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Abstract

An operator A on a complex, separable, infinite-dimensional Hilbert space H is hypercyclic if there is
a vector x ∈ H such that the orbit {x, Ax, A2x, . . .} is dense in H . Using the character of the analytic
core and quasinilpotent part of an operator A, we explore the hypercyclicity for upper triangular operator
matrix

MC =

(
A C
0 B

)
.
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1. Introduction

Throughout this paper, let H and K be infinite-dimensional separable Hilbert spaces,
let B(H, K ) denote the set of bounded linear operators from H to K , and abbreviate
B(H, H) to B(H). For an operator A ∈ B(H), write A∗, σ(A), ρ(A), σa(A),
iso σ(A) for the adjoint, spectrum, resolvent set, approximate point spectrum, and
isolated points of the spectrum σ(A), respectively. By n(A) and d(A) we denote
the dimension of the kernel N (A) and the codimension of the range R(A). If both
n(A) and d(A) are finite, then A is called a Fredholm operator and the index of
A is defined by ind(A)= n(A)− d(A). A ∈ B(H) is said to be a Weyl operator
if it is Fredholm of index 0. Recall that the ascent asc(A) of an operator A is
the smallest nonnegative integer p such that N (Ap)= N (Ap+1). If such an integer
does not exist we put asc(A)=∞. Analogously, the descent des(A) of A is the
smallest nonnegative q such that R(Aq)= R(Aq+1) and if such an integer does not
exist we put des(A)=∞. It is well known that if asc(A) and des(A) are finite then
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asc(A)= des(A). If A is Fredholm with asc(A)= des(A) <∞, we call A a Browder
operator. Note that if A is Browder then A is Weyl. The Weyl spectrum σw(A) and the
Browder spectrum σb(A) of A are defined by σw(A)= {λ ∈C : A − λI is not Weyl}
and σb(A)= {λ ∈C : A − λI is not Browder}.

For x ∈ H , the orbit of x under A is the set of images of x under successive iterates
of A:

Orb(A, x)= {x, Ax, A2x, . . .}.

A vector x ∈ H is supercyclic if the set of scalar multiples of Orb(A, x) is dense in
H , and x is hypercyclic if Orb(A, x) is dense. A hypercyclic operator is one that has a
hypercyclic vector. We define the notion of supercyclic operator similarly. We denote
by HC(H) (SC(H)) the set of all hypercyclic (supercyclic) operators in B(H) and
by HC(H) (SC(H)) the norm-closure of the class HC(H) (SC(H)). Supercyclic
operators were introduced by Hilden and Wallen in 1974 [13]. Many fundamental
results regarding the theory of hypercyclic and supercyclic operators were established
by Kitai in her thesis [14].

Hypercyclicity or supercyclicity has been studied by many authors ([2, 3, 12], and
so on). In this paper, using the character of the analytic core and quasinilpotent part of
an operator A, we explore the hypercyclicity or supercyclicity for operator A and for
upper triangular operator matrix

MC =

(
A C
0 B

)
.

2. Main results

For an operator A ∈ B(H), the analytic core of A is the subspace

K (A) = {x ∈ H : Axn+1 = xn, Ax1 = x, ‖xn‖

≤ cn
‖x‖(n = 1, 2, . . .) for some c > 0, xn ∈ H},

and the quasinilpotent part of A is the subspace

H0(A)=
{

x ∈ H : lim
n→∞

‖Anx‖(1/n)
= 0

}
.

The spaces K (A) and H0(A) are hyperinvariant under A and satisfy N (An)⊆

H0(A), K (A)⊆ R(An) for all n ∈N and AK (A)= K (A); see [1, 15, 16] for more
information about these subspaces.

We say that A has the single-valued extension property (SVEP) at λ0 if, for every
open neighborhood U of λ0, the only analytic function f :U → H which satisfies the
equation (A − λI ) f (λ)= 0 for all λ ∈U is the function f ≡ 0. We say that A has the
SVEP if A has the SVEP at every λ ∈C.

Next, we shall consider the hypercyclicity or supercyclicity for the class of
operators A ∈ B(H) and the operator matrices

MC =

(
A C
0 B

)
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for which the condition dim K (A∗) <∞ holds. In what follows, we suppose that A
is not quasinilpotent and let H(A) be the set of all complex-valued functions that are
analytic in a neighborhood of the spectrum σ(A) of A. For f ∈ H(A), the operator
f (A) is defined by the well-known analytic calculus. We start with a lemma.

LEMMA 2.1. Suppose that K (A∗)= {0}. If f ∈ H(A) is not constant, then:
(1) σ(A)= σw(A) is connected;
(2) ind( f (A)− λI )≥ 0 for each λ ∈ ρSF ( f (A)), where ρSF ( f (A))= {λ ∈C,

f (A)− λI is semi-Fredholm};
(3) σw( f (A))= f (σw(A))= σ( f (A)) is connected.

PROOF. (1) We only need to prove that σ(A)⊆ σw(A). Let λ0 ∈ [σ(A)\σw(A)].
There are two cases to consider.

Case 1. Let λ0 6= 0. Since A∗ − λ0 I is Weyl and {0} 6= N (A∗ − λ0 I )⊆ K (A∗), it
follows that K (A∗) 6= {0}, which is a contradiction.

Case 2. Let λ0 = 0. Since A − λ0 I = A is Weyl, using the semi-Fredholm
perturbation theory, A∗ − λI is Weyl if 0< |λ| is sufficiently small. But since

N (A∗ − λI )⊆ K (A∗)= {0},

it follows that A∗ − λI is invertible. Then 0 ∈ iso σ(A∗). By [15, Theorem],
H = H0(A∗)⊕ K (A∗)= H0(A∗), which means that A∗ is quasinilpotent. Thus A
is quasinilpotent, contradicting the assumption that A is not quasinilpotent.

From the foregoing, we know that σ(A)= σw(A). Suppose that σ(A) is not
connected. Then σ(A∗) is not connected. Let σ(A∗)= σ ∪ τ , where σ, τ are closed,
σ, τ 6= ∅ and σ ∩ τ = ∅. Define f ∈ H(A∗) such that f ≡ 1 on σ and f ≡ 0 on τ . Put
P = f (A∗). Then P2

= P , R(P) and N (P) are closed, A∗-invariant subspaces and
σ(A∗|R(P))= σ and σ(A∗|N (P))= τ . Since K (A∗)= {0}, it follows that A∗F 6= F
for each closed A∗-invariant subspace F 6= {0} [17, Proposition 2]. Then 0 ∈ σ ∩ τ ,
which is a contradiction, since σ ∩ τ = ∅. Thus σ(A)= σw(A) is connected.

(2) Since N (A∗ − λI )= {0} for all λ 6= 0, A has the SVEP. By [6, Theorem 1.5],
f (A∗)= f (A)∗ has the SVEP. Therefore, ind( f (A)− λI )≥ 0 for each λ ∈

ρSF ( f (A)) by [9, Corollary 12].
(3) Applying (2) and [18, Theorem 3.6], we know that

σw( f (A))= f (σw(A))= f (σ (A))= σ( f (A))

is connected. 2

If K (A∗)= {0}, then for any f ∈ H(A),

σ( f (A))= f (σ (A))= f (σw(A))= σw( f (A))= σb( f (A))

is connected. In this case, if | f (λ)| = 1 for some λ ∈ σ(A), then f (λ) ∈ σw( f (A)) ∩
∂D. Since σw( f (A)) and ∂D are connected, σw( f (A)) ∪ ∂D is connected. If
H0(A)= H , by K (A∗)⊆ H0(A)⊥ [15], then K (A∗)= {0}. Using [12, Theorems 2.1
and 3.3], we have the following result.
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THEOREM 2.2. Suppose that K (A∗)= {0} or H0(A)= H. Then:
(1) A ∈ HC(H) if and only if there exists λ ∈ σ(A) such that |λ| = 1;
(2) A ∈ SC(H);
(3) for any f ∈ H(A), f (A) ∈ HC(H) if and only if there exists λ ∈ σ(A) such that

| f (λ)| = 1;
(4) f (A) ∈ SC(H) for any f ∈ H(A).

COROLLARY 2.3. Suppose that K (A)= {0} and K (A∗)= {0}. Then:
(1) A ∈ HC(H) if and only if A∗ ∈ HC(H), if and only if there exists λ ∈ σ(A)

such that |λ| = 1;
(2) A ∈ SC(H) and A∗ ∈ SC(H);
(3) for any f ∈ H(A), f (A) ∈ HC(H) if and only if f (A∗) ∈ HC(H), if and only

if there exists λ ∈ σ(A) such that | f (λ)| = 1;
(4) f (A) ∈ SC(H) and f (A∗) ∈ HC(H) for any f ∈ H(A).

The hypercyclicity (or supercyclicity) for operator matrices has been studied in [2].
In the following results, we continue this work.

THEOREM 2.4. Suppose that dim K (A∗) <∞. Then the following statements are
equivalent:

(1) M0 =

(
A 0
0 B

)
∈ HC(H ⊕ K );

(2) MC =

(
A C
0 B

)
∈ HC(H ⊕ K ) for each C ∈ B(K , H);

(3) MC =

(
A C
0 B

)
∈ HC(H ⊕ K ) for some C ∈ B(K , H).

PROOF. We only prove the equivalence between (2) and (3), and so we only need
to prove that (3) implies (2). Suppose that MC0 ∈ HC(H ⊕ K ). Using [12,
Theorem 2.1], we will prove that:

(a) σw(MC ) ∪ ∂D is connected for each C ∈ B(K , H).
We claim that σw(MC )= σw(MC0). If fact, let MC − λ0 I be Weyl. Then A − λ0 I

is upper semi-Fredholm, B − λ0 I is lower semi-Fredholm and d(A − λ0 I ) <∞
if and only if n(B − λ0 I ) <∞. Using the perturbation theory of semi-Fredholm
operators and the fact that A∗ − λ0 I is lower semi-Fredholm, there exists ε > 0
such that A∗ − λI is lower semi-Fredholm, λ 6= 0 and ind(A∗ − λI )= ind(A∗ − λ0 I )
if 0< |λ− λ0|< ε. Since N (A∗ − λI )⊆ K (A∗), it follows that n(A∗ − λI ) <∞,
which implies that A∗ − λI is Fredholm. Then A − λ0 I is Fredholm and hence
B − λ0 I is Fredholm. Therefore MC0 − λ0 I is Fredholm with ind(MC0 − λ0 I )=
ind(MC − λ0 I )= 0, that is, MC0 − λ0 I is Weyl. Then σw(MC0)⊆ σw(MC ). The
case σw(MC )⊆ σw(MC0) has the same proof. Then σw(MC ) ∪ ∂D= σw(MC0) ∪ ∂D
is connected for every C ∈ B(K , H).

(b) σ(MC )= σb(MC ) for every C ∈ B(K , H).
Let MC − λ0 I be Browder. Then both A − λ0 I and B − λ0 I are Fredholm

and asc(A − λ0 I ) <∞, des(B − λ0 I ) <∞. Using the perturbation theory of
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semi-Fredholm operators again, there exists ε > 0 such that A∗ − λI is Fredholm,
A∗ − λI is surjective, and ind(A∗ − λI )= ind(A∗ − λ0 I ) if 0< |λ− λ0|< ε. Since

N (A∗ − λI )⊆ K (A∗) and dim K (A∗) <∞,

it follows that A∗ − λI is bounded from below if 0< |λ− λ0| is sufficiently small
(less than ε). Then A∗ − λI is invertible if 0< |λ− λ0| is sufficiently small. This
implies that λ0 /∈ acc σ(A). Then A − λ0 I is Browder [10, Theorem 4.7]. Therefore
B − λ0 I is Browder and hence MC0 − λ0 I is Browder. Since MC0 ∈ HC(H ⊕ K ),
σ(MC0)= σb(MC0). Then A − λ0 I is injective and B − λ0 I is surjective. But since
both A − λ0 I and B − λ0 I are Browder, it follows that both A − λ0 I and B − λ0 I
are invertible. Then MC − λ0 I is invertible, which proves that σ(MC )= σb(MC ) for
every C ∈ B(K , H).

(c) For every C ∈ B(K , H), ind(MC − λI )≥ 0 for each λ ∈ ρSF (A).
In fact, if MC − λ0 I is semi-Fredholm with ind(MC − λ0 I )≤ 0, then A − λ0 I is

Fredholm (see the proof of (a) above). By [4, Theorem 2.1], B − λ0 I is upper semi-
Fredholm. Thus MC0 − λ0 I is semi-Fredholm with

ind(MC0 − λ0 I )= ind(MC − λ0 I ) < 0.

It is in contradiction to the fact that MC0 ∈ HC(H ⊕ K ). 2

REMARK 2.1.
(1) Theorem 2.4 holds for the case of supercyclicity.
(2) The condition dim K (A∗) <∞ is essential in Theorem 2.4. For example, let

H = K = `2 and A, B, C ∈ B(`2) be defined by

A(x1, x2, x3, . . .)= (0, x1, 0, x2, 0, x3, . . .),

B(x1, x2, x3, . . .)= (x2, x4, x6, . . .),

C(x1, x2, x3, . . .)= (0, 0, x1, 0, x3, 0, x5, . . .).

Then:
(i) K (A∗)= K (B)= H , then dim K (A∗)=∞;

(ii) M0 =

(
A 0
0 B

)
∈ HC(H ⊕ K );

(iii) MC /∈ HC(H ⊕ K ).
In fact, we can prove that MC is bounded from below, but MC is not invertible.

This means that there exists λ ∈ ρSF (MC ) such that ind(MC − λI ) < 0. Then we
have MC /∈ HC(H ⊕ K ).

(3) Theorem 2.4 may fail if the assumption dim K (A) <∞ holds. For example,
let A ∈ B(H) be defined in (2) in this remark. We claim that K (A)= {0}. In
fact, let y = (y1, y2, y3, . . .) ∈ K (A). Using the definition of K (A), there exists
{xn} ⊆ H such that Axn+1 = xn and Ax1 = y. Then Anxn = y for any n ∈N. Let
xn = (xn1, xn2, xn3, . . .). For any n ∈N, the nth component of Anxn is 0. This
proves that for n ∈N, yn = 0. Then y = 0. Therefore K (A)= {0}. But the result
in Theorem 2.4 fails.
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EXAMPLE 2.1. Let H = K = `2 and let A ∈ B(H) and B ∈ B(K ) be defined by

A(x1, x2, x3, . . .)= (x2, x4, x6, . . .),

B(x1, x2, x3, . . .)= (0, x1, 0, x2, 0, x3, . . .),

then K (A∗)= {0} and
(

A 0
0 B

)
∈ HC(H ⊕ K ), therefore MC ∈ HC(H ⊕ K ) for

every C ∈ B(K , H).
The equivalent definition of K (A) is:

K (A) = {x ∈ H : there exists (xn)
∞

n=1 ⊆ H such that Ax1 = x, Axn+1 = xn,

(for any n ∈N), and {‖xn‖
(1/n)
}
∞

n=1 is bounded}.

LEMMA 2.5. Suppose that K (A) is closed. If for each eigenspace N (A − λI ) of finite
dimension, K (A) ∩ H0(A − λI ) is closed, then asc(A − λI ) <∞ for any λ ∈C such
that A − λI is upper semi-Fredholm.

PROOF. Let K (A) 6= {0} and suppose that A1 = A|K (A). Then A1 is surjective.
Let λ0 ∈C such that A − λ0 I is upper semi-Fredholm. Without loss of generality,

let λ0 /∈ σa(A). If λ0 = 0, since K (A) ∩ H0(A)= H0(A1) is closed, we know that A1
has the SVEP at λ0. Then n(A1)≤ d(A1)= 0 [9, Corollary 11], which means that
A1 is invertible. Then there exists ε > 0 such that N (A − λI )= N (A1 − λI )= {0}
if 0< |λ|< ε. Since A is upper semi-Fredholm, A − λI is upper semi-Fredholm
if 0< |λ| is sufficiently small. Then A − λI is bounded from below, that is,
0 ∈ [iso σa(A) ∪ ρa(A)]. Therefore asc(A − λ0 I ) <∞. In what follows, we suppose
that λ0 6= 0.

(a) For any m ∈N, N [(A − λ0 I )m] ⊆ K (A).
Let x ∈ N [(A − λ0 I )m], that is, (A − λ0 I )m x = 0. Then there exists a polynomial

P(·) such that λm
0 x = AP(A)x , x = A[((P(A))/(λm

0 ))x]. Let

c = ‖((P(A))/(λm
0 ))‖ + 1, x1 = ((P(A))/(λ

m
0 ))x, xn = [(P(A))/(λ

m
0 )]

nx,

for all n ∈N. Then Ax1 = x , Axn+1 = xn , and ‖xn‖ ≤ cn
‖x‖, which implies that

x ∈ K (A). Therefore, α(A − λ0 I )= α(A1 − λ0 I ).
(b) K (A) ∩ R(A − λ0 I )= R(A1 − λ0 I ).
For any y ∈ K (A) ∩ R(A − λ0 I ), let y = (A − λ0 I )x0. Since y ∈ K (A)= AK (A),

there exists y0 ∈ K (A) such that (A − λ0 I )x0 = Ay0. Then

x0 = A[(x0 + y0)/(λ0)].

Using the definition of K (A), there exist c > 0 and {yn}
∞

n=1 ⊆ X such that
Ay1 = y0, Ayn+1 = yn and ‖yn‖ ≤ cn

· ‖y0‖ (∀n ∈N).
Let

x1 = ((x0 + y0)/λ0), xn = ((x0 + y0)/λ
n
0)+ (y1/λ

n−1
0 )+ · · · + (yn−1/λ0).
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Then Ax1 = x0, Ax2 = x1, . . . , Axn+1 = xn and

‖xn‖ =

∥∥∥∥ x0 + y0

λn
0
+

y1

λn−1
0

+ · · · +
yn−1

λ0

∥∥∥∥
≤

1
|λ0|

n [‖x0‖ + ‖y0‖ + |λ0| · ‖y1‖ + · · · + |λ0|
n−1
· ‖yn−1‖]

≤
1
|λ0|

n [‖x0‖ + ‖y0‖ + |λ0| · c · ‖y0‖ + · · · + |λ0|
n−1
· cn−1

· ‖y0‖]

≤
1
|λ0|

n ‖x0‖ +
‖y0‖

|λ0|
n [1+ |λ0|c + · · · + |λ0|

n−1cn−1
].

If |λ0| · c ≤ 1, then

‖xn‖ ≤
1
|λ0|

n · ‖x0‖ +
‖y0‖

|λ0|
n · n,

‖xn‖
(1/n)
≤

1
|λ0|
· ‖x0‖

(1/n)
+

1
|λ0|
· (n · ‖y0‖)

(1/n).

Since

lim
n→∞
[(1/(|λ0|)) · ‖x0‖

(1/n)
+ (1/(|λ0|)) · (n · ‖y0‖)

(1/n)
] = 2/|λ0|,

it follows that {‖xn‖
(1/n)
}
∞

n=1 is bounded.
If |λ0| · c > 1,

‖xn‖ ≤
1
|λ0|

n · ‖x0‖ +
‖y0‖

|λ0|
n ·

1− |λ0|
n
· cn

1− |λ0| · c

≤
1
|λ0|

n · ‖x0‖ +
‖y0‖

|λ0|
n ·
|λ0|

n
· cn

|λ0| · c − 1

=
1
|λ0|

n · ‖x0‖ +
‖y0‖

|λ0| · c − 1
· cn,

then

‖xn‖
(1/n)
≤

1
|λ0|
· ‖x0‖

(1/n)
+

(
‖y0‖

|λ0| · c − 1

)(1/n)

· c.

Also {‖xn‖
(1/n)
}
∞

n=1 is bounded. Using the equivalent definition of K (A), we know
x0 ∈ K (A). Then K (A) ∩ R(A − λ0 I )= R(A1 − λ0 I ). Hence A1 − λ0 I is upper
semi-Fredholm. Since H0(A1 − λ0 I )= K (A) ∩ H0(A − λ0 I ) is closed, it follows
that A1 has the SVEP at λ0. Then α(A − λ0 I )= α(A − λ0 I ) <∞.

Suppose that K (A)= {0}. Let A − λ0 I be upper semi-Frehdolm. Then there exists
ε > 0 such that A − λI is upper semi-Fredholm, λ 6= 0, if 0< |λ− λ0| is sufficiently
small. Since N (A − λI )⊆ K (A), N (A − λI )= {0}. Then A − λI is bounded from
below, and therefore λ0 ∈ iso σa(A). This also implies that A has the SVEP at λ0.
Then asc(A − λ0 I ) <∞. 2
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Let σd(A) denote the surjective spectrum of A. From the statements in Remark 2.1,
we know the result in Theorem 2.4 is not true if we suppose that K (A) is closed.
However, the following theorem holds.

THEOREM 2.6. Let K (A) be closed. Suppose that for each eigenspace N (A − λI ) of
finite dimension, K (A) ∩ H0(A − λI ) is closed.
(1) If σab(MC )= σab(A) ∪ σab(B) for any C ∈ B(K , H) and MC0 ∈ HC(H ⊕ K )

for some C0 ∈ B(K , H), then MC ∈ HC(H ⊕ K ) for any C ∈ B(K , H).
(2) If σ(A)= σa(A) or σ(B)= σd(B), then the converse of (1) is true.

PROOF. (1) (i) σw(MC ) ∪ ∂D is connected for each C ∈ B(K , H).
We claim that σw(MC )= σw(MC0). If fact, let MC − λ0 I be Weyl. Then A − λ0 I

is upper semi-Fredholm, B − λ0 I is lower semi-Fredholm and d(A − λ0 I ) <∞ if
and only if n(B − λ0 I ) <∞. Then asc(A − λ0 I ) <∞. If d(A − λ0 I )=∞, then
by [5, Theorem 2.1] there exists C1 ∈ B(K , H) such that λ0 /∈ σab(MC1). Therefore
λ0 /∈ σab(A) ∪ σab(B), which implies that n(B − λ0 I ) <∞, which is a contradiction.
Then both A − λ0 I and B − λ0 I are Fredholm. Therefore MC0 − λ0 I is Fredholm
with ind(MC0 − λ0 I )= ind(MC − λ0 I )= 0, that is, MC0 − λ0 I is Weyl. Then
σw(MC0)⊆ σw(MC ). The case σw(MC )⊆ σw(MC0) has the same proof. Then
σw(MC ) ∪ ∂D= σw(MC0) ∪ ∂D is connected for every C ∈ B(K , H).

(ii) σ(MC )= σb(MC ) for every C ∈ B(K , H).
Let MC − λ0 I is Browder. Then both A − λ0 I and B − λ0 I are Fredholm and

asc(A − λ0 I ) <∞, des(B − λ0 I ) <∞. Since λ0 /∈ σab(MC ), asc(B − λ0 I ) <∞,
which means that B − λ0 I is Browder. Then A − λ0 I is Browder, and hence λ0 /∈

σb(MC0). But since σ(MC0)= σb(MC0), it follows that both A − λ0 I and B − λ0 I
are invertible. Then MC − λ0 I is invertible. Therefore σ(MC )= σb(MC ) for every
C ∈ B(K , H).

(iii) For every C ∈ B(K , H), ind(MC − λI )≥ for each λ ∈ ρSF (A).
In fact, if MC − λ0 I is semi-Fredholm with ind(MC − λ0 I )≤ 0, then A − λ0 I is

upper semi-Fredholm with finite ascent. If d(A − λ0 I ) <∞, then by [4, Theorem 2.1]
B − λ0 I is upper semi-Fredholm. Thus MC0 − λ0 I is semi-Fredholm with

ind(MC0 − λ0 I )= ind(MC − λ0 I ) < 0.

This contradicts the fact that MC0 ∈ HC(H ⊕ K ). But if d(A − λ0 I )=∞, using [5,
Theorem 2.2], there exists C1 ∈ B(K , H) such that λ0 /∈ σab(MC1). Then B − λ0 I
is upper semi-Fredholm. Therefore MC0 − λ0 I is semi-Fredholm and further
ind(MC0 − λ0 I )= ind(MC − λ0 I ) < 0. This again is a contradiction.

(2) Suppose that σ(A)= σa(A) or σd(A)= σ(B). For every C ∈ B(K , H), the
inclusion σab(MC )⊆ σab(A) ∪ σab(B) is clear. For the converse inclusion, let λ0 /∈

σab(MC ), then λ0 /∈ σab(A). Therefore A − λI is bounded from below if 0< |λ− λ0|

is sufficiently small. But since σa(A)= σ(A), it follows that λ0 /∈ acc σ(A). Then
A − λ0 I is Browder [10, Theorem 4.7]. Using the perturbation theory of semi-
Fredholm operators and [4, Theorem 2.1], λ0 /∈ σab(B). Then λ0 /∈ σab(A) ∪ σab(B).
The proof is complete. 2
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COROLLARY 2.7. If dim K (A) <∞ or dim K (A − λI ) <∞ for some λ ∈C, then
the result in Theorem 2.6 is true.

In Lemma 2.5 and Theorem 2.6, we can modify the condition ‘K (A) is closed’
to ‘K (A − λI ) is closed for some λ ∈C’. It is well known that K (A − λI )= H is
closed for any λ ∈ ρ(A), leading to the following corollary.

COROLLARY 2.8. Suppose that for each eigenspace N (A − λI ) of finite dimension,
H0(A − λI ) is closed, then the result in Theorem 2.6 is true.

One such class which has attracted the attention of a number of authors is the set
H(P) of all operators A ∈ B(H) such that for every complex number λ there exists an
integer dλ ≥ 1 for which

H0(A − λI )= N [(A − λI )dλ].

holds. The class H(P) contains the classes of subscalar, algebraically totally
paranormal and transaloid operators on a Banach space, ∗-totally paranormal,
M-hyponormal, p-hyponormal (0< p < 1) and log-hyponormal operators on a Hilbert
space (see [7, 8, 11]). From Corollary 2.8, we have the following results.

COROLLARY 2.9. If A ∈ H(P), then the result in Theorem 2.6 is true.

LEMMA 2.10. Suppose that A∗ ∈ H(P). Then σ(A)= σa(A) and σab(MC )=

σab(A) ∪ σab(B) for every B ∈ B(K ) and for every C ∈ B(K , H).

PROOF. Let A − λI be bounded form below. Then A∗ − λI is surjective. But since
A∗ has the SVEP, it follows that A∗ − λI is invertible. Then A − λI is invertible. This
proves that σ(A)= σa(A).

For any C ∈ B(K , H) and for any B ∈ B(K ), the inclusion

σab(MC )⊆ σab(A) ∪ σab(B)

is clear. For the converse inclusion, let λ /∈ σab(MC ); then λ /∈ σab(A). Since A∗

has the SVEP at λ, A − λI is Browder. Then B − λI is upper semi-Fredholm with
asc(B − λI ) <∞. This proves that σab(MC )= σab(A) ∪ σab(B). 2

Lemma 2.5 and Theorem 2.6 lead to the following result.

COROLLARY 2.11. Suppose that A∗ ∈ H(P) and B ∈ B(K ), then the following
statements are equivalent:
(1) M0 ∈ HC(H ⊕ K );
(2) MC ∈ HC(H ⊕ K ) for some C ∈ B(K , H);
(3) MC ∈ HC(H ⊕ K ) for every C ∈ B(K , H).
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