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Introduction. A finite net N of degree &, order n, is a geometrical object 
of which the precise definition will be given in §1. The geometrical language 
of the paper proves convenient, but other terminologies are perhaps more 
familiar. A finite affine (or Euclidean) plane with n points on each line {n ̂  2) 
is simply a net of degree n + 1, order n (Marshall Hall [1]). A loop of order 
n is essentially a net of degree 3, order n (Baer [1], Bates [1]). More generally, 
for 3 ^ k ^ n + 1, a set of k — 2 mutually orthogonal n X n latin squares 
may be used to define a net of degree k, order n (and conversely) by 
paralleling Bose's correspondence (Bose [1]) between affine planes and 
complete sets of orthogonal latin squares. 

In the language of latin squares, the problem (explained in §1) of imbedding 
a net of N of degree kr order n in a net Nr of degree k + 1, order n becomes the 
problem of finding a n w X ^ latin square orthogonal to each of k — 2 given 
mutually orthogonal n X n latin squares. Similarly, adjunction of a line 
corresponds to the determination of a common "transversal" (in the termi­
nology of Euler [1]) to the k — 2 orthogonal squares. Further details of a his­
torical nature will be found in the bibliography. 

On each finite net N we define an integer 4>(N), which may be regarded as 
an invariant in several ways. A necessary condition that a line can be ad­
joined to N is that <I>(N) = 1. (A necessary and sufficient condition is given 
in Theorem 1 (i).) We define a direct product Ni X N2 of nets Ni of the same 
degree and study the relation between <j>(Ni X N2) and the (j>(Ni) (Theorem 4). 
From these considerations we deduce the existence of nets of every order n to 
which no line can be adjoined (Theorem 5). Next we study the relation be­
tween the fis of homomorphic nets (Theorem 6) and we conclude the paper -
with an explicit evaluation of <j> for nets of degree 3 (Theorem 7). 

1. Nets and the imbedding problem. Let fe, n be positive integers, with 
k ^ 3. A (finite) net N of degree fc, order n, is a system of undefined objects 
called "points" and "lines" together with an incidence relationship ("point 
is on line" or "line passes through point") such that: (i) N contains k (non­
empty) classes of lines, (ii) Two lines a, b of N, belonging to distinct classes, 
have a unique common point P. (iii) Each point P of N is on exactly one 
line of each class, (iv) Some line of N has exactly n distinct points. I t is 
easy to show that every line of N has exactly n distinct points, that every 
class of lines contains exactly n distinct lines and that N consists of n2 distinct 
points, kn distinct lines. Moreover, either w = 1 or w ̂  k —• 1. 
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If 5 is a subset of the points of the net JV (of degree k, order n) such that 
each line of JV contains exactly one point of S, we shall say that S can be ad­
joined as a line to JV. Considering the n lines of each class, we see that S must 
consist of exactly n distinct points, no two collinear. If the n2 points of JV 
can be partitioned into n disjoint sets 5i, . . . , Sn, each of which can be ad­
joined as a line to JV, then the Sj may be regarded as constituting the n lines 
of an additional class. In this way JV can be imbedded in a net JV' of degree 
k + 1, order n, consisting of the points and lines of JV (with the same incidence 
relations) plus one additional class of ''parallels". Conversely, if the net JV 
of order n, degree k is a subnet of net JV' of order n, degree k + 1 (a subnet in 
the sense that a point and line of JV are incident in JV if and only if they are 
incident in JV') then JV, JV' must have the same points, and one of the line-
classes of JV' may be regarded as consisting of n disjoint point-sets Sj, each of 
which can be adjoined as a line to JV. The present paper will be concerned 
primarily with necessary conditions that a line may be adjoined to a net. 

2. The integers represented by a net. Let JV be a finite net and let / be a 
single-valued function from the points of JV to the rational integers. We shall 
say that the rational integer m is represented on JV by f if / sums to m over the 
points of each line of JV, and represented positively if, in addition, / takes on 
only non-negative values. Again, if u is a positive integer, we shall say that 
m is represented mod u on N by f if / sums to m mod u on each line of JV. The 
least positive integer represented on JV will be denoted by #(JV). Clearly 
0(JV) is an invariant of JV. Moreover, #(JV) is the (positive) greatest common 
divisor of the integers represented on JV. 

THEOREM 1. Let JV be a finite net of degree k, order n. Then: (i) A necessary 
and sufficient condition that a line can be adjoined to JV is that 1 be positively 
represented on JV. (ii) n is positively represented on JV. (iii) k — 1 is repre­
sented on JV. (iv) <j>(N)\(n, k — 1). (v) If n is an affine plane (i.e., if 
k = n + 1,) #(JV) = n. (vi) With at most a finite number of exceptions, every 
positive integer divisible by #(JV) is positively represented on JV. 

COROLLARY. A necessary condition that a line can be adjoined to JV is that 
*(N) = 1. 

Proof, (i) If S can be adjoined as a line to JV, define/(P) = 1 or 0 accord­
ing as P is or is not in S. Then 1 is positively represented on JV by / . Con­
versely, if 1 is positively represented on JV by some/, let S be the set of points 
P for which f(P) ^ 0. Then each line of JV contains exactly one point P of 5 
(and, incidentally, f(P) = 1.) Hence S can be adjoined to JV as a line. 

(ii) If f(P) = 1 for every point P of JV, then / ' represents n positively on JV. 
(iii) Select an arbitrary point C of JV and define h as follows: h(C) = k — n; 

h(P) = 1 if P is distinct from but collinear with C; h(P) = 0 otherwise. If a 
is a line through C, h sums, over a, to k — n + n — 1 = k — 1. If a is a line 
not through C, the k — 1 lines through C which are not in the same class as 
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a meet a in k — 1 distinct points; hence h sums to k — 1 over a in this case 
also. Therefore h represents k — 1 on N. 

(iv) By (ii) and (iii), <t>(N) divides n, k — 1 and their greatest common 
divisor {n, k — 1). 

(v) Let 0(iV) be represented by / on the affine plane N, and let s be the 
sum of / over the n2 points of N. Considering the sum of the sums of / over 
the n lines of some class, we find n<j>(N) = s. On the other hand, if C is a point 
of N, every point of N (other than C) lies on exactly one of the n + 1 lines 
through C. Considering the sum of the sums over the n + 1 lines through C, 
we find nf(C) + s = (n+l)4>(N). Since s = n<t>(N), nf(C) = <t>(N). Therefore 
n\<t>(N)\n, so 0(iV) = n. And, incidentally, f(C) = 1 for every point Cof N. 

(vi) In view of (ii), every positive integral multiple of n is positively repre­
sented on N. Next let r be an integer divisible by 4>(N), in the range 0 < r < n. 
Certainly r is represented on N by some function / . Let mf be the least value 
assumed b y / . Then, if f is the function defined in (ii) and if m is any integer 
satisfying m ^ — m\ the integer r+tnn is positively represented on N b y / + mf. 
Therefore, in every congruence class of integers mod n divisible by $(N), there 
is at most a finite number of positive integers not represented positively on N. 

This completes the proof of Theorem 1. The Corollary follows from (i). 

3. A characterization of <j>. If N is a net of degree fe, order n, we shall 
assume henceforth that the k classes of "parallel" lines have been numbered 
(arbitrarily, but once and for all) from 1 to k. Thus, if 1 ^ i ^ k, an i-line 
of N is a line of class i. In terms of an arbitrary "centre" C ( C a point of N) 
we introduce a coordinate system as follows: For 1 ^ i ^ fe, the n lines of 
class i are numbered from 1 to n, the i-line through C being assigned the num­
ber 1. The i-line numbered x is designated by (i, x). We also introduce k 
point-functions /», the indicators, by defining I%{P) = x if (i, x) is the i-line 
through the point P. 

If / is a single-valued function from the integer-range 1 ^ x ^ » to the 
integers, we shall designate by /(*) the sum / ( l ) + / ( 2 ) + . . . + / ( » ) . In 
terms of these notations we may prove two theorems. 

THEOREM 2. Let N be a net of degree k, order n. Then a necessary and 
sufficient condition that the integer m be represented on N is that m be represented 
mod n on N. 

THEOREM 3. Let N be a net of degree k, order n. Then <f>(N) is the smallest 
positive integer s with the following property: If / i , . . . ,/jb are single-valued 
functions from the integer-range 1 ^ x ^ n to the integers, such that 

(1) Ml) = 0 mod n (i = 1, . . . , »), 

(2) E MU{P)) = 0 mod n 

for each point P of N, then 
sfi(*) = 0 mod n. 
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Proof, If ai, . . . , akn are the kn lines and Pi , . . . , Pn2 are the n2 points of 
N, in arbitrary arrangements, define the line-point incidence matrix A of N by-
putting 1 or 0 in the uth. row, z>th column of A according as Pv does or does not 
lie on au. Also define U to be the column vector of order kn with every 
element 1. Let X be a column vector of order n2 and let m be an arbitrary 
integer. Then m is represented on N if and only if 

(3) AX = mU 

for an integral X. In view of Theorem 1 (ii), (3) has a rational solution X 
with every component equal to m/n. If r — rank A, there exist unimodular 
matrices T, Q (with rational integral components) such that 

(4) TAQ = (^r ° ) , Z)r = diag(e i, e2,. . . , er), 

where the positive integers e3- are the invariant divisors of ^4; thus e/|e/+i for 
j = 1, 2 , . . . , r - 1. Setting TU = V, X = QY, we see that (3) may be 
reduced to 

(.5) ejyj = mvj (j = 1, . . . , r) . 

A necessary and sufficient condition that (3) have an integral solution X is 
that (5) yield integral values for yi, . . . , yr. In particular, by the definition 
of <j>(N), « 

(6) dj = (ey, vj), ej = Aydy (7 = 1 , . . . , r), 

then <£(iV) is the least common multiple 

(7) 4>(N) = [Ai,. . . , * r ] . 

Next let u be any integer divisible by er (and hence by each ej.) Clearly m 
is represented mod u on N if and only if AX = mU mod w for an integral X, 
or, equivalently, if and only if efy$ = mvj mod w for integral y3- (j= 1, . . . , r). 
Since ej\u, the latter congruences imply ej\mvj, h>j\m, <j>(N)\m. However, if 
<l>(N)\m, m is certainly represented on N. Thus Theorem 2 will be proved when 
we show that er\n. 

For i = 1, . . . , k, let the row-vector Ri denote the sum of the n rows of A 
corresponding to the lines of class i. Since each point lies on exactly one i-line 
Ri has each component equal to 1 ; thus Ri = R2 = . . . = Rk- Let B be the 
matrix of 1 + k(n — 1) rows obtained by deleting from A the rows corres­
ponding to the 2-line, 3-line, . . . , &-line through the centre C. Clearly, since 

Ri = 2?i, T'A = f J for a unimodular matrix T'\ hence B has the same rank 

and invariant divisors as A. There is therefore no loss of generality in assum­
ing that, in (4), the first r rows of T have zeros in the columns matching with 
the k — 1 rows of A omitted in B. With this understanding, let Vj be the 
7th row of T (j = 1, . . . , r) ; by (4), since Q is unimodular, ej is the greatest 
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common divisor of the components of VjA. For any fixed 7, let gi(x) denote 
the component of Vj in the column corresponding to the line (i, x) of N; thus 
gi(l) = 0 for i > 1. In VjA, the column corresponding to point the P has 
component 

(8) E &(A-(P)) = 0 mod e,-. 
i = l 

When P = C, (8) reduces to gi(l) = 0 mod ^-; hence 

(9) ^(1) s 0 mod ^ (i = 1 , . . . , k). 

Selecting a fixed line (i, x) and summing the congruence (8) over the n points 
P of (i, x), we derive 

(10) E ««(*) + »&(*) = 0 mod «,-. 

From (10), (9), ngi(x) = wg»(l) = 0 mod e .̂ Thus, if d = (w, e,) and ej = de'', 
we have g»(#) = 0 mod e' for all i, x. Since T is unimodular, the greatest 
common divisor of the components of Vj is 1; therefore e' = 1 and ey|». In 
particular er|», proving Theorem 2. 

In similar fashion, letting the gi be arbitrary rational-valued functions such 
that gi(l) = 0 for i > 1, and replacing the congruences (8) by equations, we 
may deduce that gi(x) = 0 for alii, x. This shows that the rows of B are linearly 
independent, so that 

(11) r = 1 +k(n - 1). 

To prove Theorem 3, let Vj have (integer-valued) components g%(x), as 
above, and let fi(x) = fijgi(x) where n = njCj. Then (9) and (8) become (1) 
and (2) respectively. On the other hand, VjU = Vj, in the notation of (5), 
and hence 

(12) E /<(*) = njVj. 
i=i 

Multiplying (5) by rij, we get njj = rn.tijVj. Therefore m is represented on 
N if and only if m.UjVj = 0 mod n for 7" = 1, . . . , r. To replace (10) we have 
Eti*t/tt(*) = 0 mod w, whence, by (12), n/Uj = /*(*) for i = 1, . . . , k. In 
particular, w ^ = /i(*) mod n. Thus, by the definition of s, s.tijVj = s/i(*) = 0 
mod w, for7 = 1, . . . , r. Hence 5 is represented on N, <f>(N)\s. 

We must prove the converse. Certainly AX = 4>(N) U for an integral X. 
Let / i , . . . ,fk be integer-valued functions satisfying (1) and (2), and let V be 
the row-vector with fi(x) in the column corresponding to line (i, x). Then 
VA has component E*=i fî(Ii(P)) m t n e column corresponding to point P , 
while VU = E*-i/*•(*)• T h u s the equation F.4X = <t>(N)VU, together with 
the congruences (2), implies that 

k 

(13) 4>(N) £/<(*) s O m o d » . 
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By the same methods as before, we deduce from (1) and (2) that (13) is equi­
valent to 0(iV)/i(*) = 0 mod n. Since 5 is the least positive integer such that 
s/i(*) = 0 mod n for all such functions/», s\4>(N). Therefore <I>(N) = s. This 
completes the proofs of Theorems 2, 3. 

3. Direct products of nets. Let Nh N2 be nets of orders «i, n2 respectively, 
and of the same degree k. The direct product N = N±XN2 is defined as follows : 
(i) The points of N are the ordered pairs (Pi, P2), with Pj a point of Nj. 
(ii) For i = 1, . . . , k, the i-lines of N are the ordered pairs (#i, a2), with ay 
an i-line of Nj. (iii) (Pi, P2) lies on (ah a2) in N if and only if Pj lies on aj 
in Nj for j = 1,2. It is easy to verify that N is a net of degree k, order n±n2. 
Making the obvious identifications one may establish the commutative and 
associative laws for direct products. 

If N\ has a coordinate system centered about G, with indicators i*, and N2 

has a coordinate system centered about C2, with indicators J^ we introduce a 
natural coordinate system for N = Ni X N2 as follows: Take C = (Ci, C2) 
as centre. If ay is the i-line (i, xy) of Nj (j = 1, 2,) denote by (i; #1, x2) the 
i-line (ai, a2) of N. Define the indicators /»• of iV by J»(Pi, P2) = (xi, x2) 
where (i; xi, x2) is the ^-line of N through (Pi, P2). Moreover, if /(xi, x2) is 
a function from the integer-domain 1 ^ x\ ^ wi, 1 ^ x2 ^ w2 to the integers, 
denote by /(*, x2) the sum / ( l , x2) + / ( 2 , x2) + . . . + /(wi, #2). Similar 
meanings are assigned to/(xi , *) and/(*, *). 

THEOREM 4. Let Nj be a net of order nj and degree k, for j = 1,2, and let 
N = Ni X N2. Write 

(14) d = (wi, w2)i ni = dqh n2 = dq2. 

Then there exist positive integers a, b such that 

(15) (gi, <KJVi)) . (ff2, 4>(N2)) = a . *(iV), 

(16) (d, k-1). 4>(N) = b fo(tfi), *(# , ) ] , 

(17) a6 I (d, * - 1). 

COROLLARY 1. If (m, n2l k - 1) = 1, /Aew <K^i X N2) = <t>(Ni)<t>(N2). 

COROLLARY 2. 7/ (#ig2, * - 1) = 1, then 0(iVi X iV2) = 1. 

COROLLARY 3. For any finite net N, <j>(N X N) = 1. 

Proof. In the present notation the content of Theorem 3 may be expressed 
as follows: <I>(N) is the least positive integer such that, for integer-valued 
functions /»-, the congruences 

(18) /»(1, 1) = 0 mod «i»2f 

A; 

(19) E /i(/<(Pi), W 2 ) ) s 0 mod rciw2 
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for all points (Pi, P2) of N, imply 

(20) 4>(N)fi(*, *) s 0 mod »m2. 

Keeping P i fixed in (19), select a line (i, x2) of iV2 and sum over all points P2 
of (i, x2). Then 

(21) £ /y(/y(Pi), *) + »2/i(J<(Pi), *«) = 0 mod Wln,. 

Since the sum in (21) is independent of #2, we have 

ntfi(Ii(Pi), x2) = ntfi(Ii(Pi), 1) mod »i«2, 
i.e. 

(22) /»(ffi, #2) = /*(xi, 1) mod wi 

for all i, Xu #2 in their respective ranges. Similarly, 

(23) fiipcij X2) = f (1 , X2) mod «2. 

Since d divides wi, «2, we deduce from (22), (23) and (18) that 

(24) fi(xi, x2) == 0 mod d. 

Returning to (21), choose any line (j, xi) of Ni, with j5^ i, and sum over all 
points P i of (j, xi). There results 

(25) E /p(*, *) + nifj(xi, *) + »2/»(*f x2) s 0 mod nin2 

for all i, j (i 7^ j) and xi, x2. As in the proof of Theorem 3, /p(* f *) = /i(*f*) 
mod nifi2. And since, by Theorem 1, <t>(N) divides k — 1, (k — l)/i(*, *)^=0 
mod W1W2. Therefore (25) is equivalent to 

(26) /i(*, *) = nifjixi, *) + »2/»(*, #2) mod mn2. 

Since k ^ 3, and since in (26) the only restriction is i ^ j , (26) is equivalent to 

(27) /i(*, *) = nifi(xu *) + W2/i(*, #2) mod WiW2. 

Define /1, £2 as the least positive integers such that 

(28) /irc2/i(*, X2) = 0, hn\f\(x\, *) = 0 mod nin2 

for all/* satisfying (18), (19). By (27), «2 / i(*, *) s 0 mod nm%. Hence, by 
the property (20) of 0(iV). 

(29) *(iV) I W2. 

Since g id = Wi, (24) implies gin2/i(*, x2) = 0 mod wiw2. Thus /11 gi. 
Similarly, 

(30) tjlqj 0* = 1,2). 

Since the #y are relatively prime, so are the tj. Next choose any fixed value 
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for x2 and define functions Fi(x{) = /t(xi, x2). From (22), Fi(xi) ?=fi(xu 1) 
mod »i. Thus, from (18), Fi(l) ss 0 mod »i. Moreover, by (19), 

k k 

E TO(Pi)) s E /<(/<(Pi), W , ) ) s 0 m o d » i . 

Therefore, by Theorem 3, 0 = <l>(Ni)Fi(*) ss $(Ni)fi(*, #2) mod »i, and so 
<l>(Ni)n$fi(*, X2) = 0 mod wi»2. Hence (and similarly) 

(31) *, I <KNj) (j = 1, 2). 

By (30), (31), tj divides the greatest common divisor of q3- and 0(iVy). Hence 
(29) implies (15) for some positive integer a. 

To obtain (16), let gi(xi) be any set of integer-valued functions satisfying 
equations analogous to (1), (2) for JVi, and set/i(#i, x2) = n2gi(xi). Then the 
fi will satisfy (18), (19). Therefore 0(JV)/i(*, *) = <KN)(n2)

2gi(*) s 0 mod 
«i»2, 4>{N)n2gi(*) = 0 mod wi, 0(JVi) | <t>(N)n2. Since 0(iVi) | (wi, * - l) and 
since (wi, w2) = d, we may improve the last statement to <p(Ni)\(df k — l)<l>(N). 
Similarly for <t>(N2). Hence the least common multiple [0(iVi), <I>(N2)] divides 
(d, & — l)0(iV), proving (16) for some positive integer ô. 

Eliminating </>(N) from (15), (16), we derive ab[<t>(Ni), $(N2)] = (d, k - 1) 
(ci, 4>{Ni)){q2, <t>(N2)). Since the integers (gy, <t>(Nj)) are relatively prime 
divisors of [<t>(Ni), </>(iV2)], we have (17). This completes the proof of Theorem 
4. In the case of Corollary 1, a = b = 1, by (17), and then <I>(N) = <t>(Ni) 
4>(N2) by (16) and the fact that (4>(Ni), <t>(N2)) is a divisor of (nly n2, k - 1) = 1. 

In the case of Corollary 2, the left-hand side of (15) is 1, since, for example, 
(qu <t>(Ni)) divides (qh k - 1) = 1. Thus 0(iV) = 1. And Corollary 3 cor­
responds to the special case q\ = 1 = q2 of Corollary 2. 

THEOREM 5. Let n> 1 be a positive integer with factorization n — TLp{i)mU) 

where the p(i) are distinct primes and the m(i) are positive integers. Let r = min 
(£( l ) w ( l \ p(2)m(-2\ . . . .). Then there exists a net N of order n, degree r + 1, 
such that <t>(N) = r > 1. In particular, no line can be adjoined to N. 

COROLLARY. If k is any integer such that 3 ^ k ^ r + 1, there exists a net 
N of order n, degree k. 

Proof. For any prime p and positive integer m, let E(£, m) be an affine 
plane of order pm (and degree pm + 1.) Such a plane exists, for example, the 
plane obtained by using coordinates (in the familiar manner of elementary plane 
geometry) from the field GF(£W). For each i, we may define a net Ni of degree 
r + 1 , order p(i)m^ from an E(p(i), m(i)) by deleting some (p(i)m{i) + 1 ) — (r + 1 ) 
classes of lines. Set N = Ni X N2 X . . . . By an obvious extension of 
Corollary 1 to Theorem 4, <t>(N) = 0(iVi)$(iV2) . . . . For exactly one i, 
#,•= E(p(i),m(i)) and 0(iV») = £(i)m(i) = r. For all other i, lines can be 
adjoined to Ni, so 0(iV») = 1. Therefore <l>(N) = r > 1. As for the Corollary 
we need merely delete some r + 1 — k classes of lines from N. 
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4. Homomorphic nets. Let N, N' be nets of the same degree k. A homo-
morphism 6 of N upon N' is a single-valued, exhaustive mapping of N upon N' 
which maps points upon points, i-lines upon i-lines (for i = 1, . . . , k) and 
preserves incidence. The requirement that i-lines be mapped upon i-lines 
may seem artificial. The obvious generalization, however, is no more neces­
sary than the little used concept of "anti-homomorphism" in group theory, 
and adds complications to the proofs. (See Bates [1] for a similar restriction 
in regard to 3-nets.) 

A homomorphism 0 of N upon N' is called an isomorphism if it is one-to-one, 
and a zero homomorphism if N' has order one. A net N is simple if its only 
homomorphisms upon nets are isomorphisms and zero homomorphisms. 

LEMMA 1. Let N, N' be nets of respective orders n, n' and of the same degree 
k. Let 6 be a homomorphism of N upon N'. For each point P' of N*', let M(P') 
be the subset of N consisting of all points P of N such that P6 = P' and of all 
lines a of N such that ad passes through Pf. Then n = mn' for a positive 
integer m, and each M(P') is a subnet of N, of order m, degree k. 

COROLLARY. Every finite affine plane is a simple net. 

Proof. Consider one of the sets M = M(P'). Then M contains lines of 
each of the k classes in N, since the k lines through P' are images under 0. 
If a, b are lines of distinct classes in N, such that ad, bd pass through P', the 
intersection point P = a . b satisfies Pô = P ' , and hence is in M. If Q is in 
M, each of the k lines through Q is in M. Hence M is a net of degree k and 
of some order m. In particular, for each i, M has exactly m i-lines, and these 
are precisely the i-lines of N which map into the i-lmes through P ' . If Q' is 
a point of N', distinct from P r , the i-Yme through P ' and the j-line through 
Qf (j ?* i) must meet in a point B! of N'. Then M(R'), M(P') have the same 
i-lines, hence the same order m\ and M{Qf), M(R!) have the same J-lines, 
hence the same order m. Therefore each of the (nf)2 subnets M(P') has order 
m, showing that (n')2m2 = n2 or n = mn'. 

As for the Corollary, if the net N has order n = k — 1, then k — 1 = mn'. 
But either n' = 1 or n' ^ k — 1; and the second alternative gives n' = k — 1, 
m = 1. Hence every homomorphism of N upon a net is either a zero homo­
morphism or an isomorphism. Thus N is simple. This Corollary offers a 
partial explanation of the lack of success in attempting to define homomorph­
isms of projective planes (Marshall Hall [1]). 

With the notation of Lemma 1, define D to be the greatest common divisor 
of all the integers <j>(P') = <t>(M(P')). Also write 

(32) d = (m, n'), m = du, n' = dv. 

THEOREM 6. Let N be a net of degree k, order n = mn', possessing a proper 
homomorphism 6 upon a net N' of order n'. (Thus m, n' ^ k — 1.) Then 

(33) 4>(N) | fo(tfO, («, D)], <KN') \(d,k- 1)0(JV). 
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Proof. If <t>{N) is represented on N by the point function / (P ) , define 
g(P') = 2 / (P) where the sum is taken over the m2 points P such that PB = P'. 
Then it is easy to see that g represents m(f>(N) on N'. Hence <I>(N') \ m<t>(N). 
By (32) and the fact that 4>(Nf) \ (n1, k — 1), we deduce the second relation 
of (33). If a, b, c are integers, one readily verifies the identity ([a, &], [a, c]) 
— [a, (b, c)]. Thus the relation 

(34) *(iV) | [*(#'), («, *(C))] , 

holding for every point C" of iV, implies the first relation of (33). We complete 
the proof by establishing (34). 

Let 0' be any one-to-one mapping of the points of Nf into the points of N, 
such that P'e'B = P ' . Thus P'0' is in ilf(P') for each P ' of N'. Choose any 
point C as centre in iV' and take C = Co' as centre in N. Let I», 7"»- be the 
indicator functions for iV, iV respectively. As an additional notation, define 

(35) Ii{P') = J*(P'0'), P ' i n t f ' . 

If /(#) is a function from the integer-range 1 ^ x ^ w to the integers, define 
/(*) as before. Also define 

(36) /(.', P') = I ' / ( x ) , 

where the sum in (36) is taken over all x such that (i, x) is a line of M(Pr). 
Now let/»- be functions satisfying (1), (2) of Theorem 3. For any point P' of 
N', and any line (i, x) of M(P'), sum (2) over all points P common to (i, #) 
and ilf(P'). Thus 

(37) E //C/\ P') + mfi(x) s 0 mod ». 

Since the second term of (37) is independent of the choice of (i, x) in M(P'), 

(38) /<(*) s fi(Ii(P')) mod »', (*, *) in Jlf (P'). 

By (38), fi(x) is determined mod w' by the line (i} x') = (i, #)0 of iV'. Thus 
(mod n') we may define a set of integer-valued functions Fi{x')} on the range 
1 < x' <, n't by 

(39) Ft(x') =fi(x) mod n' . if (*, *)0 = (i, xf). 

Clearly the Fi satisfy the conditions corresponding to (1), (2) for N' . There­
fore, by Theorem 3, 

(40) <t>(N') Pi(*) = 0 mod »'. 

Next pick j ^ i and consider the line (j , 1) of iV7. By (39), (38), 

(41) Fi(*) s Z'MW)) mod »' 

where the sum in (41) is over the points Pf of ( j , 1). Moreover fj(j, P') 
— fj'Ui C) f° r Pr o n 0"» *)> s m ce , for each P' of (j, 1), thej-lines of M(Pr) are 
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those lines (j, x) such that (j, x)6 = (j, 1). Hence, if in (37) we sum over all 
points P ' of (j, 1), there results 

(42) E /p(*) + n'fjij, C) + mFi(*) ^ 0 mod n. 

As in the proof of Theorem 5, (42) is equivalent to 

(43) M*) s= n'Mh C) + m/?i(*) mod n. 

If t is the least positive integer such that 

(44) tn'fi(l,C) = 0 modw 

for all functions /< satisfying (1), (2), then (40), (43) imply [<t>(N')t /]/i(*) = 0 
mod n. Hence 

(45) <t>(N) | [4>(N'), t). 

Since C is the centre for M(C) as well as for N, and since m j n, the/» satisfy 
conditions analogous to (1), (2) for the net M(C'). And since/i(l , C) denotes 
for M(C') the sum analogous to/i(*) for N, 0 ( C ) / i ( l , C ) = 0 mod m. Inas­
much as n = mw', this and (44) imply t |0 (C) . Again, from (38), if (1, x) is 
in M(C'), Mx) =fi(Ii(C')) = / i ( l ) = 0 mod ri and therefore / i ( l , C) = 0 
mod n'. Moreover, uri . w' = nv, by (32), so that un J (1, C ) = 0 mod n. 
Hence t j w. Therefore 

(46) *|(«, '*(C')). 

And (45), (46) combine to give (34). This completes the proof of Theorem 6. 

5. Explicit evaluation of <f> for nets of degree 3. A set G together with an 
operation (.)is called a loop provided: (i) if a, b are in G, a . b is a uniquely 
determined element of G; (ii) if a, b are in G there exists a unique x in G such 
that x . a = b and a unique 3> in G such that a . y = & ; (iii) there exists a 
(unique) element 1 of G such that a . 1 = 1 . a = a for every a in G. A loop 
is a group if and only if it obeys the associative law (a . b) . c = a . (6 . c). 
The concepts of homomorphism, normal subloop and quotient loop are quite 
similar to the corresponding concepts in group theory (Albert [1], Baer [2], 
Bruck [1]). For our purposes the essential facts are these: If the loop G of 
order n possesses a homomorphism 6 upon a loop G' of order nr, then the kernel 
H of 6 is a normal subloop of G and G/H is isomorphic to G. Moreover H 
has order m where n = mnf

y and each element of G' is the image under 6 of 
precisely m distinct elements of G. Finally, there is a one-to-one correspon­
dence between the normal subloops of G and the homomorphisms of G upon 
loops. 

From a loop G of order n, we form a net N — N{G) of order n, degree 3, 
as follows: The points of N are the n2 ordered pairs (#, y) of elements of G. 
Each a of G determines: (i) a 1-line x — a whose points are the n points (a, y) ; 
(ii) a 2-line y — a whose points are the n points (x, a) ; (iii) a 3-line x . y = a 
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whose points are the n points (x, y) with x . y = a. As shown in Bates [1], 
every net of order n, degree 3 may be so defined in terms of a suitable loop G 
of order n. We define 0(G) = 4>(iV(G)). 

THEOREM 7. Let G be a finite loop of order n. If G contains a normal sub-
loop H of odd order such that the quotient loop G/H is a cyclic group of even order, 
then </>(G) = 2. In all other cases, <j>(G) = 1. 

COROLLARY 1. Necessary and sufficient conditions that <t>(G) = 2 are that 
n = m . 2 l for m odd, t^ 1, that G contain a normal subloop K of order m, and 
that G/K be the cyclic group of order 2K 

COROLLARY 2. If n = 4m + 2, then #(G) = 2 if and only if G contains a 
subloop of order 2m + 1. 

COROLLARY 3. If G is a group of order n = 4w + 2, then <j>(G) = 2. 

Proof. Take C = (1, 1) as the centre of the net N(G) and define indicators 
Ii{i = 1, 2, 3) so that if P = (x, y) then h(P) = x, I2(P) = y, J8(P) = * . y. 
Conditions (1), (2) of Theorem 3 become 

(47) /x(l) s /2(1) s /3(1) s 0 mod n, 

(48) /i(*) + f2(y) + Mx . y) s 0 mod », 

for all x, y of G. Setting, in turn, x = 1 and y = 1 in (48), we find, by (47), 
that — fz(x) = jfi(x) = /2(#) = / ( # ) , say, mod w so that (47), (48) can be 
replaced by 

(49) /(x . y) s /(*) + /(y) mod n 

for all x, y of G. In view of (49), the mapping x —>f(x) is a homoorphism of 
G upon some subgroup Z of the additive group of the integers mod n. Thus 
Z is a cyclic group. 

Conversely, if G is homomorphic to a cyclic group Z of order TZ', we may 
assume without loss of generality that Z is a subgroup of the additive group of 
integers mod n and that the homomorphism is given by (49). Also n = mn' 
where m is the order of the kernel, and exactly m elements of G map upon each 
element of Z. If t is the sum of the elements of Z it is easily verified (compare 
Paige [1]) that / is the unit 0 if n' is odd and the unique element of order two 
if n' is even. In any case, by Theorem 3, <t>(G) is the least positive integer 5 
such that 

(50) sf(*) s smt = 0 mod n 

for all integer-valued / satisfying (49). Clearly <t>(G) \ 2. 
If nf is even, t has order two. If also m is odd, (50) implies that 2 j 0(G). 

Therefore #(G) = 2, proving the first statement of Theorem 7. 
Next suppose that G is such that there exists n o / for which m is odd and nf 
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is even. If m is odd, nf is odd and t = 0, so tha t / (*) = 0 mod n. If m is 
even, /(*) = mt = 0, since 2/ = 0 mod w. Therefore 0(G) = 1. This com­
pletes the proof of Theorem 7. The Corollaries are immediate consequences 
of known facts about loops and groups. 
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Vol. II, No. 2: Errata 

WATER WAVES OVER A CHANNEL OF FINITE DEPTH 

ALBERT E. HEINS 

p. 216: Instead of L+(w), read l/L+(w). Also, for exp [xW] in this ex­
pression read exp [— x(w)]-

p. 221: Multiply | l , + ( ± K)\2 by b. 

Multiply \L+ (dz K')\* by 6p0. 

L+ (=fc K) 
Divide the expression for 

)rmul; 
2K', respectively, 

by po2. 
L+ (± Ol 

In the formulas for h and t2, *po/2 and 2K/po should be replaced by 2K and 
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