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Liquid droplet dynamics are widely used in biological and engineering applications, which
contain complex interfacial instabilities and pattern formation such as droplet merging,
splitting and transport. This paper studies a class of mean field control formulations
for these droplet dynamics, which can be used to control and manipulate droplets in
applications. We first formulate the droplet dynamics as gradient flows of free energies in
modified optimal transport metrics with nonlinear mobilities. We then design an optimal
control problem for these gradient flows. As an example, a lubrication equation for a thin
volatile liquid film laden with an active suspension is developed, with control achieved
through its activity field. Lastly, we apply the primal–dual hybrid gradient algorithm
with high-order finite-element methods to simulate the proposed mean field control
problems. Numerical examples, including droplet formation, bead-up/spreading, transport,
and merging/splitting on a two-dimensional spatial domain, demonstrate the effectiveness
of the proposed mean field control mechanism.

Key words: control theory, lubrication theory, thin films

1. Introduction

The dynamics of liquid droplets on solid substrates have been investigated extensively for
the past two decades due to their significant connections to a wide range of biological and
engineering applications, including heat and mass transfer (Ji & Witelski 2018), vapour
and particle capture (Sadeghpour et al. 2019, 2021), filtration and digital microfluidics
(DMF) (Kim 2001). These droplet systems often exhibit complex pattern formation
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rendered by the interactions between the surface tension of the free interface and other
physical effects. Fundamental droplet manipulation operations, such as droplet transport,
merging and splitting, have been explored experimentally through various mechanisms
such as electrodewetting (Chu et al. 2023; Li et al. 2019), electrochemical oxidation
(Khoshmanesh et al. 2017) and coalescence-induced propulsion (Jiang et al. 2022).
For droplets composed of active matters, such as self-propelled swimmers and driven
bio-filaments, recent studies have also explored methods to control these active droplets
by manipulating the activity field or evaporation (Shankar, Raju & Mahadevan 2022;
Chandel, Sivasankar & Das 2024). Developing robust control mechanisms for droplet
dynamics by varying external fields is essential to optimise the manipulation of droplets
for practical applications. In this work, we focus on mean field control (MFC) of droplet
dynamics in volatile active thin liquid films.

Thin layers of viscous fluids spreading on solid substrates, often referred to as coating
flows, have been studied in the context of tear films in human eyes and surface painting
processes. When the solid substrate is hydrophobic or non-wetting, the fluid on the
substrate spontaneously undergoes a sequence of instabilities and morphological changes,
leading to the formation of dry spots and an array of interacting droplets (Glasner &
Witelski 2003; Ji & Witelski 2024). This fascinating dewetting phenomenon arises from
the interplay of the intermolecular forces between the solid substrate and the fluid and the
surface tension of the fluid.

In the limit of low Reynolds number, lubrication theory and thin-film models for
free-surface flows have been used widely to model the droplet dynamics (Oron, Davis
& Bankoff 1997). Specifically, a classical non-dimensional long-wave thin-film equation
can be cast into a gradient dynamics form (Thiele, Archer & Pismen 2016):

∂h
∂t
= ∇ ·

(
V1(h)∇ δ

δh
E(h)

)
− V2(h)

δ

δh
E(h), on [0, T]×Ω, (1.1a)

where h(t, x) represents the free surface height of the fluid film, E is an energy functional
and V1(h) ≥ 0 and V2(h) ≥ 0 are mobility functions associated with mass-conserving and
non-mass-conserving contributions to the dynamics. We assume homogeneous Neumann
boundary conditions V1(h)∇(δ/δh)E(h) · ν = 0 on the domain boundary ∂Ω , where ν is
the outward normal direction on ∂Ω .

For a volatile inactive thin film on a hydrophobic substrate heated or cooled from
below (Ajaev & Homsy 2001; Ajaev 2005b; Ji & Witelski 2018), vapour condensation or
fluid evaporation occurs and leads to non-mass-conserving dynamics. In this case, typical
mobility functions in (1.1) take the forms

V1(h) = h3, V2(h) = γ

h+ K
, (1.1b)

where V1(h) originates from the no-slip boundary condition at the liquid–solid interface,
V2(h) characterises the non-mass-conserving liquid evaporation or condensation, γ ≥ 0 is
a phase change rate and K > 0 is a kinetic parameter. The energy E(h) is given by

E(h) =
∫
Ω

α2

2
|∇h|2 + U(h) dx, (1.1c)

where (α2/2)|∇h|2 represents the contribution of the surface energy of the free interface
with α > 0, and U(h) is a local free energy relating to the wettability property of the
substrate (Bertozzi, Grün & Witelski 2001) and the evaporation and condensation effects.
When the substrate is partially wetting or hydrophobic, a simple free energy is chosen as
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MFC of droplet dynamics

U(h) = 1
3(ε/h)

3 − 1
2(ε/h)

2 − P∗h, and the corresponding disjoining pressure Π(h) are
given by

U′(h) = Π(h)− P∗, Π(h) = ε2

h3

(
1− ε

h

)
. (1.1d)

Here, the parameter ε in Π(h) sets a positive O(ε) lower bound for the liquid height at
which the attractive van der Waals forces balance with the short-range Born repulsion. This
lower bound also determines the thickness of a precursor layer connecting the droplets,
which is commonly assumed in thin-film literature to model the behaviour of the contact
line and liquid films on a prewetted layer (Bertozzi et al. 2001; Oron & Bankoff 2001; Ji &
Witelski 2018; Dukler et al. 2020). The constant parameter P∗ gives the influence of the
temperature difference between the liquid film and the surrounding vapour phase. When
the film is uniformly heated or cooled from below with a constant temperature imposed at
the solid–liquid interface, P∗ remains constant in space and time (Ji & Witelski 2018).

The dynamic pressure P of the free surface is given by

P(h) = δE
δh
= Π(h)− P∗ − α2∇2h, (1.1e)

where α2∇2h gives the linearised curvature of the free surface. We also have the following
energy dissipation property:

dE
dt
= −I(h) ≤ 0, (1.2)

where the dissipation functional

I(h) :=
∫
Ω

(
V1(h)|∇P(h)|2 + V2(h)|P(h)|2

)
dx (1.3)

is often named the generalised Fisher information functional.
Droplets laden with a suspension of active matter, known as active drops, have also

been the focus of many studies in fluid mechanics (Marchetti et al. 2013; Maass et al.
2016). These active droplets consist of internally driven units or self-propelled particles
that draw energy from the surrounding and induces active stresses to the background fluids,
leading to more complex dynamics and pattern formation (Joanny & Ramaswamy 2012).
Many studies have focused on the experiments, modelling and fundamentals of active
fluids in various applications (Aditi Simha & Ramaswamy 2002; Whitfield & Hawkins
2016; Loisy, Eggers & Liverpool 2019; Trinschek et al. 2020). For instance, Adkins et al.
(2022) experimentally and analytically studied the phase-separating fluid mixtures of
active liquid interfaces driven by mechanical activities. Chandel et al. (2024) discussed
the spontaneous puncturing of active droplets induced by evaporation-driven mass loss.
Shankar et al. (2022) studied the optimal transport and control of mass-conserving active
drops by controlling the activity. For a comprehensive review, readers are referred to
Michelin (2023). The coupling of non-mass-conserving dynamics and internal dynamics
of active drops presents opportunities for designing new control mechanisms. In this work,
we consider the MFC of droplet dynamics by controlling the activity field.

Despite the wealth of modelling and analytical results on droplet dynamics, the field of
controlling these free surface flows is still in its early stages of development. For instance,
researchers have explored reduced-order-model-based control of liquid films governed by
the classical Kuramoto–Sivashinsky (KS) equation, employing distributed control across
the whole domain (Armaou & Christofides 2000; Christofides & Armaou 2000; Lee &
Tran 2005). Boundary control and optimal control of the KS equation have also been
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Figure 1. Schematic of the MFC from the initial droplet profile h0(x, y) to the target droplet profile hT (x, y).

studied in the works of Liu & Krstić (2001), Coron & Lü (2015), Al Jamal & Morris
(2018), Tomlin et al. (2019), Katz & Fridman (2020) and Maghenem, Prieur & Witrant
(2022)

The literature on controlling thin-film equations is relatively limited. For example, the
work of Wray et al. (2015) studied the control of evaporating particle laden droplets via
an electric field to suppress the ‘coffee-stain’ effect. Klein & Prohl (2016) investigated
optimal control of a simplified thin-film equation with only the fourth-order term. The
work of Samoilova & Nepomnyashchy (2019) considered a linear proportional control for
suppressing the Marangoni instability in a thin liquid film evolving on a plane. Cimpeanu,
Gomes & Papageorgiou (2021) proposed an active control strategy of liquid film flows by
incorporating information from reduced-order models. The work of Wray, Cimpeanu &
Gomes (2022) focused on the electrostatic control for thin films underneath an inclined
surface. Shankar et al. (2022) studied optimal transport and control of droplets of an
active fluid. More recently, Biswal et al. (2024) studied the optimal boundary control of
a thin-film equation describing thin liquid films flowing down a vertical cylinder. The
MFC of reaction–diffusion equations (Mielke 2011; Li, Lee & Osher 2022a; Fu, Osher
& Li 2023) and regularised conservation laws (Li, Liu & Osher 2022b, 2023) have been
studied. In this direction, a recent work of Gao & Qi (2024) also discussed the control of
coherent structures in turbulent flows using mean field games.

In this study, we demonstrate the application of MFC techniques for manipulating
droplet dynamics within the framework of thin-film equations. The objective of MFC is to
design and transport the droplets governed by the classical lubrication theory. See figure 1
for an example of the transport and deformation of a droplet on a two-dimensional (2-D)
spatial domain from the initial surface height profile h0(x, y) to the target height profile
hT(x, y). To demonstrate the application of optimal control and motivate the design of the
MFC formulation, in § 2 we derive a lubrication model for a thin volatile active liquid
film, whose dynamics can be controlled through its activity field. We then illustrate the
formulation of optimal control of thin-film equations as follows. The constraint is given
with the background of original physical dynamics, where the control variables contain
both vector field and source terms with the above-mentioned nonlinear mobility functions
V1(h) and V2(h). The minimisation is then taken under the kinetic energy originating
from the generalised Fisher information functional, adding suitable potential energy and
terminal functionals. We then derive two equivalent formulations, for the latter one we
develop the minimisation systems of the proposed MFC problems in Proposition 3.6. They
can be viewed as the forward–backward controlled systems of thin-film dynamics.

We remark that the proposed MFC problem is motivated by the optimal transport
theory (Villani 2008). We study the optimal control problem associated with the gradient
flow formulation from the thin-film equation in a generalised Wasserstein space. In
particular, the control formulation itself is a generalisation of the Benamou–Brenier
formula (Benamou & Brenier 2000), where we further consider the evolution of fluid
dynamics under the thin-film equation as background. The proposed minimisation system
is the generalisation of Wasserstein-2-type geodesics.

999 A76-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.983


MFC of droplet dynamics

In simulations, our approach also utilises high-order finite-element computations to
achieve this objective. Compared with previous work in Fu et al. (2023), we remark that
the second-order Laplacian term in the dynamic pressure P in (1.1e) brings additional
difficulties in the simulation of proposed MFC problems. We construct several new
constraints and Lagrange multipliers associated with primal–dual hybrid gradient (PDHG)
methods (Chambolle & Pock 2011; Carrillo, Wang & Wei 2023) to handle the constraints
associated with the dynamic pressure P.

The structure of the paper is as follows. In § 2, the model for viscous volatile thin
films with an active suspension on a partially wetting substrate is formulated. In § 3, we
discuss the MFC of droplet dynamics using the formulated model. In § 4, the high-order
space–time finite-element discretisation and its associated PDHG optimisation solver
for the proposed MFC problem is presented. Numerical results for the MFC of droplet
dynamics using the developed high-order finite-element computations are presented in
§ 5, followed by concluding remarks and discussion in § 6.

2. Model formulation

In this section, we develop a lubrication model for a thin volatile liquid film laden with an
active suspension on a 2-D solid substrate. The liquid properties, including surface tension
σ , dynamic viscosity μ and density ρ, are assumed constant. We follow the work of Ajaev
(2005a) and Ji & Witelski (2018) to describe the evaporation and condensation effects
using a one-sided model. To incorporate the active suspension into the film dynamics,
we follow the approach of Shankar et al. (2022) and consider an active stress that is
proportional to the film thickness and describes strong ordering along the x, y directions.
We show below the derivation of the governing equations and discuss the combined effects
of active stresses and non-mass-conserving phenomena.

Following Ajaev & Homsy (2001), we choose the scales for the system as follows:
the characteristic length scale L in the x, y direction is set as the initial radius of
the droplet R0. The length scale H in the vertical direction z is C1/3R0, where C =
μU/σ is the capillary number. We assume that the aspect ratio ε =H /L = C1/3 � 1.
The velocity scale in the x, y direction is U = kT∗s /(ρLR0), where k is the thermal
conductivity of the liquid, L is the latent heat of vaporisation per unit mass and T∗s is
the saturation temperature. The characteristic vertical velocity is C1/3U, and the pressure
and time scales are given by C1/3σ/R0 and R0/U, respectively. Given a dimensional
temperature field T∗, we express the scaled non-dimensional temperature as T = (T∗ −
T∗s )/(C2/3T∗s ). In addition, we define the in-plane position x = (x, y), ∇⊥ = (∂x, ∂y) and
the non-dimensional velocity field of the fluid u = (u⊥,w), where u⊥ represents the
velocity in the x and y directions.

Under the lubrication approximation with ε � 1, the non-dimensional Stokes equation
reduces to the leading-order equations

−∇⊥P̂+ ∂2

∂z2 u⊥ = 0, −∂P̂
∂z
= 0, (2.1)

where P̂ is the non-dimensional pressure of the liquid. At the solid–liquid interface z = 0,
we impose the no-slip and no-penetration boundary conditions

u⊥ = 0, w = 0, at z = 0. (2.2)
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The kinematic boundary condition at the free interface z = h(t, x) is given by

∂h
∂t
= w− u⊥ · ∇⊥h− J, at z = h(t, x), (2.3)

where J represents the evaporative flux due to evaporation or condensation effects. Using
the incompressibility condition ∇ · u = 0 and boundary conditions (2.2) in the kinematic
boundary condition (2.3), we derive

∂h
∂t
+∇⊥ ·

(∫ h

0
u⊥ dz

)
= −J. (2.4)

We assume that the temperature field T(x, z) across the liquid is quasi-static and is linear
in z in the leading order under the lubrication approximation, satisfying

∂2T
∂z2 = 0. (2.5)

This assumption is valid for liquid films under weak evaporation or condensation effects
(Burelbach, Bankoff & Davis 1988). At the solid–liquid interface, we impose the boundary
condition

T = Θ at z = 0, (2.6)

where Θ represents a scaled temperature difference between the solid–liquid interface
and the saturation temperature. ForΘ < 0, we anticipate dominant evaporation dynamics,
whereas for large Θ > 0, we expect condensation dynamics. For simplicity, we assume
that Θ is constant in space and time.

At the liquid–air interface, the conservation of energy and the shear stress condition are
expressed as

J = −∂T
∂z
,

∂u⊥
∂z
= 0. (2.7)

The flux J is related to the scaled interfacial temperature Ti and pressure jump at the
liquid–vapour interface by

KJ = γ (P̂− Pv)+ Ti, (2.8)

where Pv is the non-dimensional vapour pressure. The constants K and γ are defined by

K = (ρU
√

2πR̄T∗s )/(2ρvLC1/3) and γ = σ/(LρR0C1/3), where ρv is the vapour density

and R̄ is the gas constant per unit mass. Solving (2.5)–(2.8) yields the form of the
evaporative flux

J = γ (P̂− Pv)+Θ
K + h

. (2.9)

From (2.1) and the boundary conditions (2.2)1 and (2.7)2, we obtain

u⊥ = 1
2 (z

2 − 2hz)∇⊥P̂. (2.10)

We adopt an active stress tensor τ a = η̂ζh(n̂n̂− I/3) to account for the contribution
of the active suspension to the stress tensor of the liquid, where n̂ is the orientation
field of the active agents in the suspension (Aditi Simha & Ramaswamy 2002). Here,
ζ(t, x) represents the activity field originating from the forcing exerted by the active
suspension, and η̂ is a scaling parameter. The activity field ζ(t, x) can take either sign:
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MFC of droplet dynamics

positive and negative values of ζ correspond to contractile and extensile stresses (Joanny
& Ramaswamy 2012). This model assumes that the active stress depends on the local
density of suspension and is applicable to droplets of coherently swimming suspensions
and ordered collection of filaments (Loisy et al. 2019). We further assume that the rapid
orientational relaxation in the vertical direction is negligible, and the orientation field is
almost parallel to the substrate with n̂ 	 (n1(t, x), n2(t, x), 0), where the components n1
and n2 take the vertically averaged values for the activity strength (Trinschek et al. 2020;
Shankar et al. 2022).

The total stress in the liquid τ = −(P̂−Π(h))I + μ[∇u+ (∇u)T ]+ τ a incorporates
the liquid pressure, the disjoining pressure Π(h), a viscous stress, and the active stress.
The balance of normal stresses at the liquid–vapour interface in the leading order gives

P̂ = Pv +Π(h)−∇2
⊥h− ηhζ(t, x), (2.11)

whereΠ(h) is the disjoining pressure, ∇2
⊥h is the linearised surface tension, Pv originates

from the stress tensor of the vapour, the parameter η = η̂/3, and the vapour recoil is
neglected (Oron et al. 1997). Substituting (2.9)–(2.11) into (2.4) yields the evolution
equation for h,

∂h
∂t
= ∇ ·

[
h3∇(Π(h)−∇2h− ηζ(t, x)h)

]
− γ

(
Π(h)− ∇2h− ηζ(t, x)h− P∗

)
K + h

.

(2.12)

Here, we have replaced ∇⊥ by ∇ for simplicity and rescaled the variables by t→ 3t,
and γ → γ /3 to absorb a constant factor of 3 in the mobility function, and the constant
parameter P∗ is given by P∗ = Θ/(3γ ). This model assumes that the active suspension in
the droplet is not influenced by the temperature field and neglects Marangoni effects.

In this work, we consider the MFC of the droplet dynamics via the activity field ζ(t, x).
To separate the control variables from the uncontrolled ones, it is convenient to rewrite
(2.12) as

∂h
∂t
+∇ · (V1(h)v1)− V2(h)v2 = ∇ · [V1(h)∇P(h)]− V2(h)P(h), (2.13)

where the mobility functions V1(h) and V2(h) are defined in (1.1b), v1 and v2 encode the
control variables to the system,

v1 = ∇(ηζ(t, x)h), v2 = ηζ(t, x)h, (2.14a,b)

and P(h) is the dynamic pressure for the volatile inactive thin-film model defined in (1.1e)
with α = 1. For volatile inactive fluids with ζ ≡ 0, the model (2.13) is consistent with the
volatile thin-film model (1.1).

The control variable ζ enters the system through both a diffusion term and a source
term. In the mass-conserving case where γ = 0 (hence V2 ≡ 0), the activity field ζ

affects the local contraction or spreading of the droplet, similar to the setting investigated
in Shankar et al. (2022). When γ > 0, the interplay between the activity field and the
evaporation/condensation effects can lead to more complex and interesting dynamics. One
important quantity is the total mass of the fluid, M(t), and its rate of change due to
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the non-mass-conserving contributions. By applying Neumann boundary conditions and
integrating equation (2.13), we obtain

M(t) =
∫
Ω

h dx,
dM
dt
= γ

∫
Ω

ζh− P
K + h

dx, (2.15a,b)

which indicates that for γ > 0, the mass may locally increase or decrease depending on
the local relative importance of the activity field and the pressure, i.e. ζh > P or ζh < P,
respectively.

We remark that the partial differential equation (PDE) (2.13), with varying functional
forms of mobility functions, pressure and controls, can be adapted to other types of
control problems for both mass-conserving and non-mass-conserving thin-film models.
While most existing works on thin-film control (Klein & Prohl 2016; Samoilova &
Nepomnyashchy 2019; Shankar et al. 2022) focus on the mass-conserving case with
V2 ≡ 0, here we illustrate a few examples considered in the literature.

EXAMPLE 2.1. The work of Klein & Prohl (2016) addresses an optimal control problem
in the divergence form,

∂th = ∂x(λ|h|a∂xP)+ ∂xu, P = −hxx, (2.16)

where u(t, x) is the external control, a > 1 and λ > 0. This problem characterises the
control of thin-film deposition on silicon wafers during electronic chip fabrication. The
(2.16) is related to the model (2.13) with V1 = λ|h|a, V2 ≡ 0 and v1 = −u/V1.

EXAMPLE 2.2. The work of Samoilova & Nepomnyashchy (2019) aimed to suppress the
Marangoni instability in a thin film heated from below using a lubrication equation

∂th = ∇ ·
[

1
3

h3∇P+ Ma
2

h2∇(Θ − h)
]
, (2.17)

coupled with a heat transfer equation for the controlled temperature Θ . One can rewrite
(2.17) into the form of (2.13) by setting V1 = h3/3, V2 ≡ 0, and v1 = (3Ma/2h)∇(h−Θ).
EXAMPLE 2.3. In the recent work on optimal transport and control of active droplets by
Shankar et al. (2022), the active droplet is modelled by

∂th = ∂x

[
1

3ηh3∂x(P− ζh)
]
, P = −γ hxx, (2.18)

where ζ(t, x) represents the controllable activity of suspension in the droplet. Again, this
problem corresponds to (2.13) with V1 = h3/(3η), V2 ≡ 0 and v1 = (ζh)x.

REMARK 2.4 (Rescaling). For numerical studies throughout the remainder of the paper,
we set the computational domain to be a unit square Ω = [0, 1]2 for convenience. By
rescaling the spatial scale x→ Lx and the time scale t→ L2t, from (1.1) we obtain the
rescaled model for volatile inactive liquid films, ∂h/∂t = ∇ · (V1(h)∇P)− V2(h)P. Here
the rescaled dynamic pressure is given in (1.1e) with the constant α = 1/L, where L is the
domain length before rescaling. For the model with the activity field (2.13), to emphasise
the importance of the control variables, we introduce the rescaling t→ βL2t, x→ Lx and
γ → γ /L2, where β = 1/η. This rescaling leads to the following scaled model:

∂h
∂t
+∇ · (V1(h)v1)− V2(h)v2 = β [∇ · (V1(h)∇P)− V2(h)P] , (2.19a)

where the vector field v1 and the source term v2 are defined as

v1 = ∇(ζ(t, x)h), v2 = ζ(t, x)h. (2.19b)
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MFC of droplet dynamics

We refer to the system (2.19) as the active control form of the thin-film equation. In the
next section, we introduce a MFC model, which selects the active fields v1 and v2 (hence
the active field ζ ) in an optimal manner in certain metrics.

3. MFC of droplet dynamics

This section presents the main formulation of MFC problems for the thin-film equation
(1.1). We follow our previous work on MFC for (second-order) reaction–diffusion systems
(Fu et al. 2024b). A byproduct of our MFC formulation is a new Jordan–Kinderlehrer–Otto
(JKO) scheme for the PDE (1.1), which is similar to the variational time implicit scheme
discussed in Fu et al. (2023); see Remark 3.4.

We note that while the general form of the proposed MFC problems has a similar
structure to MFC for reaction–diffusion systems considered in our earlier work (Fu et al.
2024b), two new challenges emerge for MFC of (1.1). First, the energy functional (1.1c)
contains the gradient of the surface height, ∇h, making (1.1a) a fourth-order PDE. Second,
both mobility functions V1(h) and V2(h) are convex functions of h (see (1.1b)), which
make the MFC problem a non-convex optimisation problem (see Remark 3.2). These new
features make the numerical discretisation of the MFC for droplet dynamics significantly
more challenging than that for the second-order reaction–diffusion case.

The current work mainly focuses on the MFC formulation of droplet dynamics and its
associated high-order finite-element discretisation. We address the first challenge and show
how the MFC framework for reaction–diffusion systems developed in Fu et al. (2024b) can
be naturally adopted here using additional auxiliary variables. A corresponding high-order
space–time finite-element discretisation and its solution procedure using the PDHG
method are presented in § 4. We leave theoretical investigations on the (non-)convexity
issue of the proposed MFC problem for future work.

3.1. Droplet-dynamics-induced distances and MFCs
The energy dissipation law (1.2) and its associated Fisher information functional (1.3)
naturally induce a metric distance between two positive surface heights h0 and h1, as we
define in the following.

DEFINITION 3.1 (Distance functional). Define a distance functional DistV1,V2 : M×
M→ R+ as below, where the space M = {h ∈ L1(Ω) : h ≥ 0}. Consider the following
optimal control problem:

DistV1,V2(h0, h1)
2 := inf

h,v1,v2

∫ 1

0

∫
Ω

(
|v1|2V1(h)+ |v2|2V2(h)

)
dx dt, (3.1a)

where the infimum is taken among h(t, x) : [0, 1]×Ω → R+, v1(t, x) : [0, 1]×Ω → R
d,

v2(t, x) : [0, 1]×Ω → R, such that h satisfies a reaction–diffusion-type equation with
drift vector field v1, drift mobility V1, reaction rate v2, reaction mobility V2, connecting
initial and terminal surface heights h0, h1 ∈M:

∂th+∇ · (V1(h)v1) = V2(h)v2, (t, x) ∈ [0, 1]×Ω,
h(0, x) = h0(x), h(1, x) = h1(x),

}
(3.1b)

with no-flux boundary condition V1(h)v1 · ν|∂Ω = 0.
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G. Fu, H. Ji, W. Pazner and W. Li

REMARK 3.2 (On convexity). We illustrate here that the optimisation problem in
Definition 3.1 is a non-convex optimisation problem with a linear constraint. To do so,
we introduce variables m = V1(h)v1 and s = V2(h)v2, which make the constraint (3.1b) a
linear equation: ∂th+∇ · m− s = 0. Then the objective functional in (3.1a) is

L(h,m, s) =
∫ 1

0

∫
Ω

( |m|2
V1(h)

+ |s|
2

V2(h)

)
dx dt. (3.2)

From the convexity of mobility functions V1(h) and V2(h), we can show that both
terms |m|2/V1(h) =

∑d
i=1(|mi|2/V1(h)) and s2/V1(h) fail to be convex in the respective

variables. Here the vector m = (m1, . . . ,md). In fact, the determinant of the Hessian
matrix for the term |m1|2/V1(h) for the variables (h,m1) is

det

⎡
⎢⎢⎢⎣
(

2
V ′1(h)

2

V1(h)3
− V ′′1 (h)

V1(h)2

)
|m1|2 −2

V1(h)′

V1(h)2
m1

−2
V1(h)′

V1(h)2
m1 2V−1

1

⎤
⎥⎥⎥⎦ = −2

V ′′1 (h)
V1(h)3

|m1|2 ≤ 0, (3.3)

by positivity and convexity of V1(h). Hence, the term |m1|2/V1(h) is not convex.

Using the above-defined distance functional and the thin-film equation (1.1), we define
the following MFC problem for droplet dynamics.

DEFINITION 3.3 (MFC for droplet dynamics). Given a time domain [0, T], T > 0, a
potential functional F : M→ R and a terminal functional G : M→ R, consider

inf
h,v1,v2

∫ T

0

[∫
Ω

1
2

(
|v1|2V1(h)+ |v2|2V2(h)

)
dx− F(h)

]
dt + G(h(T, ·)), (3.4a)

where the infimum is taken among h(t, x) : [0, T]×Ω → R+, v1(t, x) : [0, T]×Ω → R
d

and v2(t, x) : [0, T]×Ω → R, such that

∂th+∇ · (V1(h)v1)− V2(h)v2 = β [∇ · (V1(h)∇P(h))− V2(h)P(h)] , (3.4b)

with boundary condition

V1(h)(v1 − β∇P(h)) · ν|∂Ω = 0, (3.4c)

and initial surface height h(0, ·) = h0 in Ω . Here β ≥ 0 is a non-negative number, which
represents the strength of the droplet dynamics (1.1) in the constraint of MFC problem
(3.4).

REMARK 3.4 (JKO temporal discretisation to (1.1)). In the above definition, if we take T =
1, F = 0 and G(h) = �tE(h) as in (1.1c), and set parameter β = 0, we obtain a dynamic
formulation of the celebrated JKO temporal discretisation scheme Jordan, Kinderlehrer
& Otto (1998) for the gradient flow (1.1), which is a first-order variational time-implicit
discretisation with stepsize �t > 0. See Fu et al. (2023), Carrillo et al. (2022) and Li, Lu
& Wang (2020) for a related discussion on JKO-type discretisations for gradient flows in
Wasserstein-type metric spaces.
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MFC of droplet dynamics

3.2. MFC reformulations
In this subsection, we focus on reformulations of the MFC problem in Definition 3.3 which
will be suitable for a finite-element discretisation.

The first reformulation converts the constraint PDE (3.4b) to a linear constraint by a
change of variables. Specifically, introducing the flux function m(t, x) : [0, T]×Ω → R

d

and source function s(t, x) : [0, T]×Ω → R, such that

m = V1(h) [v1 − β∇P(h)] , s = V2(h) [v2 − βP(h)] , (3.5a,b)

then the MFC problem in Definition 3.3 is equivalent to the following linearly constrained
optimisation problem: given a potential functional F : M→ R and a terminal functional
G : M→ R, consider

inf
h,m,s

∫ T

0

∫
Ω

1
2
| m
V1(h)

+ β∇P(h)|2V1(h) dx dt

+
∫ T

0

∫
Ω

1
2
| s
V2(h)

+ βP(h)|2V2(h) dx dt −
∫ T

0
F(h) dt + G(h(T, ·)), (3.6)

where the infimum is taken among functions h,m, s, such that

∂th+∇ · m− s = 0 on [0, T]×Ω, m · ν|[0,T]×∂Ω = 0, h(0, x) = h0(x). (3.7)

Expanding the product terms in (3.6), we get

inf
h,m,s

∫ T

0

∫
Ω

( |m|2
2V1(h)

+ |s|2
2V2(h)

)
+ β (m · ∇P(h)+ s · P(h)) dx dt

+
∫ T

0

∫
Ω

β2

2

(
|∇P(h)|2V1(h)+ |P(h)|2V2(h)

)
dx dt

−
∫ T

0
F(h) dt + G(h(T, ·)). (3.8)

Using integration by parts and the constraint (3.7), we have

∫ T

0

∫
Ω

(m · ∇P(h)+ s · P(h)) dx dt

=
∫ T

0

∫
Ω

P(h) (−∇ · m+ s) dx dt

=
∫ T

0

∫
Ω

P(h)∂th dx dt = E(h(T, ·))− E(h0), (3.9)

where we used the definition of dynamic pressure P(h) = δE(h)/δh in the last step.
Combining these derivations and noting that h0 is given, we arrive at the following
equivalent formulation of the MFC problem in Definition 3.3.
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G. Fu, H. Ji, W. Pazner and W. Li

DEFINITION 3.5 (MFC reformulation I). Consider

inf
h,m,s

∫ T

0

∫
Ω

( |m|2
2V1(h)

+ |s|2
2V2(h)

)
dx dt

+
∫ T

0

∫
Ω

β2

2

(
|∇P(h)|2V1(h)+ |P(h)|2V2(h)

)
dx dt

−
∫ T

0
F(h) dt + G(h(T, ·))+ βE(h(T, ·)), (3.10)

where the infimum is taken among h, m and s satisfying (3.7).

PROPOSITION 3.6 (MFC systems of droplet dynamics). Let (h,m, s) be the critical point
system of the MFC problem (3.10). Then there exists a function φ : [0, T]×Ω → R, such
that

m(t, x)
V1(h(t, x))

= ∇φ(t, x),
s(t, x)

V2(h(t, x))
= φ(t, x), (3.11a,b)

and
∂th(t, x)+∇ · (V1(h(t, x))∇φ(t, x))− V2(h(t, x))φ(t, x) = 0,

∂tφ(t, x)+ 1
2
‖∇φ(t, x)‖2V ′1(h(t, x))+ 1

2
|φ(t, x)|2V ′2(h(t, x))

+ δ

δh

[
F(h)− β

2

2
I(h)

]
(t, x) = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.12)

where I(h) is the generalised Fisher information functional given in (1.3), such that

δ

δh
I(h) = 1

2
(V ′1(h)|∇P(h)|2 + V ′2(h)|P(h)|2)−∇ · (V1(h)∇P(h))Π ′(h)

+ α2�∇ · (V1(h)∇P(h))+Π ′(h)V2(h)P(h)− α2�(P(h)V2(h)), (3.13)

with initial and terminal time conditions

h(0, x) = h0(x), φ(T, x) = − δ
δh
(G(h(T, ·))+ βE(h(T, ·))) . (3.14a,b)

We remark that a similar MFC formulation and system for reaction–diffusion equation
was considered in our earlier work (Fu et al. 2023). We present the derivation of the MFC
system (3.12) in Appendix A.

MFC problems and systems are generalisations of Benamou–Brenier formulae in
optimal transport (Villani 2008). This refers to setting β = 0, V1(h) = h and V2(h) = 0.
In the context of MFC of droplet dynamics, we need to address additional challenges, in
which the dynamic pressure P(h) given in (1.1e) involves a second-order Laplacian term.
The role of this Laplacian term is well known in lubrication models, and its treatment
in both forward simulations (Witelski & Bowen 2003) and (boundary) optimal control
contexts (Biswal et al. 2024) is well understood. In addition, the treatment of the Laplacian
term in controlling free interfaces has been discussed in the context of the KS equation
(Tomlin & Gomes 2019) and weighted residual integral boundary layer models (Wray et al.
2022). However, the Laplacian term brings additional difficulties in the computation of the
proposed MFC problem using finite-element methods (FEMs). This is from the fact that
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MFC of droplet dynamics

we need to approximate the forward–backward MFC system (3.12), in which the Laplacian
term is enforced in the formulation of generalised Fisher information functional (1.3).
We also comment that the dynamic pressure P(h) is essential in modellingthe disjoining
pressure and surface tension that govern the droplet dynamics. In numerical experiments,
we demonstrate that the MFC problem with this pressure term exhibits essential patterns
of droplets, including droplet spreading, transport, merging and splitting.

We introduce additional auxiliary variables to further reformulate the MFC problem
(3.5). Let n(t, x) : [0, T]×Ω → R

d, p(t, x) : [0, T]×Ω → R and q(t, x) : [0, T]×
Ω → R

d be defined as follows:

n = α∇h, p = −α∇ · n, q = α∇p. (3.15a–c)

This implies p = −α∇ · (α∇h) = −α2∇2h. Hence, the dynamic pressure P(h) and its
gradient ∇P(h) can be expressed as follows:

P(h) = U′(h)+ p, ∇P(h) = U′′(h)∇h+∇p = 1
α
(U′′(h)n+ q). (3.16a,b)

Plugging these relations back into the MFC problem (3.10), we obtain the following
equivalent reformulation.

DEFINITION 3.7 (MFC reformulation II). Consider

inf
h,m,s,n,p,q

∫ T

0

∫
Ω

( |m|2
2V1(h)

+ |s|2
2V2(h)

)
dx dt

+
∫ T

0

∫
Ω

β2

2

( |U′′(h)n+ q|2
α2 V1(h)+ |U′(h)+ p|2V2(h)

)
dx dt

−
∫ T

0
F(h) dt + G(h(T, ·))+ β

∫
Ω

(
U(h(T, x))+ |n(T, x)|2

2

)
dx, (3.17)

where the infimum is taken among h, m and s satisfying (3.7) and n, p and q satisfying
(3.14a,b).

To simplify the notation, we collect the variables into a vector

u := (h,m, s,n, p, q), (3.18)

and introduce uT := (hT ,nT), where hT : Ω → R+ is the terminal surface height and
nT : Ω → R

d the scaled surface height gradient at terminal time. Hence, u(t, x) : [0, T]×
Ω → R

3d+3 is a space–time function with 3d + 3 components and uT(x) : Ω → R
d+1 is

a spatial function with d + 1 components. We further denote the functionals H(u) and
HT(uT), such that

H(u) := |m|
2

2V1(h)
+ |s|2

2V2(h)
+ β2

2α2 |U′′(h)n+ q|2V1(h)

+ β
2

2
|U′(h)+ p|2V2(h)− F(h), (3.19a)

HT(uT) := β
(

U(hT)+ |nT |2
2

)
+ G(hT), (3.19b)
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G. Fu, H. Ji, W. Pazner and W. Li

where F(h) and G(h) are density functions for functionals F and G, i.e.

F(h) =
∫
Ω

F(h) dx, G(h) =
∫
Ω

G(h) dx. (3.20a,b)

Using this notation, the MFC problem (3.7) takes the following compact form.

DEFINITION 3.8 (MFC problem: compact form). Consider

inf
u,uT

∫ T

0

∫
Ω

H(u) dx dt +
∫
Ω

HT(uT) dx, (3.21a)

subject to the constraints on the space–time domain

∂th+∇ · m− s = 0,

−n+ α∇h = 0,

p+ α∇ · n = 0,

q− α∇p = 0,

on [0, T]×Ω,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.21b)

and the constraints at terminal time

h(0, ·) = h0,

h(T, ·) = hT ,

−nT + α∇hT = 0,

on Ω,

⎫⎪⎬
⎪⎭ (3.21c)

with Neumann boundary condition

m · ν = 0, on [0, T]× ∂Ω. (3.21d)

REMARK 3.9. We note that all the MFC formulations above are mathematically
equivalent. Our numerical discretisation, however, will be constructed based on the last
formulation in Definition 3.7 or Definition 3.8. It has a form that the constraints are linear
PDEs, and the objective function does not involve spatial derivatives. These two properties
are crucial for the efficient implementation of the finite-element scheme that we develop in
§ 4.

REMARK 3.10 (On recovering the physics control variable ζ ). Combining the definition
in (3.5a,b) with the optimality conditions (3.11a,b) in Proposition 3.6, we get

v1 − β∇P(h) = ∇φ, v2 − βP(h) = φ. (3.22a,b)

In particular, this implies that v1 is a gradient field, and the relation v1 = ∇v2 holds.
Using (2.19b) in § 2 that relate the control variables v1 and v2 to the activity field ζ , we
obtain

ζ = βP(h)+ φ
h

= β(U′(h)+ p)+ φ
h

, (3.23)

where we used the relation (3.16a,b) in the last equality.
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MFC of droplet dynamics

3.3. Saddle-point problem
Finally, we reformulate the constrained optimisation problem in Definition 3.8 into a
saddle-point problem using Lagrange multipliers, for which a finite-element discretisation
is developed in § 4. We introduce the following four Lagrange multipliers on the
space–time domain [0, T]×Ω for the four equations in (3.21b). They are scalar functions
φ(t, x) : [0, T]×Ω → R, ξ(t, x) : [0, T]×Ω → R, vectorial functions σ (t, x) : [0, T]×
Ω → R

d, θ(t, x) : [0, T]×Ω → R
d and a Lagrange multiplier σ T(x) : Ω → R

d on the
spatial domain (at terminal time):

∂th+∇ · m− s = 0←→ φ,

−n+ α∇h = 0←→ σ ,

p+ α∇ · n = 0←→ ξ,

q− α∇p = 0←→ θ ,

−nT + α∇hT = 0←→ σ T .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.24)

Then the MFC problem (3.8) can be formulated as the following saddle-point problem:

inf
u,uT

sup
Φ,σT

∫ T

0

∫
Ω

H(u) dx dt +
∫
Ω

HT(uT) dx

+
∫ T

0

∫
Ω

[(∂th+∇ · m− s)φ + (−n+ α∇h) · σ ] dx dt

+
∫ T

0

∫
Ω

[
( p+ α∇ · n)ξ + (q− α∇p) · θ

]
dx dt

+
∫
Ω

(−nT + α∇hT) · σ T dx, (3.25)

with the following boundary and initial/terminal conditions

h(0, ·) = h0, h(T, ·) = hT , in Ω, and m · ν = 0, on [0, T]× ∂Ω. (3.26)

Here Φ = (φ, ξ, σ , θ).
Next, applying integration by parts on the above saddle-point problem to move all

derivatives of u to the dual variables Φ, and using the initial and boundary conditions,
we obtain

inf
u,uT

sup
Φ,σT

∫ T

0

∫
Ω

H(u) dx dt +
∫
Ω

HT(uT) dx

+
∫ T

0

∫
Ω

[−(h∂tφ +m · ∇φ + sφ)− (n · σ + αh∇ · σ )] dx dt

+
∫ T

0

∫
Ω

[
( pξ − αn · ∇ξ)+ (q · θ + αp∇ · θ)

]
dx dt

+
∫
Ω

[−(nT · σ T + αhT∇ · σ T)+ hTφ(T, x)− h0φ(0, x)] dx. (3.27)

In the above formulation, we assume the Lagrange multipliers σ , ξ and θ satisfy the
following Neumann boundary conditions:

σ · ν = 0, ∇ξ · ν = 0, θ · ν = 0, on [0, T]× ∂Ω. (3.28)
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The saddle-point problem (3.27) is the final form of our MFC problem that is discretised
in the next section. The variational structure of this problem makes the FEM an ideal
candidate for such a problem. We close this section with a discussion on the proper
function spaces for the primal variables u and uT and dual variables Φ and σ T in (3.27)
which makes the integrals in (3.27) valid. The spaces are given as follows:

u ∈
{
v ∈ [L2([0, T]×Ω)]3d+3 :

∫ T

0

∫
Ω

H(v) dx dt < +∞,

first component of v is non-negative
}
, (3.29a)

uT ∈
{
vT ∈ [L2(Ω)]d+1 :

∫
Ω

HT(vT) dx < +∞,

first component of vT is non-negative
}
, (3.29b)

Φ ∈ Vφ × V σ × Vξ × V θ , σ T ∈ H0(div;Ω), (3.29c)

where

Vφ = H1([0, T]×Ω), (3.29d)

V σ = V θ = L2([0, T])⊗ H0(div;Ω), (3.29e)

Vξ = L2([0, T])⊗ H1
0(Ω). (3.29f )

Here we use the usual definition of Sobolev spaces

L2(Ω) := {v : Ω → R :
∫
Ω

|v|2dx < +∞}, (3.30)

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d}, (3.31)

H(div;Ω) := {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)}. (3.32)

Moreover, H1
0(Ω) is the subspace of H1(Ω) with a zero boundary condition, and

H0(div;Ω) is the subspace of H(div;Ω) with a zero boundary condition on the normal
direction.

4. High-order discretisations and optimisation algorithms

This section presents the high-order spatial-time finite-element discretisation and its
associated PDHG optimisation solver for the proposed MFC saddle-point problem (3.27).

4.1. The high-order finite-element scheme

We first partition the spatial domainΩ into a spatial meshΩh = {K�}NS
�=1 with NS elements

where each element K� is assumed to be a mapped hypercube in R
d, and the temporal

domain [0, T] into a temporal mesh Ih = {Ij}NT
j=1 with NT segments. Denote the space–time

mesh as ΩT,h = Ih ⊗Ωh. The function spaces in (3.29) for the saddle-point problem
(3.27) indicate natural discretisation spaces for the primal and dual variables. In particular,
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MFC of droplet dynamics

we use the following conforming finite-element spaces to discretise the dual variables Φ
and σ T :

Vk+1
φ,h = {ψ ∈ Vφ : v|Ij×K� ∈ Qk+1(Ij)⊗ Qk+1(K�) ∀j, �}, (4.1a)

V k
σ,h = {τ ∈ V σ : τ |Ij×K� ∈ Qk(Ij)⊗ RTk(K�) ∀j, �}, (4.1b)

Vk,k+1
ξ,h = {q ∈ V ξ : q|Ij×K� ∈ Qk(Ij)⊗ Qk+1(K�) ∀j, �}, (4.1c)

Mk
σ,h = {τ ∈ H0(div;Ω) : τ |K� ∈ RTk(K�) ∀j, �}, (4.1d)

where Qk(K�) is the tensor-product polynomial space of degree no greater than k in each
direction, and RTk(K�) is the local Raviart–Thomas finite-element space Boffi, Brezzi &
Fortin (2013) on the mapped hypercube K�, for k ≥ 0. For the primal variables u and uT , it
is natural to use an integration rule space such that they are defined only on the (high-order)
numerical integration points, since no derivative calculation is needed for these variables.

Let Xt,k := {χt,i}
Nk

T,q
i=1 be the quadrature points and {ωt,i}

Nk
T,q

i=1 the corresponding quadrature
weights on the temporal mesh Ih using (k + 1) Gauss–Legendre (GL) integration points

per line segment, and denote Xs,k := {χs,j}
Nk

S,q
j=1 as the quadrature points and {ωs,j}

Nk
S,q

j=1 as the
corresponding quadrature weights on the spatial mesh Ωh using (k + 1) GL integration
points per coordinate direction in each element. We approximate each component of u and
uT using the following space–time and spatial integration rule spaces, respectively:

Wk
h := {

v : Xt,k × Xs,k → R
}
, Mk

h := {
v : Xs,k → R

}
. (4.1e)

Note that a function in the quadrature space Wk
h can be interpreted as a vector of size

Nk
T,q × Nk

S,q and a function in Mk
h can be interpreted as a vector of size Nk

S,q.
Using the above finite-element spaces, we define the following discrete saddle-point

problem: find the critical point of the discrete system

inf
uh,uT,h

sup
Φh,σT,h

〈〈H(uh)〉〉h +
〈
HT(uT,h)

〉
h

− 〈〈hh∂tφh +mh · ∇φh + shφh〉〉h − 〈〈nh · σ h + αhh∇ · σ h〉〉h
+ 〈〈phξh − αnh · ∇ξh〉〉h + 〈〈qh · θh + αph∇ · θh〉〉h
− 〈

nT,h · σ T,h + αhT,h∇ · σ T,h
〉
h +

〈
hT,hφh(T, x)− h0φh(0, x)

〉
h , (4.2)

where the variables uh := (hh,mh, sh,nh, ph, qh) ∈ [Wk
h]3d+3 with hh ≥ 0, uT,h =

(hT,h,nT,h) ∈ [Mk
h]d+1 with hT,h ≥ 0, Φh := (φh, σ h, ξh, θh) ∈ Vk+1

φ,h × V k
σ × Vk,k+1

ξ,h ×
V k
σ and σ T,h ∈Mk

σ,h. Here the double bracket is the numerical integration on the
space–time domain and single bracket is the numerical integration on the spatial domain
defined as follows:

〈 f (x)〉h =
Nk

s,j∑
j=1

f (χs,j)ωs,j, 〈〈 f (t, x)〉〉h =
Nk

t,i∑
i=1

Nk
s,j∑

j=1

f (χt,i, χs,j)ωt,iωs,j. (4.3a,b)

After solving for the discrete saddle-point problem (4.2), we can recover the
dynamic pressure Ph = U′(hh)+ ph and the activity field ζ(t, x) = (βPh + φh)/hh; see
Remark 3.10.
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4.2. A generalised PDHG algorithm
We solve the discrete saddle-point problem (4.2) using a generalised preconditioned
PDHG algorithm, which is a splitting algorithm that solve for the primal variables uh and
uT,h, and each component of the dual variables Φh and σ T,h sequentially. The following
algorithm is a generalisation of the G-prox PDHG algorithm developed in Jacobs et al.
(2019).

REMARK 4.1. The dual variable updates in Algorithm 1 are constant-coefficient linear
elliptic problems, for which scalable solvers have been well-developed in the literature.
Preconditioned conjugate gradient methods are used to solve these coupled elliptic
problems with a geometric multigrid preconditioner for the diffusion-type problems (4.4a)
and (4.4c), and a low-order preconditioner developed in Pazner, Kolev & Dohrmann
(2023) for the H(div)-elliptic problems (4.4b) and (4.4d). Meanwhile, the primal variable
updates in (4.4f ) and (4.4g) are nonlinear but decoupled for each degree of freedom on
the quadrature point, hence they can be solved efficiently in parallel.

4.3. A fully discrete JKO scheme to the PDE (1.1)
Next we present a fully discrete JKO scheme and its simplified version for solving the PDE
(1.1). As mentioned in Remark 3.4, by taking the functionals F = 0 and G(h) = �tE(h),
and setting terminal time T = 1 and the parameter β = 0, the MFC optimisation problem
in Definition 3.3 becomes the dynamic formulation of a JKO temporal discretisation
scheme which advances solution in time with step size �t. Since the parameter β = 0,
we do not need the auxiliary variables n, p, and q in the definition of the functional H(u)
in (3.19a). Hence, the fully discrete scheme (4.2) is reduced to the following:

inf
uh,uT,h

sup
φh,σT,h

〈〈 |mh|2
2V1(hh)

+ |sh|2
2V2(hh)

〉〉h +�t
〈
U(hT,h)+ |nT,h|2

2

〉
h

− 〈〈hh∂tφh +mh · ∇φh + shφh〉〉h
− 〈

nT,h · σ T,h + αhT,h∇ · σ T,h
〉
h

+ 〈
hT,hφh(T, x)− h0φh(0, x)

〉
h , (4.5)

where uh = (hh,mh, sh) ∈ [Wk
h]d+2. Moreover, the corresponding PDHG Algorithm 1

will be further simplified where the three elliptic solves in (4.4b), (4.4c) and (4.4d) are
not needed, and the pointwise optimisation problem (4.4f ) does not have the n, p and q
contributions.

Since the fully discrete scheme (4.5) is first-order accurate in time, we may use
a one-step approximation of the time integrals in (4.5) to reduce the computational
cost without sacrificing the first-order temporal accuracy. This leads to the following
approximated JKO scheme: given time step size �t > 0 and approximate solution hn−1

h ∈
Mk

h at time tn−1, find the approximation hn
h ∈ Mk

h at next time level tn = tn−1 +�t by
solving the saddle-point problem

hn
h = arg inf

hh
inf
uh

sup
φh,σ h

〈 |mh|2
2V1(hh)

+ |sh|2
2V2(hh)

〉
h
+�t

〈
U(hh)+ |nh|2

2

〉
h

+
〈
(hh − hn−1

h )φh −mh · ∇φh − shφh

〉
h
− 〈nh · σ h + αhh∇ · σ h〉h . (4.6)
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Algorithm 1 Generalised PDHG for (4.2).

1: Choose initial guesses Φ0
h, σ

0
T,h,u0

h,u0
T,h, and parameters σφ, σu > 0.

2: for � = 0, 1, . . . do
3: Compute φ�+1

h ∈ Vk+1
φ,h , σ �+1

h ∈ V k
σ,h, ξ�+1

h ∈ Vk,k+1
ξ,h , θ�+1

h ∈ V k
σ,h, and σ �+1

T,h ∈
Mk

σ,h such that they are the solutions to the following minimisation problems:

arg min
φh∈Vk+1

φ,h

1
2σφ
〈〈|∂t(φh − φ�h)|2 + |∇(φh − φ�h)|2 + |φh − φ�h|2〉〉h

+ 1
2σφ

〈
|φh(T, ·)− φ�h(T, ·)|2

〉
h
+ 〈〈h�h∂tφh +m�

h · ∇φh + s�hφh〉〉h

−
〈
h�T,hφh(T, ·)− h0φh(0, ·)

〉
h
, (4.4a)

arg min
σ h∈V k

σ,h

1
2σφ
〈〈|σ h − σ �h|2 + |∂t(φ

�+1
h − φ�h)+ α∇ · (σ h − σ �h)|2〉〉h

+ 〈〈n�h · σ h + αh�h∇ · σ h〉〉h, (4.4b)

arg min
ξh∈Vk,k+1

ξ,h

1
2σφ
〈〈|ξh − ξ�h |2 + |(σ �+1

h − σ �h)+ α∇(ξh − ξ�h )|2〉〉h

− 〈〈p�hξh − αn�h · ∇ξh〉〉h, (4.4c)

arg min
θ�+1

h ∈V k
σ,h

1
2σφ
〈〈|θh − θ�h|2 + |ξh − ξ�h + α∇ · (θh − θ�h)|2〉〉h

− 〈〈q�h · θh + αp�h∇ · θh〉〉h, (4.4d)

arg min
σT,h∈Mk

σ,h

1
2σφ

〈
|α∇ · (σ T,h − σ �T,h)− (φ�+1

h (T, ·)− φ�h(T, ·))|2
〉
h

+ 1
2σφ

〈
|σ T,h − σ �T,h|2

〉
h
+

〈
n�T,h · σ T,h + αh�T,h∇ · σ T,h

〉
h
. (4.4e)

4: Extrapolate Φ̃�+1
h = 2Φ�+1

h −Φ�
h, and σ̃ �+1

T,h = 2σ �+1
T,h − σ �T,h.

5: Compute u�+1
h ∈ [Wk

h]3d+3 and u�+1
T,h ∈ [Mk

h]d+1 such that they are the following
minimisers:

arg min
uh∈[Wk

h ]3d+3,hh≥0

1
2σu
〈〈|uh − u�h|2〉〉h + 〈〈H(uh)〉〉h

− 〈〈hh∂tφ̃
�+1
h +mh · ∇φ̃�+1

h + shφ̃
�+1
h 〉〉h

− 〈〈nh · σ̃ �+1
h + αhh∇ · σ̃ �+1

h 〉〉h + 〈〈phξ̃
�+1
h − αnh · ∇ξ̃ �+1

h 〉〉h
+ 〈〈qh · θ̃�+1

h + αph∇ · θ̃�+1
h 〉〉h. (4.4f )

arg min
uT,h∈[Mk

h]d+1,hT,h≥0

1
2σu

〈
|uT,h − u�T,h|2

〉
h
+ 〈

HT(uT,h)
〉
h

−
〈
nT,h · σ̃ �+1

T,h + αhT,h∇ · σ̃ �+1
T,h

〉
h
+

〈
hT φ̃

�+1
T,h

〉
h
. (4.4g)
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Here uh = (hh,mh, sh,nh) ∈ [Mk
h]2d+2, σ h ∈Mk

σ,h and φh ∈ Vk+1
h , where Vk+1

h is the
following H1-conforming finite-element space on the spatial domain Ω: Vk+1

h := {v ∈
H1(Ω) : v|K� ∈ Qk+1(K�) ∀�}.

The saddle-point problem (4.6) can be solved using a similar optimisation solver as
Algorithm 1. However, our preliminary numerical results indicate a large number of
iterations (see the numerical results in § 5.1) is needed for the convergence of Algorithm 1
for solving the PDE (1.1) when the default optimisation parameters σφ = σu = 1 are used,
especially during the time when the droplets start to merge. Here we present a direct
solution strategy for (4.6) by solving the critical point system using the Newton–Raphson
method. Taking the first-order variation with respect to the variables uh, φh and σ h, we get
the following nonlinear system of equations: find (hh,mh, sh,nh) ∈ [Mk

h]2d+2, σ h ∈Mk
σ,h

and φh ∈ Vk+1
h such that〈(

mh

V1(hh)
−∇φh

)
· δmh

〉
h
= 0, ∀δmh ∈ [Mk

h]d, (4.7a)

〈(
sh

V2(hh)
− φh

)
· δsh

〉
h
= 0, ∀δsh ∈ Mk

h, (4.7b)

〈(�tnh − σ h) · δnh〉h = 0, ∀δnh ∈ [Mk
h]d, (4.7c)〈(

−|mh|2
2V2

1
V ′1 −

|sh|2
2V2

2
V ′2 +�tU′(hh)

)
· δhh

〉
h

+〈(φh − α∇ · σ h) · δhh〉h = 0, ∀δhh ∈ Mk
h, (4.7d)

〈nh · δσ h + αhh∇ · δσ h〉h = 0, ∀δσ h ∈Mk
σ,h, (4.7e)〈

(hh − hn−1
h )δφh −mh · ∇δφh − shδφh

〉
h
= 0, ∀δφh ∈ Vk+1

h . (4.7f )

The Newton–Raphson method is then used to solve this coupled nonlinear system.

4.4. Discussion
We conclude this section with a discussion on the novelty and challenges of our modelling
and simulation approaches for droplet dynamics. The major novelty is the introduction of a
general MFC model for droplet dynamics in Definition 3.3. It gives a general mathematical
framework for the optimal control and manipulation of the evolution of thin-film droplets.
However, this generality introduces new challenges.

The first challenge is how to choose appropriate potential and terminal functionals F
and G in the objective function in (3.4a). Ultimately, the choice of these functionals shall
depend on the system under consideration. We will study the effect of different choices in
future work.

The second challenge is how to link the mathematical MFC formulation in (3.4) to actual
physical processes and guide physical experiments. At the current stage, there is still a gap
between our formulation and physical experiments. Our MFC formulation generates an
optimal path of the surface height h in the sense that the objective functional in (3.4a)
is minimised, along with two control variables v1 and v2. How to connect these control
variables with physical processes is an interesting question. Here we have provided an
initial discussion to partially answer this question in § 2, where we have argued that the
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control variables v1 and v2 in the MFC model 3.4 are related to a physical active field ζ
via the (2.19b) for the modelling of viscous volatile thin films with an active suspension
on a partially wetting substrate. The physical active field ζ may be used to guide physical
experiments. A comprehensive discussion on the linkage of our MFC formulation with
physical processes will be explored in future work.

The third challenge is solving the resulting (non-convex) optimisation problem
efficiently. We have presented a high-order space–time FEM to discretise the optimisation
problem (3.4). It leads to a discrete saddle-point problem (4.2), and we introduced a
first-order optimisation solver, Algorithm 1, to solve this discrete saddle-point problem.
However, the issue of numerical convergence of Algorithm 1 is not addressed in this work.

5. Numerical results

In this section, we present numerical results for both the PDE (1.1) and the MFC problem
in Definition 3.3.

In § 5.1, we provide numerical results for the PDE (1.1) using the approximated JKO
scheme (4.6). Both one-dimensional (1-D) and 2-D numerical results are provided. We
obtain consistent simulation results when compared with classical FEM simulations.
We use both the optimisation based solver Algorithm 1 and the Newton–Raphson
method to solve the discrete saddle-point problem 4.6. Interestingly, we observe that the
Newton–Raphson method can be orders of magnitude faster than the optimisation solver
due to the need for a large number of iteration counts for accuracy considerations in the
optimisation solver. Improving the performance of the optimisation based solver will be a
focus of our future work.

In § 5.2, we illustrate examples of numerically solving the MFC problem in
Definition 3.3 using the high-order finite-element scheme (4.2). Specifically, we apply
Algorithm 1 to solve the discrete saddle-point problem (4.2), where the optimisation
parameters are taken as σφ = σu = 1, starting with hh = h0 as the initial surface height
and setting all other initial variables to be zero.

The finite-element software packages MFEM (Anderson et al. 2021) and NGSolve
(Schöberl 2014) are used in the implementation. Reproducible sample code and animation
videos are available in the GitHub repository https://github.com/gridfunction/DROPLET_
MFC.

Throughout, we use the following mobility functions and energy functional for the PDE
model (1.1):

V1(h) = h3, V2(h) = 0.04
h+ 0.1

, E(h) =
∫
Ω

10−4

2
|∇h|2 +

(
0.33

3h3 −
0.32

2h2 − 0.5h
)

dx,

(5.1)

which corresponds to taking parameters γ = 0.04, K = 0.1, α = 0.01, ε = 0.3
and P∗ = 0.5 in (1.1b)–(1.1d). We note that by rescaling the variables as
x̂ = x/α, ŷ = y/α, t̂ = t/α2 and γ̂ = α2γ , the original thin-film model (1.1) can be
rewritten as

∂h
∂ t̂
= ∇ ·

(
V1(h)∇P̂(h)

)
− γ̂

h+ K
P̂(h), P̂(h) = Π(h)− P∗ − ∇2h, on [0, T]× Ω̂,

(5.2)
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where the spatial domain Ω̂ = [0, 1/α]2. The form of (5.2) is consistent with the volatile
thin-film model studied in Ji & Witelski (2018, 2024), where typically droplet dynamics
are studied over a large spatial domain.

5.1. JKO scheme for the PDE (1.1)
In this subsection, we solve the PDE (1.1) numerically using the approximated JKO scheme
(4.6). Both 1-D and 2-D numerical examples are considered. In Appendix B, we present
details of the spatial/temporal mesh convergence studies of the scheme (4.6).

5.1.1. 1-D example
We take the computational domain to be a periodic line segment Ω = [0, 1]. The initial
condition is chosen to be h0(x) = 1− 0.2 cos(2πx), and terminal time is T = 0.4. The
approximated JKO scheme (4.6) is applied on a uniform spatial mesh with 32 elements
with polynomial degree k = 3. In each JKO step, we use either the Newton–Raphson
method to solve the critical point system (4.7) or the PDHG Algorithm 1 to solve the
saddle-point problem (4.6). The PDHG iteration is terminated when the L1-norm of the
difference of two consecutive surface heights hh is less than a prescribed tolerance tol. The
simulation results are compared with the following classical finite-element discretisation
for (1.1) with BDF2 time stepping using the same spatial discretisation parameters: find
(hn

h,Pn
h) ∈ [Vk+1

h ]2 such that〈
3hn

h − 4hn−1
h + hn−2

h
2�t

qh + V1(hn
h)∇Pn

h · ∇qh + V2(hn
h)P

n
hqh

〉
h

= 0, ∀qh ∈ Vk+1
h ,

(5.3a)〈
Pn

hrh − U′(hn
h)rh − α2∇hn

h · ∇rh

〉
h
= 0, ∀rh ∈ Vk+1

h . (5.3b)

In the FEM scheme (5.3), we use a small time step size�t = 0.0001, treating these results
as reference solutions. For the Newton–Raphson method, we employ both a small time step
size �t = 0.0001 and a larger time step size �t = 0.001. In the optimisation approach,
the time step size is set to �t = 0.001, with varying stopping tolerances for each JKO
iteration at tol = 10−7 or tol = 10−8. Figure 2 presents snapshots of surface height at
different times for all these simulations. First, we observe that the results for the PDHG
algorithm with tol = 10−7 (in magenta) differ significantly from the other simulation
results, particularly at intermediate times t = 0.10 and t = 0.15 when the droplet is
forming and spreading through dry spots. This suggests that tol = 10−7 is insufficient
for accuracy in the PDHG algorithm. Reducing the tolerance to tol = 10−8 yields results
consistent with the Newton–Raphson method, though the dip at the centre point x = 0.5 at
time t = 0.10 is still not well captured compared with the reference solution. In addition,
the Newton–Raphson method results with �t = 0.0001 overlap with the FEM simulation
results, validating the proposed approximate JKO scheme (4.6).

5.1.2. 2-D example
We consider the computational domain as a periodic unit square Ω = [0, 1]2. The initial
condition is chosen as h0(x, y) = 1+ 0.2 cos(2πx) cos(2πy), and the terminal time is T =
0.4. The approximated JKO scheme (4.6) is applied on a uniform rectangular mesh with
32× 32 elements and polynomial degree k = 3. Similar to the 1-D case, we use either the
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Figure 2. Snapshots of the surface height for 1-D thin-film equation (1.1) at different times: (a) t = 0.05,
(b) t = 0.10, (c) t = 0.15, (d) t = 0.20, (e) t = 0.30 and ( f ) t = 0.40. Dashed black line: FEM scheme
(5.3) with time step size �t = 10−4. Dotted red line: Approximated JKO scheme (4.6) with �t = 10−4

using the Newton–Raphson solver. Blue line: Approximated JKO scheme (4.6) with �t = 10−3 using the
Newton–Raphson solver. Green line: Approximated JKO scheme (4.6) with�t = 10−3 using the PDHG solver
with tolerance tol = 10−8. Magenta line: Approximated JKO scheme (4.6) with �t = 10−3 using the PDHG
solver with tolerance tol = 10−7.

Newton–Raphson method to solve the critical point system (4.7) or the PDHG Algorithm 1
to solve the saddle-point problem (4.6) for each JKO step.

We compare the simulation results with the reference solution using the FEM (5.3) with
the same spatial discretisation parameters. For the FEM scheme (5.3), we use a small
time step size �t = 0.0001, and these results are treated as reference solutions. For the
Newton–Raphson method, we use both a small time step size �t = 0.0001 and a large
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Figure 3. Snapshots of the surface height contour for the 2-D thin-film equation (1.1) at different times: (a)
t = 0.05, (b) t = 0.10, (c) t = 0.15, (d) t = 0.20, (e) t = 0.30 and ( f ) t = 0.4; (i) numerical solutions for FEM
(5.3),�t = 0.0001; (ii) numerical solutions for the approximated JKO scheme (4.6) with the Newton–Raphson
solver for (4.7) in each JKO step, �t = 0.0001; (iii) numerical solutions for the approximated JKO scheme
(4.6) with the Newton–Raphson solver for (4.7) in each JKO step, �t = 0.001; (iv) numerical solutions for the
approximated JKO scheme (4.6) with PDHG solver in Algorithm 1 for each JKO step,�t = 0.001, tol = 10−8.

time step size �t = 0.001. For the optimisation approach, we set the time step size to
be �t = 0.001, and terminate the iteration when the L1-norm of the difference of two
consecutive surface heights hh is less than a tolerance tol = 10−8.

Snapshots of surface height contours at different times are shown in figure 3. We
observe a similar pattern for the surface height evolution as in the 1-D case. Driven by the
interfacial instabilities described in (1.1), the early stage (see figure 3a) shows the spatial
variations in the solution profile growing until the minimum height approaches hmin =
O(ε). In the later stage, the minimum height spreads to form dry spots, leading to droplet
formation (see figure 3b), followed by a slow growth in droplet height driven by weak
condensation effects (see figure 3c–f ). This example captures the morphological changes
previously observed in 1-D dewetting thin-film dynamics with weak non-mass-conserving
effects (Ji & Witelski 2018). Moreover, results for all four simulations are qualitatively
similar to each other. In particular, the results for the first two rows with the small
time step size �t = 0.0001 are almost identical to each other, validating the proposed
approximated JKO scheme (4.6) in the 2-D setting. The results for the last two rows
are consistent with each other, which indicates both the Newton–Raphson and the
PDHG optimisation approaches are able to solve the discrete saddle-point problem (4.6)
accurately.

5.2. MFC for droplet dynamics
Next, we demonstrate that the developed MFC system can drastically control droplet
shapes, motions and drive morphological changes in droplet configurations. With different
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choices of initial and target surface heights, we present numerical results showcasing the
application of the developed MFC scheme for fundamental droplet actuation techniques,
including droplet transport, bead-up (i.e. dewetting), spreading, merging and splitting. To
achieve this, we apply the finite-element discretisation (4.2) and the PDHG Algorithm 1
to solve the full MFC system in Definition 3.3. We use the same mobility functions
and energy functional (5.1) as in the previous subsection. There is additional freedom
in choosing the potential and terminal functionals in (3.4a) and the scaling constant
β in (3.4b) to determine the MFC problem (3.4). Throughout this subsection, we take
the terminal time T = 1 and β = 0.01, and use the following potential and terminal
functionals:

F(h) = −0.02
∫ T

0

∫
Ω

h log(h) dx dt, G(h) = 0.05
∫
Ω

h(log(h/hT)− 1) dx, (5.4)

where hT is a given target terminal surface height function. The potential functional
F(h) serves as a regularisation term, whereas the terminal function G(h) drives the
surface height towards the target surface height as hT = arg minh G(h). The choice of these
functional forms for different control constraints is beyond the scope of this study and will
serve as an interesting future direction.

In the finite-element discretisation (4.2), we use a uniform spatial rectangular mesh of
size 64× 64, a uniform temporal mesh of size 16, and take polynomial degree k = 3. The
total number of degrees of freedom (DOFs) for the dual variable φh is about 4 million.
This choice of discretisation parameters ensures enough resolution in the simulation with a
manageable computational cost. A more in-depth mesh resolution study will be carried out
elsewhere. We stop the PDHG iteration when the L1-norm of the difference between the
terminal surface heights in two consecutive iterations ‖hn

h,T − hn−1
h,T ‖L1 is less than 10−6,

when a converged solution profile has been reached. For all the test cases considered here,
the algorithm converged within 2000 iterations. As mentioned in the previous subsection,
a more in-depth computational study of the optimisation solver Algorithm 1 will be carried
elsewhere.

5.2.1. Case 1: droplet transport
Droplet transport is one of the most important operations in DMF and has been
investigated extensively through experimental approaches such as electro-dewetting (Li
et al. 2019). We present results for the MFC problem (3.4) with the initial and target surface
heights specified as

h0(x, y) = ε + 10
3

(
1− 75((x− 0.3)2 + ( y− 0.3)2)

)
+
, (5.5)

hT(x, y) = ε + 10
3

(
1− 75((x− 0.7)2 + ( y− 0.7)2)

)
+
. (5.6)

Here

( f )+ =
{

f , if f ≥ 0,
0, otherwise,

(5.7)

is the positive part of a function f . This example models the MFC of an initial parabolic
droplet centred at (0.3, 0.3)moving towards a target parabolic droplet centred at (0.7, 0.7).
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Figure 4. Case 1 (droplet transport) snapshots of (i) 3-D plots of the controlled surface height h, (ii) contour
plots of the controlled surface height and (iii) contour plots of the activity field ζ at different times: (a) t = 0.0,
(b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0. The corresponding animation video can be
found in the GitHub repository (Fu et al. 2024a)

Figure 4 shows the evolution of the controlled surface height at different times, alongside
the activity field ζh = (β(U′(hh)+ ph)+ φh)/hh in (3.23). The snapshots in figure 4
reveal that the droplet quickly breaks the symmetry, beads up and develops a larger
advancing contact angle, leaving a capillary wave as it progresses towards the target
position. The three-dimensional (3-D) contour plots in figure 4(i) are reconstructed using
piecewise polynomial interpolation of the discrete surface height data in the space–time
quadrature space hh ∈ Wk

h . Specifically, a third-order polynomial interpolation (k = 3) is
employed for the surface reconstruction within each space–time cell, which is then used
to evaluate the surface height at specific times. Due to the non-smoothness of the initial
profile (5.5), visible oscillations in the reconstructed surface height are observed near the
contact line (where strong gradients exist) at the initial time t = 0. These oscillations are
localised near the contact lines and diminish as time progresses due to the instantaneous
smoothing effect of the nonlinear diffusion terms in the MFC problem. In addition, the
2-D contour plots in figures 4(ii) and 4(iii) are reconstructed from piecewise constant
interpolation of the data on a refined 256× 256 mesh. Similar to the 3-D plots, localised
oscillations near the contact lines are observed, which diminish over time. The surface
height remains positive throughout the simulation, achieving a smooth profile by the
final time t = 1. Furthermore, the activity field tends to be contractile (ζ > 0) near the
target droplet profile and extensile (ζ < 0) near the initial profile, as the active stress
competes with passive interfacial forces and pushes the droplet towards the terminal
location.

5.2.2. Case 2: droplet spreading
Controlling the deformation of a droplet is also a crucial aspect of liquid-handling
technology. For instance, in typical electro-wetting and electro-dewetting experiments, an
electric field can induce changes in the contact angles of a slender droplet containing a
dilute surfactant (Nelson & Kim 2012). Here, we demonstrate the MFC mechanism to
control the spreading and bead-up of droplets.
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Figure 5. Case 2 (droplet spreading) snapshots of (i) 3-D plots of the controlled surface height h, (ii) contour
plots of the controlled surface height and (iii) contour plots of the activity field ζ at different times: (a) t = 0.0,
(b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0. The corresponding animation video can be
found in the GitHub repository (Fu et al. 2024a).

For the droplet-spreading example, we take the initial and target surface heights as

h0(x, y) = ε + 10
3

(
1− 75((x− 0.5)2 + ( y− 0.5)2)

)
+
, (5.8)

hT(x, y) = ε + 5
12

(
1− 75

8
((x− 0.5)2 + ( y− 0.5)2)

)
+
. (5.9)

This case models the MFC of an initial parabolic droplet centred at (0.5, 0.5) with

half-width w = 1
5
√

3
flattening towards the target droplet with half-width w = 2

√
2

5
√

3
. The

initial and target droplets have the same total mass. Snapshots of the simulation results
for the scheme (4.2) are presented in figure 5. The numerical results indicate that the
controlled droplet initially evolves into a pancake shape and then gradually converges to
the target droplet profile over time. The radial symmetry in the droplet profile is preserved
during the evolution. Compared with the previous droplet transport test case, visible
oscillations are only observed at initial time t = 0, as shown in figure 4(a i). In this test
case, the activity field remains radially symmetric and contractile (ζ > 0) throughout the
simulation, reaching its maximum value near the droplet’s contact lines at each time.

5.2.3. Case 3: droplet bead-up
This represents the reverse process of case 2, where our objective is to induce droplet
bead-up (i.e. dewetting). Therefore, we set the initial and target surface heights as

h0(x, y) = ε + 5
12

(
1− 75

8
((x− 0.5)2 + ( y− 0.5)2)

)
+
, (5.10)

hT(x, y) = ε + 10
3

(
1− 75((x− 0.5)2 + ( y− 0.5)2)

)
+
, (5.11)

where the initial and target profiles are reversed compared with the example in case 2.
This models the MFC of an initial parabolic droplet centred at (0.5, 0.5) with half-width
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Figure 6. Case 3 (droplet bead-up) snapshots of (i) 3-D plots of the controlled surface height h, (ii) contour
plots of the controlled surface height and (iii) contour plots of the activity field ζ at different times: (a) t = 0.0,
(b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0. The corresponding animation video can be
found in the GitHub repository (Fu et al. 2024a).

w = 2
√

2
5
√

3
which beads up and evolves into the target droplet with half-width w = 1

5
√

3
.

Snapshots of the simulation results for the scheme (4.2) are presented in figure 6. In
this case, we observe more pattern formation during the droplet bead-up process, where
capillary waves are generated in the early stage before the droplet reaches the target shape.
Compared with the target droplet profile, the obtained profile at the terminal time t = 1
has a slightly elevated height near the contact line. Moreover, the activity field remains
radially symmetric and mostly extensile (ζ < 0) throughout the simulation, reaching its
maximum absolute value near the droplet’s contact lines at each time.

5.2.4. Case 4: droplet merging
Finally, we demonstrate the application of MFC for droplet merging and splitting, which
are more complex droplet manipulation techniques widely used in biological and chemical
applications (Nan, Mao & Shum 2023). For the droplet-merging case, we control the
coalescence of four small droplets initially placed on a 2-D domain, where the initial
surface height profile is

h0(x, y) = ε +
4∑

i=1

5
6 [1− 75((x− xi)

2 + ( y− yi)
2)]+, (5.12a)

where the positions of the peaks of the initial droplets are (x1, y1) = (0.3, 0.3), (x2, y2) =
(0.3, 0.7), (x3, y3) = (0.7, 0.3) and (x4, y4) = (0.7, 0.7).

We consider two subcases for the terminal surface height: the first subcase has a
symmetric terminal droplet profile centred at (0.5, 0.5) which has the same total mass
as the initial profile,

hT(x, y) = ε + 5
12

(
1− 75

8
((x− 0.5)2 + ( y− 0.5)2)

)
+
, (5.12b)
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Figure 7. Case 4 (droplet merging with a symmetric target profile (5.12b)) snapshots of (i) 3-D plots of the
controlled surface height h, (ii) contour plots of the controlled surface height and (iii) contour plots of the
activity field ζ at different times: (a) t = 0.0, (b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0.
The corresponding animation video can be found in the GitHub repository (Fu et al. 2024a).

whereas the second subcase has a skewed droplet profile elongated in the x-direction
centred at (0.6, 0.55), which has a different total mass as the initial profile,

hT(x, y) = ε + 5
12

(
1− 75

8
(4(x− 0.6)2 + ( y− 0.55)2)

)
+
, (5.12c)

The second subcase showcases the effect of asymmetry in the evolution of the controlled
surface height.

Figure 7 presents snapshots of the simulation results for the first subcase with the
symmetric target surface height (5.12b). Similar to the droplet transport example discussed
in case 1, the controlled droplets quickly bead up and start moving towards the centre of
the domain, where the target droplet is placed. Capillary waves form behind the droplets as
they shift towards the target position. Near the terminal time t = 1, the droplets coalesce,
forming a single droplet at the centre of the domain. Notably, in this test case, contact
line oscillations are only observed at the initial time t = 0 due to the non-smoothness of
the initial data. A radially symmetric and smooth solution profile for h(t, x) is observed
for t > 0. The activity field ζ at different times is plotted in figure 7(iii). This shows
that in the early stage, high contractile active stress (ζ > 0) appears near the centre of
the domain, whereas extensile active stress (ζ < 0) around the individual droplets pushes
the fluid towards the centre of the domain. As the droplets become closer to each other,
the corresponding contractile active stress becomes more concentrated near the centre of
the domain, and the magnitude of the activity field diminishes as the terminal droplet is
formed.

Figure 8 presents simulation snapshots for the second subcase with the asymmetric
target surface height (5.12c). This case exhibits more interesting transient dynamics due to
the asymmetry in the target droplet located at the off-centre position (x, y) = (0.6, 0.55).
In the early stage, the two droplets in the left half of the domain quickly shrink in size,
whereas the two droplets in the right half of the domain gradually bead up at different
speeds. In the later stage, the two remaining droplets slowly move towards each other
and coalesce into the target droplet, which is elongated in the x direction at the desired
off-centre location at time t = 1. The corresponding activity field plots illustrate that the
high extensile active stress (ζ < 0) around the two droplets on the left contributes to the
rapid vanishing of the droplets. Meanwhile, the combined effects of the high contractile
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Figure 8. Case 4 (droplet merging with an asymmetric target profile (5.12c)) snapshots of (i) 3-D plots of the
controlled surface height h, (ii) contour plots of the controlled surface height and (iii) contour plots of the
activity field ζ at different times: (a) t = 0.0, (b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0.
The corresponding animation video can be found in the GitHub repository (Fu et al. 2024a).

active stress (ζ > 0) near the location of the terminal droplet and the low extensile stress
(ζ < 0) near the contact line of the two droplets on the right lead to the directed motion
of the droplets towards the terminal location. This example specifically showcases the
flexibility of our control mechanism in handling initial and terminal configurations of
different total masses through the non-mass-conserving effects.

5.2.5. Case 5: droplet splitting
For the case of droplet splitting, we consider the reverse process of the symmetric droplet
merging considered in case 4 and take the initial and target surface heights as

h0(x, y) = ε + 5
12

[
1− 75

8
((x− 0.5)2 + ( y− 0.5)2)

]
+
, (5.13)

hT(x, y) = ε +
4∑

i=1

5
6

[1− 75((x− xi)
2 + ( y− yi)

2)]+, (5.14)

where the initial and target profiles are reversed compared with the first example in case 4,
with the droplet configurations in the initial and target profiles identical to those specified
in (5.12c) and (5.12a), respectively. Snapshots of the simulation results for the controlled
dynamics are presented in figure 9. This example models the MFC of one initial parabolic
droplet splitting into four smaller droplets and shifting into target positions individually.
Compared with the droplet-merging case, splitting a single droplet appears to be more
challenging and the terminal surface height profile obtained at the terminal time t = 1
still maintains a ridge connecting the small droplets. The activity plots in figure 9(iii)
demonstrate that near time t = 0, the inhomogeneous distribution of high extensile active
stress (ζ < 0) near the contact line of the centre droplet contributes to the fast splitting
of the initial droplet. Meanwhile, the high contractile active stress (ζ > 0) around the
terminal locations of the target droplets drives the individual droplets away from the centre
and pushes them towards the target locations. As the terminal time t = 1 approaches, high
extensile stress (ζ < 0) at the centre of the domain and high contractile stress (ζ > 0) are
formed as the individual droplets spread and settle into their target shapes.
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Figure 9. Case 5 (droplet splitting) snapshots of (i) 3-D plots of the controlled surface height h, (ii) contour
plots of the controlled surface height and (iii) contour plots of the activity field ζ at different times: (a) t = 0.0,
(b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8 and ( f ) t = 1.0. The corresponding animation video can be
found in the GitHub repository (Fu et al. 2024a); see supplementary movie available at https://doi.org/10.1017/
jfm.2024.983.

6. Discussion

In this paper, we have formulated and numerically computed MFC problems for droplet
dynamics governed by a thin-film equation with a non-mass-conserving flux. Our
formulation starts with droplet dynamics, which are gradient flows of free energies in
optimal transport metric spaces with nonlinear mobility functions. To demonstrate the
application of our approach, we have developed a lubrication model for a thin volatile
liquid film with an active suspension, where the control is achieved through its activity
field. We have designed and computed these MFC problems of droplet dynamics using
the PDHG algorithms with high-order finite-element approximation schemes. Numerical
examples of 2-D uncontrolled and controlled droplet dynamics have demonstrated the
effectiveness of the proposed control mechanisms.

We expect that the developed MFC mechanism could open the door to studying
experimental design problems of droplet dynamics. To bridge the gap between the
methodology and practical experimental implementation, one needs to address potential
challenges arising from model formulation, parameter constraints and experimental
measurements. To apply the developed algorithm to other droplet control problems, we
need general strategies for choosing free energies and mobility functions. For example,
one may design suitable free energies coupled with other external field constraints to
adapt our proposed MFC approach for droplet dynamics via temperature (Ji et al. 2021)
or electric fields (Eaker & Dickey 2016; Chu et al. 2023). For controlling thin liquid
films on general geometries, such as films flowing down a vertical cylinder (Ruyer-Quil
et al. 2008; Ji et al. 2019) or on a spherical substrate (Greer, Bertozzi & Sapiro 2006),
the gradient flow structure in (1.1) needs to be adapted to account for the geometrical
constraints. The current MFC formulation does not impose any explicit constraints on
the control variable, but in practice, the feasible parameter range for the strength of
the activity field (and controls for other applications) needs to be incorporated into
the model by imposing control restrictions. The robustness of the developed algorithm
to noise often found in experimental measurements in the initial configuration and
control variables also needs to be addressed thoroughly. In simulations, one of the
challenges is the non-convex formulations of general mean field variational problems.
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Suitable regularisation functionals are needed to maintain the stability of simulations.
Moreover, our numerical results indicate that compared to directly solving the critical
point system (4.7) using the Newton–Raphson method, Algorithm 1 can be quite slow
when the default parameters σu = 1 and σφ = 1 are used to solve the approximated JKO
scheme (4.6). It would be interesting to study the convergence behaviours of JKO schemes
and their improvement in optimisation procedures. We leave these physical modelling and
numerical studies for future work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.983.
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Appendix A. Proof of Proposition 3.6

In this appendix, we prove Proposition 3.6.

Proof of Proposition 3.6. Denote the Lagrange multiplier of the MFC problem (3.10) as
φ : [0, T]×Ω → R. Consider the following saddle-point problem:

inf
m,s,h,hT

sup
φ

L(m, s, h, hT , φ), (A1)

where

L(m, s, h, hT , φ) =
∫ T

0

∫
Ω

[ ‖m‖2
2V1(h)

+ |s|2
2V2(h)

+ φ (∂th+∇ · m− s)
]

dx dt

+
∫ T

0

[
β2

2
I(h)− F(h)

]
dt + G(hT)+ βE(hT). (A2)

Assume h > 0. By solving the saddle-point problem of L, i.e. taking the L2 first variation
of L on variables m, s, h and hT , we derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

δm
L = 0,

δ

δs
L = 0,

δ

δh
L = 0,

δ

δφ
L = 0,

δ

δhT
L = 0,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
V1
= ∇φ,

s
V2
= φ,

−1
2
‖m‖2

V2
1

V ′1 −
1
2
|s|2
V2

2
V ′2 +

δ

δh

[
β2

2
I(h)− F(h)

]
− ∂tφ = 0,

∂th+∇ · m− s = 0,

φT + δ

δhT
(G(hT)+ βE(hT)) = 0.

(A3)

We finish the derivation of the MFC system.
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We next derive the L2 first variation of the Fisher information functional I. Recall

I(h) = 1
2

∫
Ω

(
V1(h)|∇P(h)|2 + V2(h)|P(h)|2

)
dx, (A4)

where P(h) = Π(h)− P∗ − α2�h, with the notation �h = ∇2h. Consider a smooth test
function δh ∈ C∞([0, T];R). Then

I(h+ εδh)

= 1
2

∫
Ω

(
V1(h+ εδh)|∇P(h+ εδh)|2 + V2(h+ εδh)|P(h+ εδh)|2

)
dx

= 1
2

∫
Ω

(V1(h)+ εV ′1(h)δh)|∇P(h)+ ε∇(Π ′(h)δh− α2�δh)|2 dx

+ 1
2

∫
Ω

(V2(h)+ εV ′2(h)δh)|P(h)+ ε(Π ′(h)δh− α2�δh)|2 dx+ O(ε2)

= I(h)+ ε
∫
Ω

(
1
2

V ′1(h)δh|∇P(h)|2 + V1(h)∇P(h) · ∇(Π ′(h)δh− α2�δh)
)

dx

+ ε
∫
Ω

(
1
2

V ′2(h)δh|P(h)|2 + V2(h)P(h)(Π ′(h)δh− α2�δh)
)

dx+ O(ε2),

(A5)

where O(ε2) is the asymptotic notation. Using the definition of L2 first variation operator,

I(h+ εδh)− I(h) = ε
∫
Ω

δ

δh
I(h)δh dx+ O(ε2), (A6)

and applying the integration by parts, we derive the L2 first variation of functional I.

Appendix B. Additional numerical experiments

In this appendix, we numerically study the convergence of the proposed approximated JKO
scheme (4.6) under spatial/temporal mesh refinements. We consider the same setup as in
§ 5.1 to solve the thin-film equations (1.1) in both one- and two dimensions. Specifically,
we compute the L2-error of the surface height ‖hh − href ‖L2(Ω) at time t = 0.05, where the
reference solution href is obtained using the finite-element scheme (5.3) with polynomial
degree k + 1 = 4 on a fine mesh with 128d uniform elements, where d ∈ {1, 2} is the
spatial dimension, and the time step size is �t = 10−4.

Table 1 presents the history of convergence for the L2-norm error under mesh
refinements for the scheme (4.6) with the polynomial degree k ∈ {0, 1, 2}. When the
polynomial degree is k = 0, we use a sequence of uniform meshes with Nd elements
for N ∈ {32, 64, 128} and take a time step size of �t = 32/N × 10−3. The first-order
convergence is observed in this case. When the polynomial degree is k ∈ {1, 2}, we use
a sequence of uniform meshes with size Nd for N ∈ {16, 32, 64} and take a time step size
of �t = (16/N)k+1 × 10−3. The second-order convergence is observed for k = 1, and the
third-order convergence is observed for k = 2. These results suggest the proposed scheme
(4.6) achieves a first-order convergence in time and a (k + 1)th order of convergence in
space when polynomials of degree k ≥ 0 are used.

We conclude this appendix by presenting the evolution of the total mass, M(t) =∫
Ω

h dx, when applying the scheme (4.6) to solve the model (1.1). Recall that,
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k N �t 1-D L2-error rate 2-D L2-error Rate

32 1× 10−3 1.61× 10−2 — 4.49× 10−2 —
0 64 5× 10−4 6.82× 10−3 1.24 1.72× 10−2 1.39

128 2.5× 10−4 3.13× 10−3 1.12 6.98× 10−3 1.30

16 1× 10−3 7.79× 10−3 — 3.13× 10−2 —
1 32 2.5× 10−4 1.18× 10−3 2.72 4.77× 10−3 2.71

64 6.25× 10−5 2.63× 10−4 2.17 1.05× 10−3 2.18

16 1× 10−3 5.26× 10−3 — 2.37× 10−2 —
2 32 1.25× 10−4 4.82× 10−4 3.45 2.05× 10−3 3.53

64 1.56× 10−5 5.53× 10−5 3.12 2.30× 10−4 3.15

Table 1. History of convergence for the L2-error in surface height at time t = 0.05.

0 5 × 10−2 0.10 0.15 0.20

0

2

4

(×10−14)

Time

|M
(t)

 −
 1

|

Figure 10. Evolution of the total mass error |M(t)− 1| over time for the scheme (4.6) applied to the model
(1.1) with γ = 0, the dimension d = 2, a polynomial of degree k = 3, a rectangular mesh with 322 elements
and a time step size �t = 10−3.

from (2.15a,b), the model (1.1) allows the total mass to change over time due to
non-mass-conserving contributions when the phase change rate γ > 0, whereas the total
mass is conserved for γ = 0. To highlight the built-in mass-conservation property of the
scheme (4.6), we consider the 2-D setup in § 5.1 with the phase change rate γ = 0. For
this problem, the total mass remains at M(t) = 1 for all time since the initial data satisfies
M = 1. Figure 10 presents the time evolution of the total mass error |M(t)− 1| using the
polynomial degree k = 3 on a 322 mesh and the time step size �t = 10−3. It is observed
that the total mass error is within 5× 10−14.
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