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Global stability analysis and direct numerical simulation (DNS) are used to study
boundary layer flows with an isolated roughness element. The aspect ratio of the element
(η) is small, while the ratio of element height to displacement boundary layer thickness
(h/δ∗) is large. Both steady base flows and time-averaged mean flows are able to capture
the frequencies of the primary vortical structures and mode shapes. Global stability
results highlight that although the varicose instability is dominant for large h/δ∗, sinuous
instability becomes more pronounced as Reh increases for the thin geometry (η = 0.5),
due to increased spanwise shear in the near-wake region. Wavemaker results indicate
that η affects the convective nature of the shear layer more than the type of instability.
DNS results show that different instability mechanisms lead to different development and
evolution of vortical structures in the transition process. For η = 1, the varicose instability
is associated with the periodic shedding of hairpin vortices, and its stronger spatial
transient growth indicated by wavemaker results aids the formation of hairpin vortices
farther downstream. In contrast, for η = 0.5, the interplay between varicose and sinuous
instabilities results in a broader-banded energy spectrum and leads to the sinuous wiggling
of hairpin vortices in the near wake when Reh is sufficiently high. A sinuous mode with a
lower frequency captured by dynamic mode decomposition analysis, and associated with
the ‘wiggling’ of streaks, persists far downstream and promotes transition to turbulence.
A new regime map is developed to classify and predict instability mechanisms based
on Re1/2

hh and d/δ∗ using a logistic regression model. Although the mean skin friction
demonstrates different evolutions for the two geometries, both of them efficiently trip the
flow to turbulence at Reh = 1100. An earlier location of a fully-developed turbulent state
is established for η = 1 at x ≈ 110h.
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1. Introduction

Boundary layer tripping is an important part of model-scale studies, where the trip causes
transition to turbulence of a boundary layer that would otherwise have remained laminar
or transitional, and therefore been less representative of the boundary layers likely to be
seen at full-scale Reynolds numbers. This issue is even more important in the context of
pressure gradients where favourable pressure gradients cause the boundary layer to thin
and resist transition, while adverse pressure gradients have the opposite effect. Consider,
for example, a body of revolution at angle of attack where it is impractical to redesign
the trip for each angle of attack studied. A trip that is suitable at low Reynolds number,
meaning that it yields a turbulent boundary layer without imposing itself in the outer
layer, might over-trip the flow at higher Reynolds number where the boundary layer is
thinner. Trip location and trip geometry are known to affect the evolution of skin-friction
coefficient (Huber & Mueller 1987; Chesnakas & Simpson 1996). The choice of trip
geometry and location can be challenging since different trip geometries can trigger
different modes of perturbations that translate into different evolutions of the boundary
layer to a turbulent state. Understanding the trip effects on the transition process is
therefore important.

Isolated three-dimensional (3-D) roughness elements immersed in a boundary layer over
a flat plate can be considered as a foundational model in this regard. The effects of isolated
roughness on transition have been investigated experimentally by Gregory & Walker
(1956). The main flow pattern is observed to be horseshoe vortices that wrap around the
roughness element, and whose legs trail downstream and give birth to the streamwise
vortices farther downstream. Baker (1979) has studied experimentally the vortex system
around an isolated cylindrical roughness element, and shown the dependency of the
horseshoe system dynamics on ReD = UeD/ν and D/δ∗ (where Ue is the boundary
layer edge velocity, D is the cylinder diameter, ν is the kinetic viscosity of the fluid,
and δ∗ is the displacement boundary layer thickness). The streamwise vortices induced
by the 3-D roughness elements create longitudinal streaks downstream that are lifted
upwards (Landahl 1980; Reshotko 2001). The stability properties of the streamwise streaks
play important roles in the trip-induced transition. The streamwise longitudinal streaks
are related to disturbance transient growth, which can cause transition downstream of
the roughness (Fransson et al. 2004, 2005). The concept of optimal perturbation was
introduced by Böberg & Brösa (1988) and Butler & Farrell (1992) to define these ‘most
dangerous’ initial perturbations that generate the maximum energy growth. Luchini (2000)
provided a numerical method to determine the optimal perturbation and explain that the
linear growth of initially small disturbances can excite nonlinear interactions and cause
transition.

Both symmetric (termed ‘varicose’) and anti-symmetric (termed ‘sinuous’) streak
instabilities have been detected and are of importance in transitional and turbulent
boundary layers. The varicose type is associated with horseshoe vortices that originate
from a normal inflectional instability in the streamwise velocity profile (Robinson 1991;
Asai, Minagawa & Nishioka 2002; Skote, Haritonidis & Henningson 2002). The sinuous
streak instability is associated with a base state with a spanwise inflection and contributes
to the regeneration of near-wall turbulence (Jiménez & Moin 1991; Skote et al. 2002).
Local stability analysis has been used to investigate the streamwise streaks past a single
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Boundary layer with an isolated roughness element

roughness element (Piot, Casalis & Rist 2008; Shin, Rist & Krämer 2015). Asai et al.
(2002) observed that wider streaks more easily undergo varicose breakdown while
narrower streaks are more likely to undergo the sinuous breakdown. De Tullio et al. (2013)
conducted bi-global stability analysis to investigate transition induced by a sharp-edged
isolated roughness element in a supersonic boundary layer, and suggest that the varicose
mode is associated with the entire 3-D shear layer while the sinuous mode is a consequence
of the lateral streaks. While local stability analysis can reconstruct both direct and adjoint
modes at low computational cost, the results are less accurate when the flow is less parallel
(Juniper & Pier 2015). Siconolfi et al. (2017) proposed a correction to local stability
analysis to improve the prediction of the globally unstable modes.

With large-scale linear algebra computations being possible, global linear stability
theory (Theofilis 2011) may be performed and is useful for non-parallel flows such as
roughness wakes, and is therefore a promising tool for roughness-induced transition.
Loiseau et al. (2014) used global stability theory to investigate the dependence of
instability types on aspect ratios η = d/h (where d is the roughness width, and h is
the roughness height) for h/δ∗ = 1.45, and suggest that varicose instability is observed
for wider roughness elements (η > 1), and sinuous instability is observed for thinner
roughness elements (η � 1). Puckert & Rist (2018) conducted experiments corresponding
to Loiseau et al. (2014). They reported experimental observation of sinuous oscillations
and found that for thin roughness elements (η = 1), the sinuous mode competes with
the varicose mode and becomes dominant in the supercritical regime. Citro et al. (2015)
presented the direct and adjoint global eigenmodes for boundary layer flows past a
hemispherical roughness element, and found that the critical Reynolds number is constant
when the ratio of the roughness height and the displacement boundary layer thickness,
h/δ∗, is less than 1.5. Kurz & Kloker (2016) used direct numerical simulation (DNS) and
global stability analysis to investigate the effects of discrete surface roughness with various
roughness heights (1.3 < h/δ∗ � 2.0) and background disturbance on a swept-wing
boundary layer. Their results suggest that larger elements are able to trip turbulence by
either a convective or a global instability in the near-wake region. Bucci et al. (2021)
highlighted that the roughness Reynolds number Reh = Ueh/ν and aspect ratio might not
be the only important parameters for flow characteristics; h/δ∗ also plays a crucial role in
the onset and symmetry of the primary global instability.

Past studies have focused mostly on relatively small h/δ∗. Less is known for the case
when the roughness height is comparable to the local boundary layer thickness, which
is considered in this paper. A large h/δ∗ is a simple model to represent a typical large
protuberance on the surface. Corke, Bar-Sever & Morkovin (1986) studied the effects
of distributed roughness on transition and suggested that transition is most likely to be
triggered by the few highest peaks. Also, for realistic rough surfaces where multiple
length scales are present, it is known that the large asperities make the most significant
contribution to the form drag and enhanced pressure fluctuations in a turbulent channel
flow (Ma, Alamé & Mahesh 2021). In the context of trips, a large h/δ∗ is related to moving
trip location upstream. While an upstream trip is desirable to obtain a turbulent boundary
layer over a large portion of the body, it is also harder to achieve since the local Reynolds
number is smaller. The present study complements past work to provide insight relevant to
how moving a trip closer to the leading edge affects the transition.

We therefore study the global instability of boundary layer flows with a cuboidal element
with small aspect ratios η = 1 and 0.5. The ratio of the cuboid height to the displacement
boundary layer thickness is 2.86, which is larger than in most past work. We also perform
DNS to examine the dependence of Reh and η on the laminar–turbulence transition
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process, and use dynamic mode decomposition (DMD) analysis to study the development
of vortical structures and associated nonlinear dynamics corresponding to different global
instability characteristics. We relate the primary instability to the behaviour of hairpin
structures and nonlinear evolution in the transition process. The wake flow is studied for
its importance in both unstable and stable regimes, where past work by Puckert & Rist
(2018) showed how in the stable regime, roughness can amplify upstream disturbances
and lead to transition. Characterizing unstable modes in terms of their varicose or sinuous
nature continues to be useful, as shown by the recent study by Bucci et al. (2021), where
wake flow containing sinuous instability is seen to be more receptive to disturbance
forcing upstream of the roughness elements that results in a larger increase in skin-friction
coefficient. We therefore study, for a thin (η � 1) roughness element with a large h/δ∗,
which of the modes is dominant, if the sinuous instability is observed, how the onset
of sinuous instability is influenced by Reh, and the resulting nonlinear interaction. Also,
we propose a regime map based on Re1/2

hh and d/δ∗ to classify and predict instability
mechanisms, with the objective of replacing the visual inspection of the flow fields.
Finally, we compare the evolution of the mean skin-friction coefficient and detect the
location of a fully-developed turbulent state for the two geometries.

The paper is organized as follows. The numerical methodology is introduced in § 2. The
flow configuration, base flow computation, grid convergence and domain length sensitivity
are demonstrated in § 3. In § 4, the results of base flow, direct and adjoint analyses
are presented; the behaviours of vortical structures associated with different instability
mechanisms are analysed; the transition to turbulence and mean flow characteristics are
also examined and compared for the two geometries. Finally, the paper is summarized in
§ 5.

2. Numerical methodology

The governing equations and numerical method are summarized briefly. An overview
of modal linear stability, adjoint sensitivity and details regarding the iterative eigenvalue
solver are provided.

2.1. Direct numerical simulation
The incompressible Navier–Stokes equations are solved using the finite volume algorithm
developed by Mahesh, Constantinescu & Moin (2004):

∂ui

∂t
+ ∂

∂xj
(uiuj) = − ∂p

∂xi
+ ν

∂2ui

∂xj xj
+ K i,

∂ui

∂xi
= 0, (2.1a,b)

where ui and xi are the ith components of the velocity and position vectors, respectively,
p denotes pressure divided by density, ν is the kinematic viscosity of the fluid, and K i
is a constant pressure gradient (divided by density). Note that the density is absorbed
in the pressure and K i. The algorithm is robust and emphasizes discrete kinetic energy
conservation in the inviscid limit, which enables it to simulate high-Re flows without
adding numerical dissipation. A predictor–corrector methodology is used where the
velocities are first predicted using the momentum equation, and then corrected using the
pressure gradient obtained from the Poisson equation yielded by the continuity equation.
The Poisson equation is solved using a multigrid preconditioned conjugate gradient
method using the Trilinos libraries (Sandia National Labs).
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Boundary layer with an isolated roughness element

The DNS solver has been validated for a variety of problems on wall-bounded flows,
including realistically rough superhydrophobic surfaces (Alamé & Mahesh 2019), random
rough surfaces (Ma et al. 2021) and response of a plate in turbulent channel flow
(Anantharamu & Mahesh 2021).

2.2. Linear stability analysis
Linear stability analysis enables the investigation of the linearized dynamics of
infinitesimal perturbations evolving on a base state. In the present work, the
incompressible Navier–Stokes equations are linearized about a base state, ūi and p̄. The
flow can be decomposed into a base state subject to a small O(ε) perturbation ũi and p̃.
The linearized Navier–Stokes (LNS) equations are obtained by subtracting the base state
from (2.1a,b), and can be written as

∂ũi

∂t
+ ∂

∂xj
ũiūj + ∂

∂xj
ūiũj = − ∂ p̃

∂xi
+ ν

∂2ũi

∂xj xj
,

∂ũi

∂xi
= 0. (2.2a,b)

The same numerical schemes as the Navier–Stokes equations are used to solve the LNS
equations. The LNS equations are subject to the boundary conditions

ũi(S, t) = 0, (2.3)

where S is the boundary of the spatial domain.
The LNS equations can be rewritten as a system of linear equations,

∂ũi

∂t
= Aũi, (2.4)

where A is the LNS operator and ũi is the velocity perturbation. The solutions to the linear
system (2.4) are

ũi(x, y, z, t) =
∑

ω

ûi(x, y, z) eωt, (2.5)

where ûi is the velocity coefficient, and both ûi and ω can be complex. This defines Re(ω)
as the growth/damping rate, and Im(ω) as the temporal frequency of ûi. The linear system
of equations can then be transformed into a linear eigenvalue problem:

𝞨Ûi = AÛi, (2.6)

where ωj = diag(Ω)j is the jth eigenvalue, and û j
i = U i[j, :] is the jth eigenvector. For

the global stability analysis, the computational cost to solve the eigenvalue problem using
direct methods is very expensive. Instead, a matrix-free method, the implicitly restarted
Arnoldi method (IRAM) is usually used. We make use of the IRAM implemented in the
PARPACK library to solve for the leading eigenvalues and eigenmodes.

2.3. Adjoint sensitivity analysis
Adjoint sensitivity analysis solves for the dominant eigenvalues and eigenmodes of the
adjoint LNS equations, which yields the dominant sensitivity modes corresponding to the
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direct modes. According to the definition of the continuous adjoint to the LNS equations
by Hill (1995), the adjoint equations are

∂ũ†
i

∂t
+ ūj

∂

∂xj
ũ†

i − ũ†
j
∂

∂xi
ūj = −∂ p̃†

∂xi
− ν

∂2ũ†
i

∂xj xj
,

∂ũ†
i

∂xi
= 0. (2.7a,b)

The negative sign on the viscous term implies that the adjoint equations need to be solved
backwards in time. The adjoint equations are subject to the boundary conditions

ũ†
i (S, t) = 0, (2.8)

where S is the boundary of the spatial domain. Similar to the direct problem, the adjoint
equations can be rewritten as a system of linear equations,

∂ũ†
i

∂t
= −A†ũ†

i , (2.9)

where A† is the adjoint LNS operator, and ũ†
i is the adjoint to the velocity perturbation

field. We assume non-trivial solutions of (2.7a,b) of the form

ũ†
i (x, y, z, t) =

∑

ω

û†
i (x, y, z) e−ωt. (2.10)

The negative sign in front of ω allows for the eigenvalues from linear stability and adjoint
sensitivity analyses to have growth rates that correspond to their time integration directions
(i.e. adjoint Re(ω) > 0 corresponds to growth backwards in time). The adjoint systems of
linear equations can be simplified to an eigenvalue problem

−𝞨Û†
i = A†Û†

i , (2.11)

where ωj = diag(Ω)j is the jth eigenvalue (coincident with the eigenvalue from linear
stability analysis), and ûj,†

i = U†
i [j, :] is the jth adjoint eigenvector.

Hill (1995) suggested that the adjoint perturbation velocity field would highlight the
optimal locations where the largest response to unsteady point forcing occurs. In the
present work, our aim is to use the global adjoint sensitivity analysis in conjunction with
the global stability analysis to determine the most sensitive flow regions to point forcing
and the inception of instability.

The global stability and adjoint sensitivity solver has been developed and validated on
3-D structured platforms in the present work. First, the global stability of a 3-D lid-driven
cavity is validated against Regan & Mahesh (2017). Then the global stability and adjoint
sensitivity analyses are performed for laminar channel flow, where the results are compared
to the parallel flow stability of Poiseuille flow conducted by Juniper, Hanifi & Theofilis
(2014). Both qualitative and quantitative agreement are obtained.

3. Problem formulation

In this section, the simulation set-up is shown, the base flow computation is described, and
a study of grid convergence and domain length sensitivity is performed.
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Figure 1. Sketch of the flow configuration and roughness geometries.

3.1. Flow configuration
The flow configuration, the computational domain and the roughness geometries are
depicted in figure 1. At the inflow, a laminar Blasius boundary layer profile is prescribed.
The cuboid with height h and width d is centred at the origin of the Cartesian coordinate
system. The ratio of the roughness height to the displacement thickness of the boundary
layer, h/δ∗, is fixed at 2.86. Two aspect ratios, η = d/h = 1 and 0.5, are investigated.
The roughness height is h = 1, the reference length in the simulations. A relatively
small streamwise extent of the computational box Lx is used for global stability analyses,
and it is extended in the DNS to examine the transition process farther downstream.
The wall-normal and spanwise extents of the computational domain are denoted Ly
and Lz. The distance from the inlet of the computational domain to the centre of the
roughness element is denoted by l = 15h. The Blasius laminar boundary layer solution
is specified at the inflow boundary, and convective boundary conditions are used at
the outflow boundary. Periodic boundary conditions are used in the spanwise direction.
No-slip boundary conditions are imposed on the flat plate and the roughness surfaces. The
boundary conditions Ue = 1, ∂v/∂y = 0 and ∂w/∂y = 0 are used at the upper boundary.
Uniform grids are used in the streamwise (x) and spanwise (z) directions, and the grid in the
wall-normal (y) direction is clustered near the flat plate. Several computational domains
and spatial resolution have been used in the present work, which are detailed in § 3.3.

3.2. Base flow computation
A stationary base flow is computed for global linear stability analysis. The time-invariant
state can be either the equilibrium or the time-averaged (mean) flow. For flows at moderate
Reynolds numbers, the equilibrium state can be obtained using the selective frequency
damping (SFD) method (Åkervik et al. 2006) or the BoostConv algorithm (Citro et al.
2017). For turbulent flows at higher Reynolds numbers, the equilibrium state is difficult
to obtain; instead, the time-averaged mean flow can be used as the base state for stability
analysis to seek meaningful physical interpretation (Turton, Tuckerman & Barkley 2015;
Tammisola & Juniper 2016). In the present work, we use SFD to compute the base flow,
compare this base flow to the time-averaged mean flow, and compare their global stability
results in § 4.

SFD introduced by Åkervik et al. (2006) is a useful technique to artificially settle the
flow towards a steady equilibrium. The main idea is to apply a temporal low-pass filter to
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Figure 2. Time evolution of (a) ‖dU/dt‖ and (b) the residual ‖q − q̄‖inf using the SFD method to converge
towards the steady state for case (Reh, η) = (600, 1).

damp the oscillations due to the unsteady part of the solutions, achieved by introducing a
linear forcing term on the right-hand side of the Navier–Stokes equations. An encapsulated
formulation of the SFD method developed by Jordi, Cotter & Sherwin (2014) is used in
the present work. The problem is considered to have converged when ‖q − q̄‖inf � 10−8

according to Jordi et al. (2014), where q̄ is the filtered state. When using SFD, the control
coefficient χ and the filter width Δ play important roles in the convergence process. The
control coefficient χ should be positive and larger than the growth rate of the desired
mode, while the filter cut-off frequency ωc = 1/Δ must be lower than all of the flow
instabilities to ensure that the unstable disturbances are well within the damped region.
For example, χ = 0.5 and Δ = 2 are used for the unstable case (Reh, η) = (600, 1), and
the convergence history is shown in figure 2.

3.3. Grid convergence and domain length sensitivity
Global stability results show strong sensitivity to grid sizes and domain lengths,
highlighted by Loiseau et al. (2014) for roughness wake flow, and Peplinski, Schlatter
& Henningson (2015) for a jet in crossflow. A study on grid convergence and domain
length sensitivity is thus performed in this subsection. Three different grids are used in the
grid convergence study, which are referred to as ‘coarse’, ‘medium’ and ‘fine’. Simulation
details are listed in table 1. For all cases presented in table 1, uniform grids are used in both
streamwise and spanwise directions, while non-uniform grids are used in the wall-normal
direction. Compared to the coarse grid, the medium grid is refined in the wall-normal
direction. In the finest grid, the grid spacing in all three directions is reduced. Table 1
presents �y spacing at the wall (denoted by �ywall) and �y spacing at the roughness
height location (denoted by �ytop). Note that the roughness element is resolved by 43, 86
and 172 grid points in the wall-normal direction for the coarse, medium and fine cases,
respectively.

The streamwise velocity profiles of the base flow are examined at three different stations
in figure 3. The results show significant deviation of the solution for the coarse grid, while
the differences between the medium and fine grids are small, indicating grid convergence.
The leading eigenvalues obtained from the global stability analysis also show convergence
in table 1, suggesting that the medium grid is adequate for global stability analyses on the
present case.

The influence of streamwise domain length on the global stability results is examined
in the simulation with Lx = 75h (denoted by case Lx75). Simulation details are listed in
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Boundary layer with an isolated roughness element

Case Reh Nx × Ny × Nz Lx × Ly × Lz �x,�z �ywall �ytop σ ± iω

Coarse 600 1080 × 120 × 240 45h × 15h × 10h 0.0417h 0.0068h 0.048h 0.1472 ± i1.1068
Medium 600 1080 × 240 × 240 45h × 15h × 10h 0.0417h 0.0034h 0.024h 0.1110 ± i1.1213
Fine 600 1512 × 480 × 336 45h × 15h × 10h 0.0298h 0.0017h 0.012h 0.1107 ± i1.1213
Lx75 600 1800 × 240 × 240 75h × 15h × 10h 0.0417h 0.0034h 0.024h 0.1110 ± i1.1213

Table 1. Simulation parameters for grid convergence and domain length sensitivity study, and comparison of
the direct leading eigenvalue for case (Reh, η) = (600, 1). Note that the distance between the inflow boundary
and the roughness location remains constant at l = 15h.

3

2

1

0
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

3

2

1

0

3

2

1

0

Coarse
 Medium
Fine

y/h

ū/Ue ū/Ue ū/Ue

(a) (b) (c)

Figure 3. Base flow results from grid convergence study. Streamwise velocity profiles of the base flow
obtained from SFD with y at three streamwise stations: (a) x/h = 0, (b) x/h = 10, and (c) x/h = 20.

table 1. Note that the grid sizes in case Lx75 are comparable to the medium grid, already
proven to resolve the flow sufficiently. The leading eigenvalue shows good agreement
with that of case Medium in table 1, suggesting that the streamwise domain length
Lx = 45h is adequate for the present case. The leading eigenmodes in case Medium and
case Lx75 are also depicted in figure 4. The results are identical for the two cases. The
global mode decays appreciably before reaching the outflow boundary, which guarantees
convergence in the global stability results. The wall-normal domain length Ly = 15h is
determined according to the suggestion by De Tullio et al. (2013) that the domain height
needs to be at least four times bigger than the turbulent boundary layer thickness at
the outflow boundary. Von Doenhoff & Braslow (1961) found that roughness elements
behave as isolated elements when their spacing is three times their diameter or larger.
The spanwise domain length Lz = 10h therefore is sufficiently large to avoid potential
interactions between roughness elements. Based on these conclusions, the medium grid
and domain lengths 45h × 15h × 10h are used for the cases presented in §§ 4.1 and 4.2.
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Figure 4. Contour plots of the streamwise velocity component of the leading unstable global mode at slice
y = 0.5h for case (Reh, η) = (600, 1): (a) short domain Lx = 45h (case Medium), and (b) long domain Lx =
75h (case Lx75). The contour levels depict ±10 % of the mode’s maximum streamwise velocity.

4. Results

4.1. Base flow

4.1.1. Base flow versus mean flow
A comparison between the base flow using SFD and the time-averaged mean flow from
DNS is important for us to understand their discrepancies in the linear instability results.
As discussed by Casacuberta et al. (2018), for systems with multiple unstable modes, the
SFD method fails to damp out the unsteadiness when the less unstable eigenvalue has a
large ratio Im(ω)/Re(ω) and a small modulus relative to the most unstable eigenvalue. In
such cases, Newton-based methods may be considered to compute unstable base flows,
and using the mean flow as the base state for linear stability analysis could also be an
alternative approach. We perform DNS to obtain the time-averaged mean flow as well as
using SFD to obtain the base flow, and examine their differences and the resulting global
stability for the problem of roughness-induced transition.

Figures 5(a) and 5(b) compare the base and time-averaged mean flows for case
(Reh, η) = (600, 1), using streamlines and contours of streamwise velocity. Qualitative
agreement is seen between the base flow and the mean flow immediately downstream of
the roughness element (x � 4h). At x = 0, two pairs of streamwise vortices are observed
on the lateral sides of the cube in both base and mean flows. The pair very close to the cube
are referred to as the symmetry plane (SP) vortices (Iyer & Mahesh 2013) or the rear pair
vortices (Ye, Schrijer & Scarano 2016; Bucci et al. 2021). They push low-momentum flow
upwards, move closer to the symmetry plane, give rise to the low-speed region behind the
roughness, and are dissipated farther downstream. They are also the key flow element for
the generation of hairpin vortices (Cohen, Karp & Mehta 2014). The other counter-rotating
vortex pair is formed away from the symmetry plane, referred to as the off-symmetry plane
(OSP) vortices by Iyer & Mahesh (2013). They are the continuation of the vortex tubes
from the horseshoe vortex system upstream. At x = 4h, hairpin (H) vortices and secondary
wall-attached (SW) vortices are observed in both the base and mean flows. With increasing
downstream distance, the differences between the base and mean flows become prominent.
In figures 5(c) and 5(d), the streamwise velocity ū/Ue is depicted by the contour lines, and
the streamwise velocity fluctuations u′u′/Ue are shown for the DNS mean flow. For the
base flow, the central low-speed region is lifted up and sustained farther downstream. For
the mean flow, the central low-speed region is weakened and the mean flow contour lines
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Figure 5. Comparison of the base flow obtained from the SFD method on the left versus the time-averaged
flow from DNS on the right for case (Reh, η) = (600, 1) at different x locations: (a) x = 0 and (b) x = 4h,
demonstrated by the streamlines of (v̄, w̄) with background contours of ū, for the base and mean flows,
respectively; (c) x = 10h and (d) x = 20h, demonstrated by the contour lines of ū with background contours of
u′u′ for the mean flow. The roughness location is denoted by the dashed lines.

are distorted due to the unsteadiness and the oscillations in time of the vortical structures,
which are visualized by the intensified streamwise velocity fluctuations.

The global stability results of the base and mean flows are examined in table 2, and
the associated leading global modes are shown in figure 6. It is found that using the
base and mean flows as the base state for global stability analysis can both capture the
shedding frequency of hairpin vortices (which will be discussed further in § 4.3), and both
the associated global modes present varicose symmetry. However, while the base flow is
unstable, the mean flow is marginally stable with a small growth rate. This discrepancy
in the growth rate between base flow and mean flow is similar to the observations by
Barkley (2006) for the cylinder wake flow. Barkley (2006) shows that linear stability
analysis on cylinder wake flow using the mean flow is able to track the Strouhal number
of vortex shedding, but yields a marginally stable state due to the nonlinear saturation.
Sipp & Lebedev (2007) conducted a global weakly nonlinear analysis for cylinder flow
and provided theoretical explanation for the marginal stability of mean flows: the zeroth
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Analysis Base state σ ± iω St = ωh
2πuh

Global stability Base flow (SFD) 0.1107 ± i1.1213 0.180
Global stability Mean flow (DNS) −0.0137 ± i1.0725 0.173

Table 2. Comparison of the leading eigenvalues between base flow and mean flow for case
(Reh, η) = (600, 1).

–5

–15 –10 –5 0 5 10 15 20 25 30 –15 –10 –5 0 5 10 15 20 25 30

0

5

–5

0

5

(a) (b)

z/h

x/h x/h
Figure 6. Comparison of the leading global mode between (a) the base flow and (b) the mean flow for case
(Reh, η) = (600, 1), depicted by isocontours of the streamwise velocity component. The contour levels depict
±10 % of the mode’s maximum streamwise velocity.

harmonic is much stronger than the second harmonic, and the saturation process on the
limit cycle is linked to the zeroth harmonic not to the second harmonic. The state of
marginal stability for case (Reh, η) = (600, 1) is possibly due to the reason explained by
Sipp & Lebedev (2007). Since the global stability analysis of the base flow obtained using
SFD can both capture the shedding frequency and present good prediction in instability,
we use the base flow from SFD for global stability analysis in the present work.

4.1.2. Dependence on Reh and η
The dependence of the base flow features on different η and Reh is examined in
figures 7(a)–7(d). The spanwise vortices observed upstream of the roughness element
correspond to the horseshoe vortex system induced by the stagnation effect of the
roughness. Baker (1979) suggested that the stability and topology of the horseshoe vortex
system is dependent mostly on Reh and h/δ∗. For η = 1, the location of the horseshoe
vortex moves slightly farther from the front face of the roughness as Reh increases, shown
in figures 7(a) and 7(b), consistent with the observations by Daniel, Laizet & Vassilicos
(2017). Also, the shear layer induced by the roughness lifts up and shows a stronger
wall-normal gradient as Reh increases. For η = 0.5, shown in figures 7(c) and 7(d), the
regions corresponding to the upstream spanwise vortices and the downstream reversed
flow are smaller due to thinner roughness geometry. The Reh dependence for η = 0.5 is
similar to what is observed for η = 1.

In the absence of roughness elements, the two-dimensional (2-D) boundary layer
becomes linearly unstable when the Reynolds number Reδ = Ueδ/ν exceeds a critical
value around 300 (Fransson et al. 2004). The instability is of viscous nature and the
first amplified wave is the Tollmien–Schlichting wave (Schlichting & Gersten 2003).
The unperturbed Blasius boundary layer can thus be linearly unstable for the considered
Reynolds numbers in the present work. However, the presence of an isolated roughness
element induces streaks, and for the streaks with sufficiently large magnitude, the
inflection points can change the linear instability to an inviscid nature. The high- and
low-speed streaks are examined in figure 8, using isosurfaces of the streamwise velocity
deviation ud = ū − ubl. For case (Reh, η) = (600, 1), the central low-speed streak and two
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Figure 7. Contour plots at the spanwise mid-plane of the streamwise velocity field of the base flow obtained
from SFD, for (a) case (Reh, η) = (475, 1), (b) case (Reh, η) = (600, 1), (c) case (Reh, η) = (600, 0.5) and (d)
case (Reh, η) = (800, 0.5). The reversed flow region is denoted by the red dashed lines.

lateral low-speed streaks are illustrated in figure 8(a). The central low-speed streak, which
occurs symmetrically with respect to the mid-plane, originates from the flow separation
downstream of the roughness element. The lateral low-speed streaks are associated
with the counter-rotating vortices. High-speed streaks close to the wall appear farther
downstream. Figure 8(b) shows that for case (Reh, η) = (600, 0.5), the thinner roughness
geometry leads to thinner and less sustainable central and lateral low-speed streaks, and
the high-speed streaks are absent farther downstream. For case (Reh, η) = (800, 0.5),
figure 8(c) shows that the strength of the central and lateral low-speed streaks gets
amplified as Reh increases. In contrast to the other two cases, the high-speed streaks
are prominent in the near-wake regions, indicating increased spanwise shear that would
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Figure 8. Top view (left) and 3-D view (right) of high- and low-speed streaks, visualized by isosurfaces of
the streamwise velocity deviation of the base flow from the theoretical Blasius boundary layer solution, ud =
ū − ubl, for (a) case (Reh, η) = (600, 1), (b) case (Reh, η) = (600, 0.5), and (c) case (Reh, η) = (800, 0.5).

contribute to the sinuous instability examined in § 4.2. Combining the above results and the
smaller h/δ∗ results from Loiseau et al. (2014), it can be concluded that: first, larger h/δ∗,
larger η and higher Reh lead to a stronger wall-normal shear and a more sustainable central
low-speed streak; second, increasing Reh for thin roughness could result in an increased
spanwise shear in the near-wake region.

4.2. Direct and adjoint analyses

4.2.1. Global stability analysis
Global stability analysis has been performed for cases with η = 1 and η = 0.5 at different
Reh, and the leading eigenvalues are shown in figures 9(a) and 9(b), respectively. For
η = 1, one leading eigenvalue is obtained at each Reh, as shown in figure 9(a). The case at
Reh = 450 is stable, consistent with the steady flow field observed from the DNS results.
As Reh increases, both the growth rate and the temporal frequency are increased. The
critical Reh can be identified when the growth rate of an eigenvalue becomes positive. The
flow at Reh = 475 is marginally stable, which suggests that the critical Reh is close to 475
for this configuration.

For η = 1, the eigenmodes of the leading eigenvalues are all varicose for the various Reh
investigated. The real part of the leading eigenmodes is shown for Reh = 475 and Reh =
600 in figures 10(a) and 10(b). Both the leading stable and unstable global modes exhibit a
varicose symmetry with respect to the spanwise mid-plane. As shown by the 3-D view of
the eigenmode, the shape and location of the modes are consistent with those of the central
low-speed streak observed in figure 8(a). The varicose mode demonstrates the unstable
nature of the central low-speed region induced by the roughness element. Compared to
the stable mode at Reh = 475, the unstable mode at Reh = 600 is more notably lifted,
corresponding to the more raised shear layer for higher Reh observed in figure 7.

For η = 0.5, a different unstable behaviour is shown in figure 9(b). One leading
stable eigenvalue is seen at Reh = 450, and its associated mode is varicose. Two leading
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Figure 9. Leading eigenvalues of cases with (a) η = 1 and (b) η = 0.5, at different Reh.
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of the leading unstable global modes, for (a) case (Reh, η) = (475, 1), (b) case (Reh, η) = (600, 1), and (c,d)
case (Reh, η) = (800, 0.5). The contour levels depict ±10 % of the mode’s maximum streamwise velocity.
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eigenvalues are obtained at higher Reh. The eigenvalue with larger growth rate and lower
frequency is a varicose mode, and the other eigenvalue with smaller growth rate and
higher frequency is a sinuous mode. For the thinner roughness geometry, the sinuous
instability becomes more prominent as Reh increases. The associated varicose and sinuous
eigenmodes of the leading eigenvalues for case (Reh, η) = (800, 0.5) are visualized in
figures 10(c) and 10(d). While the varicose mode is associated with the central low-speed
streak observed in figure 8(c), the sinuous mode shows a larger streamwise extent along
the central region. These results indicate that both varicose and sinuous oscillations exist
in the wake flow, and the effect of sinuous instability could be more persistent on the
transition process. Thus it can be concluded that for thin roughness with large h/δ∗, while
the varicose instability is dominant, the sinuous instability can also be present. The onset of
sinuous instability results from the interplay of small η and increased Reh, corresponding
to the enhanced spanwise shear observed in the near wake of the base flow with increasing
Reh.

4.2.2. Production of disturbance kinetic energy
The production of disturbance kinetic energy provides insight into how and where the
global modes extract their energy from the base flow. As illustrated by De Tullio et al.
(2013) and Loiseau et al. (2014), the main contributions to the production of disturbance
kinetic energy are the two terms

Py = −|û| |v̂| ∂Ub

∂y
, Pz = −|û| |ŵ| ∂Ub

∂z
. (4.1a,b)

The streamwise variation and spatial distribution of these two dominant terms are
examined for cases (Reh, η) = (600, 1) and (Reh, η) = (800, 0.5).

The spatial variations of Py and Pz in crossflow planes are depicted in figure 11. In
combination with the production terms, the local shear is visualized by the solid contour
lines of us = ((∂ ū/∂y)2 + (∂ ū/∂z)2)1/2 in figure 11, where ū is the streamwise velocity of
the base flow. For case (Reh, η) = (600, 1), two planes at x = 5h and x = 10h are shown
in figures 11(a) and 11(b). The contour lines of us demonstrate the central low-speed streak
and the lateral low-speed streaks on either side of the cube. With increasing downstream
distance, both the central and lateral low-speed streaks rise, reach their maximum strength
at about x = 10h, and then fade away. The planes beyond x = 10h are not shown for the
sake of brevity. The distributions of Py and Pz show a coincidence with the locations of
the streaks, indicating that the varicose mode extracts the energy from the wall-normal and
spanwise shear of the base flow. These results confirm that the varicose mode demonstrates
the instability of the entire 3-D shear layer (De Tullio et al. 2013; Loiseau et al. 2014).

The lateral low-speed streaks also make a contribution to the dominant production terms
when h/δ∗ is large. The mode extracts energy from the lateral streaks, as shown at x = 10h
in figure 11(b). The top views of Py and Pz for case (Reh, η) = (600, 1) demonstrated
in figure 12(a) display the contributions of the two lateral streaks more clearly. The
large shear ratio h/δ∗ leads to stronger central and lateral streaks in the present case.
Although the varicose mode extracts most of energy from the central low-speed streak,
the contribution of the lateral streaks cannot be neglected for cases with large shear ratios.

In contrast, the contours of Py and Pz for the leading varicose and sinuous modes of case
(Reh, η) = (800, 0.5) are shown in figures 11(c) and 11(d), respectively. The distribution
of Py demonstrates that while the varicose mode extracts the energy from the top edge of
the central streak, the sinuous mode extracts its energy from the lateral parts of the central
streak. These results are consistent with the observation by Loiseau et al. (2014) for small
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Figure 11. Contours of Py on the left and Pz on the right in crossflow planes at: (a) x = 5h and (b) x = 10h
for case (Reh, η) = (600, 1); (c) x = 2.5h for the leading varicose mode of case (Reh, η) = (800, 0.5); and (d)
x = 2.5h for the leading sinuous mode of case (Reh, η) = (800, 0.5). The contour levels are shown within the
range from −10−7 (blue) to 10−7 (red). The localized shear is depicted by the solid lines of us = ((∂ ū/∂y)2 +
(∂ ū/∂z)2)1/2 from 0 to 2. The orange dashed lines show the location of the element.

h/δ∗ cylindrical roughness. For the thinner geometry (η = 0.5), there is less fluid passing
above the roughness element, and a stronger spanwise shear is seen, corresponding to the
longer wall-normal extent for the lateral parts of the central streak, shown in figure 11(d).
This suggests that the sinuous instability occurs due to the fact that it could extract more
energy from the spanwise shear. The contour plots of Py and Pz at y = 0.75h are shown
in figures 12(b) and 12(c). The Py and Pz distributions of the sinuous mode show a longer
streamwise extent than those of the varicose mode, implying that the influence of sinuous
instability on the wake flow could last farther downstream. Both the varicose and sinuous
modes are able to extract some energy from the lateral streaks. The contribution of the
lateral streaks is associated with the strength of the lateral streaks, which is more likely
dependent on the shear ratio.

4.2.3. Adjoint sensitivity analysis
Understanding the dominant flow instability mechanisms and their sensitivity to velocity
perturbations is key to devising strategies for trip-induced boundary layer transition. The
adjoint perturbation velocity field highlights the regions most receptive to momentum
forcing, which provides important information on how to trip the wake flow in the
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Figure 12. Contours of Py on the left and Pz on the right in x–z planes at y = 0.75h, for (a) the leading
varicose mode of case (Reh, η) = (600, 1), (b) the leading varicose mode, and (c) the leading sinuous mode of
case (Reh, η) = (800, 0.5). The contour levels are the same as in figure 11.

(Reh, η) (600, 1) (800, 0.5) (800, 0.5)
Mode Varicose Varicose Sinuous

Direct 0.1107 ± i1.1213 0.2801 ± i1.4831 0.1468 ± i1.7996
Adjoint 0.1110 ± i1.1212 0.2803 ± i1.4831 0.1469 ± i1.7995

Table 3. Comparison of the leading eigenvalues of direct and adjoint modes for cases (Reh, η) = (600, 1)
and (Reh, η) = (800, 0.5).

subcritical regime. The leading adjoint eigenvalues in table 3 show good agreement with
their associated direct eigenmode counterpart for cases (Reh, η) = (600, 1) and (Reh, η) =
(800, 0.5). The streamwise velocity component of the leading adjoint modes in figure 13
shows that the sensitivity regions are located immediately upstream of the roughness
element, as well as on the top edge of the separation region directly above and downstream
of the roughness element. The sensitivity region is smaller for the thinner geometry. The
adjoint mode is symmetric with respect to the spanwise mid-plane, corresponding to the
direct varicose mode, and is anti-symmetric corresponding to the direct sinuous mode.

Due to the large differences between the spatial distribution of direct and adjoint modes,
neither direct nor adjoint solution alone can describe the whole picture. The product for
each jth pair of direct and adjoint global modes computed as

Wj(x, y, z) = ‖û j‖ ‖û†,j‖
max(‖û j‖ ‖û†,j‖) (4.2)

determines the region where the eigenvalues of the LNS operator are most sensitive to
localized feedback (Giannetti & Luchini 2007) – also called the ‘wavemaker’ regions.
Locations where W ≈ 1 are sensitive to localized feedback, corresponding to the
instability core. The value of W can be interpreted as quantification of a possible change
in the eigenvalues as a result of applied forcing in the given region of the flow (Ilak et al.
2012).
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Figure 13. Isosurfaces of the leading adjoint modes (left) and the wavemaker (right), for (a) the leading
varicose mode in case (Reh, η) = (600, 1), and the leading (b) varicose and (c) sinuous modes in case
(Reh, η) = (800, 0.5). The contour plots of the wavemaker are displayed with value 0.03.

The wavemaker results in figure 13 bring new insights in terms of the effects of different
aspect ratios on the transition features. They show that the two geometries investigated in
the present work result in different sensitivity natures of the shear layer. The maximum
value of the wavemaker at each z–y plane is plotted in figure 14 to demonstrate the
strength variation of the wavemaker along the streamwise direction. For both η = 1
and η = 0.5, the wavemaker is strongest at the reversed flow region, indicating that the
source of instability corresponds to the ‘roll-up’ of the shear layer. It then drops to the
order of 10−1 as it passes through the reversed flow region. The sinuous mode in case
(Reh, η) = (800, 0.5) (figure 13c) shows that the region sensitive to localized feedback is
dominated by the lateral sides of the shear layer, in contrast to the varicose mode showing
only one primary sensitivity region.

The noteworthy difference between the two geometries is that a spatial transient growth
of the wavemaker is seen for η = 1, but not seen for η = 0.5. This indicates that for
η = 1, the roll-up motions are convected by the flow and could aid in the generation of
hairpin vortices in the nonlinear evolution farther downstream, and the entire shear layer
is sensitive to localized feedback. In contrast, for η = 0.5, the spatial convective growth of
the wavemaker is weak. A larger roughness aspect ratio induces a stronger central streak
that is associated with a stronger spatial transient growth. The convective nature of the
shear layer is thus more likely to depend on the strength of the central streak, rather than
the types of instability.
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Figure 14. Streamwise variation of the maximum of the wavemaker for the leading varicose mode in case
(Reh, η) = (600, 1), and the leading varicose and sinuous modes in case (Reh, η) = (800, 0.5). The vertical
dashed lines denote the locations of cuboid origin and edges of the reversed flow regions.

4.3. Vorticity behaviour under different instabilities
To understand the influence of different instability characteristics on the behaviour of
vortical structures in the wake flows, DNS combined with DMD analysis are performed
for cases with η = 1 and η = 0.5. Cases (Reh, η) = (600, 1) and (Reh, η) = (800, 0.5) are
examined to better understand how vortical structures develop following different types of
global instability.

4.3.1. Hairpin vortices
Figure 15 shows the vortical structures using isocontours of Q = 0.05U2

e/h
2 (Chong,

Perry & Cantwell 1990). For case (Reh, η) = (600, 1) in figure 15(a), the vortical
motions induced by side edges of the cube interact with the shear layer generated over
the cube, giving birth to the hairpin vortices. Both the primary hairpin vortices and
secondary wall-attached vortices are observed downstream of the roughness element.
These vortical structures are amplified and fragment into small structures beyond x = 18h,
which is a manifestation of transition. The vortex ‘head’ and ‘legs’ are advected, stretched
downstream, and diminish after x = 44h. It can be seen that the convective nature of the
shear layer indicated by the wavemaker results assists the advection and amplification of
the hairpin vortices farther downstream.

In contrast, case (Reh, η) = (800, 0.5) in figure 15(b) shows different vortical motions
in the wake flow. As the horseshoe vortices wrap around the roughness element and
interact with the shear layer, anti-symmetric distribution of vortical structures is seen in the
immediate vicinity downstream of the roughness. This indicates that sinuous oscillations
occur just downstream of the roughness element. The primary hairpin vortices modulated
by the sinuous oscillations of the central streak also exhibit a sinuous wiggling. Since the
spatial growth of the roll-up motions is weak as indicated by the wavemaker results, the
hairpin vortices break down and fade away beyond x = 18h, while the sinuous wiggling
of the streaks continues farther downstream. It is thus clear that for case (Reh, η) =
(800, 0.5), varicose and sinuous instabilities have different influences on the behaviour
and development of vortical structures. The effect of varicose instability is limited within
a short streamwise extent and is unable to sustain the formation of hairpin vortices farther
downstream. The sinuous instability that originates from the immediate roughness vicinity
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Figure 15. Visualizations of instantaneous vortical structures for (a) case (Reh, η) = (600, 1) by isocontours
of Q = 0.1U2
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2, and (b) case (Reh, η) = (800, 0.5) by isocontours of Q = 0.05U2

e /h
2, coloured with

streamwise velocity.

u/Ue

tUe/h

x = 5h
x = 12h
x = 20h

0.4
360 380 400 420

tUe/h
360 380 400340

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(b)(a)

Figure 16. Time history of streamwise velocity variations for (a) case (Reh, η) = (600, 1), and (b) case
(Reh, η) = (800, 0.5), at three stations: (x, y, z) = (5h, 0.75h, 0) (solid), (x, y, z) = (12h, 0.75h, 0) (dashed)
and (x, y, z) = (20h, 0.75h, 0) (long dashed).

is correlated with the wiggling of the central streak and has a more persistent effect than
the varicose instability on the wake flow.

The time history of streamwise velocity probed at three stations is examined for case
(Reh, η) = (600, 1) in figure 16(a). Periodic oscillations with circular frequency ω =
1.088 are seen at different streamwise stations, corresponding to the periodic shedding
of hairpin vortices. These self-sustained oscillations independent of external noise are
a sign of global instability (Puckert & Rist 2018), and their frequency is close to the
temporal frequency of the leading global varicose mode. For case (Reh, η) = (800, 0.5),
figure 16(b) shows that stronger fluctuations with multiple frequencies resulting from
different instability characteristics are observed in the immediate vicinity of the roughness
element, and smaller amplitude of velocity variations are seen at the farther downstream
stations.
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4.3.2. Energy and DMD spectra analyses
To understand the dynamics behind this different behaviour for cases (Reh, η) = (600, 1)
and (Reh, η) = (800, 0.5), DMD was performed and compared to the energy spectra
and global stability results. DMD is a data-driven modal decomposition technique that
identifies a set of modes from multiple snapshots of the observable vectors. Each of the
DMD modes has an assigned eigenvalue that describes its temporal growth/decay rate
and oscillation frequency. DMD is a useful tool to isolate the regions associated with a
particular frequency and provide information on system dynamics. For the present work,
we use a novel DMD algorithm developed by Anantharamu & Mahesh (2019) that is
suitable for analysis of large datasets. The basic idea behind DMD is that the set of
snapshot vectors of flow variables {ψi}N−1

i=1 can be written as a linear combination of DMD
modes {φi}N−1

i=1 as

ψi =
N−1∑

j=1

cjλjφj, i = 1, . . . ,N − 1, (4.3)

where λj are the eigenvalues of the projected linear mapping and cj are the jth entries
of the first vector ψ1. The detailed derivation of the algorithm can be obtained from
Anantharamu & Mahesh (2019). To ensure the accuracy of the results, N = 200 snapshots
of the flow field were taken with �t Ue/h = 0.15 between them for case (Reh, η) =
(600, 1), and N = 700 snapshots were taken with �t Ue/h = 0.1 between them for case
(Reh, η) = (800, 0.5).

Also, power spectral density (PSD) is examined at the mid-plane for different
streamwise stations downstream of the roughness. For case (Reh, η) = (600, 1), the PSD
shows a primary peak at the Strouhal number St = 0.175 in figure 17(a), corresponding
to the shedding frequency of the main hairpin vortices and the secondary wall-attached
vortices observed in figure 15(a). The interaction between different vortical structures
results in the higher harmonics at St = 0.35 and 0.525. Note that similar peaks are also
identified in the DMD spectra (figure 17c). Table 4 demonstrates a comparison of the
eigenvalues and Strouhal numbers obtained from global stability and DMD analyses. The
Strouhal numbers obtained from global stability analysis and DMD analysis show good
agreement. The associated global unstable mode of the mean flow and the DMD mode are
examined in figure 18. They both demonstrate varicose features and show good qualitative
agreement.

Compared to case (Reh, η) = (600, 1), a combination of multiple frequencies is
distributed in the energy and DMD spectra for case (Reh, η) = (800, 0.5), indicating more
complicated flow behaviour. Figure 17(b) shows that the peaks at St = 0.210 and St =
0.321 are close to the temporal frequency of the varicose and sinuous modes obtained from
global stability analysis. Similar peaks are also seen in the DMD spectra from figure 17(d).
The associated DMD modes are examined in figures 19(b) and 19(c). The varicose and
sinuous symmetries are seen for the DMD modes at St = 0.210 and 0.321, which is
consistent with the global stability results. The higher harmonic peaks at St = 0.420,
0.537, 0.630 and 0.840 are evident in the vicinity downstream of the roughness element
(x = 5h), resulting from the interactions between the varicose and sinuous oscillations
in the near-wake region. The DMD spectra show agreement with the energy spectra for
the higher harmonics. The associated DMD modes at St = 0.416 and St = 0.623 are
varicose since they are the higher multiples of the varicose mode at St = 0.208, while
the DMD mode at St = 0.520 is sinuous due to a superposition of the varicose mode at
St = 0.208 and the sinuous mode at St = 0.312. The results indicate that the interactions

949 A12-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.749


Boundary layer with an isolated roughness element

(a) (b)

(c) (d)

PS
D

u
x = 5h
x = 12h
x = 20h

0.175 0.840

0.630

0.210

0.420

0.321

0.537

0.120
0.350

0.525

Varicose
Sinuous

0

50

100

150

|c jλ
ji−

1
|

Im( fj)

0.174

Im( fj)

0.348

0.522

0

10

20

30

40

50

60

70

80 0.115

0.208

0.312

0.416

0.520

0.623

St
10110010–1

St
10010–110–2

0

0.02

0.01

0.03

0.04

0.05

0.002

0.001

0

0.003

0.004

0.005

0.007

0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 17. Comparison between the energy spectra of streamwise velocity at different x stations for (a)
case (Reh, η) = (600, 1) and (b) case (Reh, η) = (800, 0.5), and the DMD spectra of the last snapshot for
(c) case (Reh, η) = (600, 1) and (d) case (Reh, η) = (800, 0.5). The power spectral density (PSD) has been
non-dimensionalized as PSD = E/(Ueh).

Analysis Base state σ ± iω St = ωh
2πuh

Global stability Mean flow (DNS) −0.0137 ± i1.0725 0.173
DMD — −0.227 × 10−7 ± i1.0826 0.174

Table 4. Comparison of the eigenvalues from global stability and DMD analyses for case
(Reh, η) = (600, 1).

between the hairpin vortices and the general sinuous oscillations are significant in the near
wake, and diminish as the vortical structures develop farther downstream. With increasing
streamwise distance, a peak at a low frequency St = 0.120 in figure 17(b) gets amplified.
This peak is also captured in the DMD spectra (figure 17d). The corresponding DMD
mode in figure 19(a) shows a sinuous symmetry. This sinuous mode is associated with
the wiggling of the streaks observed farther downstream in figure 15(b). It is thus clear
that for a thin geometry with a large h/δ∗, the sinuous mode that occurs at higher Reh can
interact with the hairpin vortices, and lead to different wake flow behavior in the transition
process.

949 A12-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.749


R. Ma and K. Mahesh

(a) (b)

z/h

0 5–5–10–15
5

0

–5

10 2015 25 30 0 5–5–10–15
5

0

–5

10 2015 25 30

x/h x/h
Figure 18. Comparison between (a) the leading global unstable mode of the mean flow and (b) the DMD mode
at St = 0.175 for case (Reh, η) = (600, 1), depicted by isocontours of the streamwise velocity component. The
contour levels depict ±10 % of the mode’s maximum streamwise velocity.
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Figure 19. The DMD modes for case (Reh, η) = (800, 0.5) at (a) St = 0.115, (b) St = 0.208, (c) St = 0.312,
(d) St = 0.416, (e) St = 0.520 and ( f ) St = 0.623, depicted by isocontours of the streamwise velocity
component. The contour levels depict ±10 % of the mode’s maximum streamwise velocity.

4.4. Nonlinear breakdown to turbulence
Getting a canonical turbulent boundary layer as early as possible is the primary goal to
design an effective trip. The joint effects of the two geometries and an increasing Reh on
the nonlinear evolution to turbulence are investigated. Longer streamwise domain lengths
are used to examine the transition to turbulence.

4.4.1. Transition and instability diagrams
The roughness Reynolds number is one of the important parameters in roughness-induced
transition. The definition of Reh does not account for the impact of the relative location
of the roughness element in a boundary layer. Another definition, Rehh = uhh/ν, based
on the Blasius velocity solution at the roughness tip location uh, has been suggested to
best characterize roughness-induced transition (Klanfer & Owen 1953). Von Doenhoff &
Braslow (1961) have suggested a transition diagram that correlates the roughness aspect
ratio η with Rehh, and can be used to predict the transition features.

Dependence of the transition process on η and Rehh is examined for the present cases by
reproducing the transition diagram in figure 20(a). Cases located in region (i) (below the
lower curve) are expected to have a steady wake flow, cases fitting into region (ii) (between
the lower and upper curves) indicate that the wake flow is unsteady and transition occurs,
and for cases situated in region (iii) (above the upper curve), transition occurs immediately
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Figure 20. (a) Reproduced von Doenhoff–Braslow transition diagram; (b) scaling the data to cluster different
types of instability. Diamonds represent the present work; rectangles denote data from Loiseau et al. (2014);
circles denote data from Citro et al. (2015); triangles denote data from Bucci et al. (2021). The symbols in
purple denote sinuous modes, in blue denote varicose modes, in green represent the case that transition occurs
immediately downstream and global instability has not been applied.

downstream of the roughness. The correlation between η and Rehh revealed by figure 20(a)
shows that for roughness elements with 0.6 � η � 2, η plays a more important role in the
onset of unsteadiness than the onset of immediate transition downstream of roughness,
while the opposite effect is seen for roughness with 0.3 � η � 0.6.

Corresponding to the transition diagram, the associated flow behaviour in the transition
process is examined in figure 21. For η = 1, the stable cases at Reh = 450 are located
in region (i), consistent with a stable wake flow in global stability and DNS results.
The unstable cases at Reh = 600 and 800 are within region (ii), and the transition
process is examined in figures 21(a) and 21(b), respectively. For case (Reh, η) = (600, 1),
both the near and farther wakes are symmetric with respect to the spanwise mid-plane,
corresponding to the leading unstable varicose mode. For case (Reh, η) = (800, 1),
symmetric fluid motions with smaller length scales are seen in the near-wake region,
indicating that nonlinear breakdown occurs more closely downstream of the roughness as
Reh increases. Intense shear between streaks results in spanwise oscillations in the farther
wake. Although only the varicose global instability is detected for this configuration,
a sinuous-like breakdown could happen when Reh is sufficiently high. This sinuous
breakdown might be related or subsequently lead to secondary sinuous instabilities
observed by Denissen & White (2013) and Vadlamani, Tucker & Durbin (2018), which
would destabilize the shear layer and promote transition to turbulence. Note that whether
or not the unstable cases undergo transition to turbulence is not revealed in this transition
diagram since the effects on other configuration parameters, such as spanwise spacing and
Reδ , need to be considered. Case (Reh, η) = (1100, 1) is located in region (iii), suggesting
that immediate transition downstream of the roughness is expected, which is verified in
figure 21(c). The streamwise streaks identified farther downstream imply that transition to
fully-developed turbulence might occur.

The η = 0.5 cases are also demarcated by the transition diagram. The unstable case
at Reh = 600 is slightly off from region (ii) since roughness with sharp edges results
in a lower Rehh for unsteadiness to occur than other smoother roughness geometries.
Figure 21(d) shows that the wake flow at Reh = 600 displays a thinner symmetric central
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Figure 21. Contour plots of instantaneous streamwise velocity field at slice y = 0.5h, for cases with η = 1 at
(a) Reh = 600, (b) Reh = 800 and (c) Reh = 1100, and cases with η = 0.5 at (d) Reh = 600, (e) Reh = 800
and ( f ) Reh = 1100.

streak compared to that of η = 1. There are no sinuous oscillations observed since the
sinuous mode is marginally stable at Reh = 600. As Reh increases to 800 (figure 21e),
the anti-symmetric oscillations in the spanwise direction become evident in both the near
and farther wakes, associated with the more prominent sinuous instability, and a persistent
effect of sinuous oscillations is seen farther downstream. For Reh = 1100 (figure 21f ),
the sinuous oscillations can still be observed in the near-wake region. The wake flow is
thinner compared to that of η = 1, indicating that the interactions between the wake flows
at spanwise boundaries might occur farther downstream.

Combined with the present cases, the data from previous work are also shown in
figure 20(a), and the instability types are denoted by different colours. Although the
transition diagram in figure 20(a) can predict the transition onsets, it fails to classify the
associated different instability mechanisms due to the joint effects of η and h/δ∗. We
therefore develop a new correlation between Re1/2

hh and d/δ∗ in figure 20(b). By using
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Figure 22. Streamwise variation of time-averaged and spanwise-averaged skin friction for η = 1 and η = 0.5
at Reh = 1100. The roughness location is denoted by the grey area.

d/δ∗ to rescale the data, the cases with either varicose or sinuous instability are clustered
separately. The decision boundary denoted by Re1/2

hh = 2.81d/δ∗ + 21.49 in figure 20(b)
is obtained by logistic regression model (Hosmer, Lemeshow & Cook 2000) to demarcate
the two instability types. The parameters in the decision boundary are determined using
an unconstrained optimization algorithm (Gill & Murray 1972). This diagram suggests
that the sinuous instability occurs when d/δ∗ is relatively small and Re1/2

hh is higher than
a certain threshold. It is therefore useful to predict the instability mechanisms in the wake
flow based on a different combination of configuration parameters, with no need of visual
inspection of the flow fields.

4.4.2. Mean flow characteristics
The evolution to a turbulent state for the two geometries at Reh = 1100 is examined by
mean skin friction coefficient in figure 22. In the immediate vicinity of roughness location,
the mean skin friction is smaller for η = 1, due to the larger and stronger flow separation
induced both upstream and downstream of the cuboids. In the range from x = 8h to x =
90h, the Cf value increases gradually due to the nonlinear breakdown, and the Cf of η =
0.5 presents a value lower than that of η = 1. This results from the thinner wake flow
associated with the thinner roughness geometry. The Cf value peaks at x ≈ 80h for η = 1,
and at x ≈ 90h for η = 0.5. The two Cf curves then decay farther downstream and collapse
with each other, as a manifestation of establishing turbulent boundary layers.

The boundary layer evolution from laminar to turbulent states is shown in figure 23(a)
using the mean velocity profiles in wall units at different streamwise locations downstream
of the roughness element. The roughness geometry with η = 1 presents an earlier location
of an establishment of a fully turbulent state. We show the results of only case (Reh, η) =
(1100, 1) for the sake of brevity. The time-averaged streamwise velocity at the mid-plane
is normalized by the local friction velocity uτ , where uτ is computed from the Cf profile
at z = 0 for each x location. The wall-normal coordinate in wall units is y+ = yuτ /ν.
The results show that all profiles collapse well in the viscous sublayer and follow the
correlation U+ = y+. From x = 5h to x = 40h, significant increase is observed above
the viscous layer, which is due to the lift-up behaviour of the shear layer. The mean
velocity profile above the viscous sublayer reaches its maximum magnitude at x = 40h and
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Figure 23. (a) Mean velocity profiles in wall units at different streamwise stations for case (Reh, η) =
(1100, 1). (b) Reynolds stresses for case (Reh, η) = (1100, 1) at x = 130h (corresponding to Reτ = 272)
compared with the large-eddy simulations of Schlatter et al. (2010) at Reτ = 257.

decreases to approach the log-law profile as the x location increases farther downstream.
Agreement with the logarithmic law is seen beyond x = 100h, indicating that the inner
layer is fully developed. As the x location increases even farther, the profiles at x = 110h
and x = 130h show agreement in both the inner and outer layers, suggesting that fully
developed turbulent flow is established in both the inner and outer layers. The velocity
fluctuations and Reynolds shear stresses at x = 130h are depicted in figure 23(b) using
wall scaling. The velocity fluctuations urms, vrms and wrms are normalized by uτ,ave, and the
Reynolds shear stress 〈u′v′〉 is normalized by u2

τ,ave, where uτ,ave is the spanwise-averaged
friction velocity computed from the spanwise-averaged Cf at x = 130h. The results show
good agreement with the results of a turbulent zero-pressure-gradient boundary layer from
Schlatter et al. (2010).

5. Conclusions

Global stability analysis and direct numerical simulation are performed to study
roughness-induced transition. Isolated cuboids with small aspect ratios η = 1 and 0.5 are
investigated at different Reh. The ratio h/δ∗ = 2.86 is larger than in most past studies,
representative of the effects of a large protuberance on the transition process.

Understanding the differences between the base and mean flows is crucial to choosing
an appropriate base state for linear stability analysis. Our results show that using either the
base flow or the mean flow as the base state for global stability analysis is able to capture
the shedding frequency of the primary vortical structures and the associated mode shapes.
However, the mean flow evolves to a marginally stable state due to the nonlinear saturation,
in contrast to an unstable base flow. This suggests that for roughness-induced transition,
using base flows can better predict the instability onset, while using mean flows is also
meaningful and can serve as an alternative base state for linear stability analyses.

The streak properties play an important role in instability characteristics, and their
dependence on the configuration parameters is investigated. Combined with past studies
with small h/δ∗ (Loiseau et al. 2014), it can be summarized that higher Reh, larger η and
higher h/δ∗ lead to a stronger wall-normal shear and a more sustainable central streak.
Also, as Reh increases for the thinner geometry (η = 0.5), high-speed streaks below the
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central streak become prominent in the near-wake region, indicating an increased spanwise
shear that can contribute to sinuous instability.

Global stability analysis shows that when the shear ratio is sufficiently high (h/δ∗ =
2.86), the varicose instability is dominant for the roughness element with small aspect
ratios (η � 1). For η = 1, both the stable and unstable modes exhibit varicose symmetry.
For η = 0.5, the varicose instability is dominant at different Reh, and the sinuous
instability becomes more pronounced as Reh increases. These results complement what
has been reported in Loiseau et al. (2014) and Bucci et al. (2018) by showing that the
sinuous instability can also be observed when η is sufficiently small for a large h/δ∗.
The production of disturbance kinetic energy highlights that the sinuous mode extracts
its energy from the lateral parts of the central streak, and thus becomes more prominent
with an increased spanwise shear in the near wake. It is also shown that for large h/δ∗, the
lateral streaks are strong and they also make a contribution to the energy extraction.

The wavemaker that considers both direct and adjoint modes provides important
information on the receptivity and inception of global instability. The results show that
the instability core is located in the reversed flow region for both varicose and sinuous
modes. Loiseau et al. (2014) suggest that a large spatial transient growth is observed along
the central streak for the varicose mode, and that is not seen for the sinuous mode. Our
results, however, indicate that this convective nature of the shear layer is more prominent
for a stronger central streak, and thus is more likely to depend on the roughness aspect
ratio, rather than different instability types.

The associated vortical structures and transitional flow behaviour corresponding to
different instability mechanisms are compared for the two geometries. For η = 1,
the single and dominant peak corresponding to the hairpin vortex shedding and its
higher harmonics show agreement in energy and DMD spectra, in accordance with
the eigenfrequency of the leading varicose mode. The convective nature of the shear
layer assists the formation of hairpin vortices farther downstream. In contrast to η = 1,
the sinuous wiggling of hairpin vortices becomes prominent in the near wake as Reh
increases for η = 0.5. The varicose and sinuous modes are not perfect harmonics, and
their interactions result in a broad-banded response in the energy and DMD spectra.
The hairpin vortices break down and fade away within a shorter distance, and a sinuous
mode associated with the wiggling of streaks persists farther downstream. For both
geometries with an increasing Reh, transition occurs closer to the roughness element,
and sinuous-like breakdown is seen farther downstream, destabilizing the shear layer and
promoting transition to turbulence.

While the transition onsets are well predicted by the transition diagram from Von
Doenhoff & Braslow (1961), it is unable to predict different instability characteristics in the
transition process. We develop a new diagram demonstrating the correlation between Re1/2

hh
and d/δ∗. The cases that present either varicose or sinuous instability with various h/δ∗,
η and Rehh from the previous and present studies are clustered separately in this diagram.
This diagram can thus be used to classify and predict the associated instability mechanisms
in roughness wakes based on different combinations of configuration parameters, with no
need of visual inspection of the flow field. Finally, the trip effects on the mean skin friction
and the evolution to turbulence are compared for the two geometries. Although the Cf
value for η = 1 is higher in general during the transition process, and peaks at an earlier
location, it collapses with Cf of η = 0.5 beyond x ≈ 90h, indicating that both geometries
are efficient to trip the flow to turbulence. For η = 1, a fully-developed turbulent state is
established in both the inner and outer layers at x ≈ 110h.
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