus resulting in a presentation for G that has 2v + b generators and
2v + b− 1 relators. In particular G has a presentation of deûciency 1, that is, where the
number of generators is 1 more than the number of relators.
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Moreover, any ûnite presentation for G has deûciency at most 1, which can be seen
because the standard presentation 2-complex forms an aspherical graph of spaces as
in [14, Section 3]. _us, G is also of cohomological and geometric dimension 2, and
its Euler characteristic will equal 0, where 1 minus the Euler characteristic is an upper
bound for the deûciency of G. Also, G is well known to be coherent; namely, every
ûnitely generated subgroup of G is ûnitely presented.
Another well behaved class of groups sharing these nice properties are the free by

cyclic groups. _erefore, it is of interest to determine when a tubular group is actually
free by cyclic, with the next result giving us a complete answer.

Proposition 2.1 A tubular group G is isomorphic to a free by cyclic group if and only
if there exists a homomorphism from G to Z which is non-zero on every edge group.

Proof We initially proved this directly by induction on the number of vertices in the
graph and using [13, Corollary 1]. _is states that ifG is a group with an amalgamated
product decomposition G = A ∗C B, and ϕ∶G → Z is a homomorphism such that
ker(ϕ∣C) is ûnitely generated and not equal to C, then ker(ϕ) is ûnitely generated if
and only if ker(ϕ∣A) and ker(ϕ∣B) are ûnitely generated (with a similar result forHNN
extensions). _e kernel is then seen to be free by standard facts, such as [15, Section
I.5.5, _eorem 14], which states that a subgroup S of H = A ∗C B that misses all
conjugates of C is a free product of a free group with factors of the form S ∩ hAh−1,
S ∩ hBh−1 for various elements h ∈ H.

However, since then, the paper [9] has appeared, giving more general results as
it explains how to calculate the BNS invariant of a graph of groups. In particular [9]
Corollary 2.10 tells us the following. Suppose thatG is ûnitely generated and is the fun-
damental group of a ûnite graph of groups where all edge inclusions are proper. Sup-
pose also that the vertex groups are slender (meaning that every subgroup is ûnitely
generated). _en if χ∶G → Z is a surjective homomorphism, we have that ker χ is
ûnitely generated if and only if χ is non-trivial on every edge group.

In order to see that this ûnitely generated kernel must be free, we know that it is
ûnitely presented because G is a graph of groups with coherent vertex groups (every
ûnitely generated subgroup is ûnitely presented) and slender edge groups, thusG itself
is coherent. _erefore, we can use the comment a�er [7, _eorem 7.3], because G has
deûciency 1.

Corollary 2.2 If Γ is a tree, then G(Γ) is free by cyclic.

Proof We pick a vertex v0 with which to start deûning χ, which for now will be a
homomorphism from G toQ, and then inductively extend to the vertices at distance
n from v0. Say this has been done in such a way that χ is non-zero on every edge
group and take a vertex v at distance n + 1. We can let this vertex group equal ⟨x , y⟩,
where the edge group into v from distance n is generated by a power of x and thus
we have χ(x) /= 0. We then have other generators for the edge groups out of v that
will all be of the form x i y j . As this is a ûnite list, we can choose a value of χ(y) ∈ Q
such that no edge group in v is sent to zero by χ. We then extend χ to all of the vertex
groups, hence to G, and this will be well deûned, because Γ is a tree.
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We end up with a homomorphism χ from a ûnitely generated group to Q; thus,
the image is cyclic and we can multiply χ by a suitable integer so that this image now
lies in Z.

Next we examine the necessary and suõcient condition stated in [18,_eorem 1.1]
for a tubular group to act freely on a CAT(0) cube complex (which in general need not
be ûnite dimensional nor locally ûnite). _is condition is that there exists an equitable
set, which is a choice of a ûnite family of elements from each vertex group such that

(i) each family generates a ûnite index subgroup of the respective vertex group
and

(ii) the compatibility condition is satisûed on each edge e, namely on taking a
generator of this edge group which embeds as x in one vertex group and y in the
other, we have

m

∑
i=1

#[x, si] =
n

∑
j=1

#[y, tj].

Here {s1 , . . . , sm} is the chosen family for the ûrst vertex group, {t1 , . . . , tn} is for the
second, and #[x, s] is the intersection number. If we have x = (x1 , x2) and s = (s1 , s2)
for some choice of basis of the ûrst vertex group, then #[x, s] is equal to the modulus
of the determinant x1s2 − x2s1 of the matrix ( x1 s1

x2 s2 ) so that we will write ∣(x s)∣ for
#[x, s].

It was shown in [18, Example 1.4] that the Gersten free by cyclic tubular group as in
Example 3.3 satisûes the above condition; thus, although it does not act properly and
cocompactly on any CAT(0) metric space by [10], or even properly and semisimply
by [4], it does act freely on a CAT(0) cube complex. Conjecture 1.8 of that paper says
that every free by cyclic group possesses such an action. We will now conûrm this
conjecture for the tubular free by cyclic groups.
For the proof we will be working over Q rather than Z. To this end, we deûne a

“Q-tubular group” GQ(Γ) as follows: on taking the ûnite graph Γ, every vertex group
will consist of a copy ofQ2 (rather than Z2 as before) along with a given basis. How-
ever, the edge groups will still all be copies of Z and we have edge inclusion maps
e±∶Z ↪ Q2 for each edge e, where we regard Z and Q2 as additive groups. _us,
GQ(Γ) is a graph of groups with Q2 vertex groups and Z edge groups, so, as such,
will have a fundamental group GQ, although we will not be interested in the group
theoretic properties of GQ. Rather, we can use linear algebra to ûnd equitable sets
for suitable Q-tubular groups that are deûned as follows: an equitable set for GQ(Γ)
is a choice at each vertex of a spanning family of elements for that vertex group Q2

such that the compatibility condition in (ii) above holds on each edge e in Γ. Here
we are deûning #[x, s] ∈ Q to be the modulus of the determinant x1s2 − x2s1 when
x = (x1 , x2) and s = (s1 , s2) are expressed in terms of the given basis of the appro-
priate vertex group Q2. (_is means that at a particular vertex an arbitrary change
of basis could well change the value of [x, s], but this is well deûned if we only allow
basis changes with determinant ±1.)

Moreover, given a tubular group G(Γ) in the original sense of having Z2 ver-
tex groups, we obtain the associated Q-tubular group GQ(Γ) as follows: ûrst take
a Z-basis for each vertex group Z2 and then enlarge it to a copy of Q2 such that the
Z2 subgroup embeds naturally as the set of integer lattice points. We also have as a
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basis for Q2 the image of this Z-basis that was chosen. _en take the same edge in-
clusions e±∶Z↪ Z2 but now regard these maps as having codomainQ2. We ûrst note
a proposition relating tubular andQ-tubular groups.

Proposition 2.3 If G(Γ) is a tubular free by cyclic group with associated Q-tubular
group GQ(Γ), then the following hold.
(i) _ere exists a group homomorphism χQ from the fundamental group GQ to Q

which is non-zero on the edge groups of GQ(Γ).
(ii) An equitable set for G(Γ) gives rise to one for GQ(Γ) and vice versa.

Proof For (i) we use Proposition 2.1 to obtain the homomorphism χ∶G → Z, hence
χ∶G → Q, which is non-zero on all the edge groups of G(Γ). We can now extend χ at
each vertex group Q-linearly to obtain χQ∶GQ → Q, and we still have the same edge
groups. As for (ii), at each vertex we have used the same Z-basis for both our Z2 and
Q2 vertex groups and the edge group inclusions are unchanged; thus, for x, s ∈ Z2

the intersection number in Z2 is the same in Q2 and so an equitable set for G(Γ)
immediately becomes one for GQ(Γ). _is also works the other way except that the
family of elements {s1 , . . . , sm} providing the equitable set at a particular vertex will
generally be elements of Q2, not Z2. But an equitable set remains equitable if every
element is multiplied by the same non-zero rational throughout, so we can multiply
these elements by a single common denominator so that they all lie inZ2, whereupon
we have an equitable set for G(Γ) in the original sense for tubular groups.

We now come to the proof of our main theorem.

_eorem 2.4 If G(Γ) is a tubular free by cyclic group, then there exists an equitable
set for G(Γ) and so G acts freely on a CAT(0) cube complex.

Proof We replace G(Γ) with its Q-tubular equivalent GQ(Γ) throughout and ûnd
an equitable set for the latter group, which suõces by Proposition 2.3. Also by Propo-
sition 2.3 we have χQ∶GQ → Q, which is non-zero on all the edge groups.

Our ûrst case is when Γ is a bouquet of circles, so that we have only one vertex v
but many self loops. Having picked aZ-basis for the vertex group ofG(Γ), and hence
for the only vertex group of GQ(Γ), as well as having directed the k edges arbitrarily,
we suppose we have the following generators for the images of the edge groups when
injected via the negative and positive ends, respectively:

a1 = (a1 , b1), . . . , ak = (ak , bk) and c1 = (c1 , d1), . . . , ck = (ck , dk),
which are all elements ofQ2. We now require a choice of N elements x1 , . . . , xN ∈ Q2

such that for each j with 1 ≤ j ≤ k the following equation holds:

N

∑
i=1

∣(xi aj)∣ =
N

∑
i=1

∣(xi cj)∣.

We will be able to do this with N = 2 by proceeding as follows:
Let the generators (1, 0) and (0, 1) of our vertex group Q2 be mapped to m and

n respectively under χQ, and suppose the basis has been chosen such that m /= 0
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(otherwisewe canmake aZ-basis change that will not aòect the following intersection
numbers). Let l j be χQ(aj) = ma j + nb j so that also l j = χQ(cj) = mc j + nd j , with no
l j being equal to 0 by the properties of χQ. On setting l = l1, the idea is to consider
as candidates for the xi points of the form ( l−ny i

m , y i) for y i ∈ Q to be determined.
Note that as all of these points lie on the line mx + ny = l /= 0, these will span Q2

provided only that we take more than one distinct point of this form. We ûnd for
each j between 1 and k that

N

∑
i=1

∣(xi aj)∣ =
N

∑
i=1

∣(
l−ny i

m
l j−nb j

m
y i b j

)∣ =
N

∑
i=1

∣lb j − l j y i ∣
∣m∣ =

∣l j ∣
∣m∣

N

∑
i=1

∣ y i − l
b j

l j
∣ ,

and so we also have
N

∑
i=1

∣(xi cj)∣ =
∣l j ∣
∣m∣

N

∑
i=1

∣y i − l
d j

l j
∣.

Now if given two k-tuples of rationals (q1 , . . . , qk) and (r1 , . . . , rk), we can ûnd N
and y1 , . . . , yN ∈ Q such that

N

∑
i=1

∣y i − q j ∣ =
N

∑
i=1

∣y i − r j ∣

holds for each j between 1 and k by setting N = 2, then letting y1 be the minimum m
of our 2k rational entries and y2 be the maximum M, whereupon both sums become
M−m regardless of j. (In order to ensure that y1 /= y2 for spanning, we can increaseM
and decrease m if needed.) _us, having chosen y1 , y2 ∈ Q, we know that x1 , x2 ∈ Q2

as above provides us with our equitable set for GQ(Γ).
For a general graph Γ, we will reduce to the above case by contracting edges one

by one in a maximal tree. However, on the level of graphs of groups, this will not
be the usual procedure used when calculating the fundamental group. It is actually
the replacement of one Q-tubular group by another, in that given an oriented edge e
running from the vertex v ∈ V(Γ) to the vertex w /= v, the graph of groups GQ(Γ)
will be replaced by a graph of groups GQ

1 (Γ1) where Γ1 is the result of contracting
the edge e in Γ onto the vertex w. However, the fundamental groups GQ and GQ

1
will in general be diòerent. _e procedure is not to amalgamate the vertex groups
Gv and Gw but rather to replace Gv with Gw using a suitable isomorphism between
them that respects the homomorphism χQ. We then reinterpret the inclusions into
Gv of the edge groups for the other edges ending at v as inclusions into Gw using this
isomorphism.

Given the ûrst edge e1 to be contracted, with vertex groups V+1 and V−1 both iso-
morphic to Q2 at the vertices v+1 , v−1 of e1, let g+1 be the injection into V+1 of the gen-
erator of the edge group at e1, and let k+1 be a non-zero element of V+1 such that
χQ(k+1 ) = 0. Note that χQ(g+1 ) /= 0 by hypothesis, so g+1 and k+1 span Q2. We also
do the same at the other end of e1 to obtain two elements g−1 and k−1 of V−1 , and we
then deûne the isomorphism θ1∶V−1 → V+1 by sending g−1 and k−1 to g+1 and k+1 , re-
spectively. However, as the elements k±11 could be changed under multiplication by
a non-zero scalar, we now choose them such that the matrix P1, which represents
θ1 with respect to the original bases chosen for the vertex groups, has determinant
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1 in modulus. Moreover, as χQ(g+1 ) = χQ(g−1 ) and χQ(k+1 ) = χQ(k−1 ), we have that
χQ(λg−1 + µk−1 ) = χQ(λg+1 + µk+1 ) on temporarily writing these groups additively.

We now contract the edge e1 from the vertex v−1 to v+1 . _is means that all other
edges (if any) meeting v−1 get moved to meet v+1 , and we replace each generator of the
image of these edge groups in v−1 by applying θ1 to this element. _is results in the
graph Γ1 which is the result of contracting the edge e1 in Γ, along with inûnite cyclic
edge groups and embeddings of these into the neighbouring vertex groups Q2. Note
that as χQ respects this substitution, we will also obtain a homomorphism χQ1 from
the new fundamental group GQ

1 to Q, which is non-zero on all edge groups.
We now continue this process, producing further isomorphisms θ2 , θ3 , . . . , θ l−1

until Γ has been contracted to the graph Γl with just one vertex v l , though there could
be many self loops at this vertex. By the previous argument, we can ûnd an equitable
set {x1 , x2} consisting of a pair of elements that are both in Q2 for the labelled graph
Γl . _is means that for each of the k edges and pair of elements aj , cj ∈ Q2 at either
end of the j-th edge, we have

(1) ∣(x1 aj)∣ + ∣(x2 aj)∣ = ∣(x1 cj)∣ + ∣(x2 cj)∣.
(If Γ were a tree, thenwewould have no edges le�, so in this casewewould not contract
the ûnal edge. It is then straightforward to ûnd an equitable set consisting of a pair of
elements for each of the two remaining vertices.)

Nowwe reverse our contracting process and our isomorphisms. _is means that if
immediately prior to the application of the ûnal isomorphism θ l−1, we have that there
is some j where aj is based at v l but cj is based at the other vertex v l−1, we replace cj
by the element θ−1l−1(cj) so that this element now lies back in the vertex group Vl−1.
However we also pick the elements θ−1l−1(x1) and θ−1l−1(x2) for the part of our equitable
set based at v l−1. To see that this does make an equitable set, note that we already had
equation (1) holding and we are now replacing (for i = 1, 2) xi by P−1l−1(xi) and cj by
P−1l−1(cj), because P−1l−1 is the matrix representing θ−1l−1. But for any 2 by 2 matrix M
and x, y ∈ Q2 we have

∣(Mx My)∣ = ∣M(x, y)∣ = ∣M∣∣(x, y)∣,
and as hereM = P−1l−1 has determinant ±1, we see that the right-hand side of (1) is un-
changed when we insert the new elements. Similarly, both sides of (1) are unchanged
if for another value of j both aj and cj get moved back to the vertex v j−1, and if they
both stay at v j , then nothing at all in (1) is changed.

We can now reverse this process, introducing equitable sets at each new vertex
until we return to Γ, which results in our original Q-tubular group GQ(Γ) but now
with a pair of equitable elements at every vertex.

Example _e Gersten free by cyclic group

G = ⟨a, b, c, t∣tat−1 = a, tbt−1 = ba, tct−1 = ca2⟩
was famously introduced in [10] as an example of a group that does not act properly
and cocompactly on a CAT(0) space. Also it is not virtually special (we thank Mark
Hagen for explaining this). If there was a ûnite index subgroup H of G that was a
subgroup of a RAAG (without loss of generality ûnitely generated becauseH is), then
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this RAAG acts properly and cocompactly on the Salvetti complex, so H acts properly
on a ûnite dimensional cube complex. _en we can use quasiconvex walls obtained
from H to induce an action of G on a CAT(0) cube complex, of higher but still ûnite
dimension. _is will also be a proper action, and ûnite dimensionality tells us that
G acts properly and semisimply on this cube complex. However, [4] points out that
Gersten’s result extends to proper and semisimple actions on a CAT(0) space, thus
giving us a contradiction. _e Gersten group does act freely and hence properly on a
CAT(0) cube complex by [18], but this will necessarily be inûnite dimensional.

On rewriting this presentation as

⟨a, b, c, t ∣ [a, t], b−1 tb = at, c−1 tc = a2 t⟩
we see that, on setting t = u and a = v, we have a tubular group with one vertex and
two self loops, where the vertex group is ⟨u, v⟩, the stable letter b conjugates u to uv
and the stable letter c conjugates u to uv2. We now follow the proof of_eorem 2.4 in
this case to obtain the homomorphism χ that sends u to 1 and v to 0. On taking u, v
as our ordered basis for Z2 and for Q2, we have

a1 = (1, 0), a2 = (1, 0), c1 = (1, 1), c2 = (1, 1)
with m = 1, n = 0 and l = l1 = 1 = l2. _us, we are looking for x1 = (1, y1) and
x2 = (1, y2), where we will need to ensure that y1 /= y2, and satisfying both equations

∣y1∣ + ∣y2∣ = ∣y1 − 1∣ + ∣y2 − 1∣ and ∣y1∣ + ∣y2∣ = ∣y1 − 2∣ + ∣y2 − 2∣.
_en the proof tells us that we can take y1 = 0 and y2 = 2 to obtain {x1 = (1, 0), x2 =
(1, 2)}, which is indeed an equitable set. An equitable set also of two elements was
obtained in [18, Example 1.4] for the Gersten group, using a slightly diòerent pre-
sentation, and on rewriting the presentation back in this form, it is indeed the same
equitable set.
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