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Materials informatics has significantly accelerated the discovery and analysis of materials in the last
decade. Spectroscopic data provide essential information about materials and hence are widely used for
materials analysis. However, data analysis, that is, the extraction of physical parameters, of spectra is often
conducted by manually comparing spectra and on-the-fly data analysis has not been realized yet.
Considering that more than 100,000 X-ray absorption spectra (XAS) can be measured per day using the
scanning transmission X-ray microscopy system at the Photon Factory [1], an automated analysis
methodology is urgently required [2, 3]. If physical parameters are to be estimated from the spectra, the
on-the-fly analysis can be realized by space mapping of these parameters using a high-throughput
spectromicroscopy experiment capable of adaptive measurements [4]. XAS often shows complex spectral
features with a few hundred or more “high-dimensional” data points, and the physical parameters, such as
element, charge, and symmetry can be extracted from the XAS [5]. Feature extraction, a popular machine
learning approach to treat high-dimensional datasets, involves the projection of data onto a few features
(parameters), thus retaining the relevant information [6]. In this study, we propose a methodology to
estimate the physical parameters from XAS using feature extraction with dimensionality reduction, as
shown in Fig. 1.

We chose Mn XAS with different charges (2+, 3+, 4+) and crystal field parameters (10 Dq: 0-2.5 eV) as
a simple example for the physical parameter estimation. The dimensionality reduction of Mn L-edge XAS
was performed for the simulated XAS with CTM4XAS [7]. Although CT4XAS employs a very simplified
model for XAS simulation, our methodology can also work with a more sophisticated first principles
computational approach such as Bethe-Salpeter equation calculation [8-10]. We tested dimensionality
reduction algorithms such as multi-dimensional scaling (MDS), ISOMAP, and t-distributed stochastic
neighbor embedding [11-13].

Fig. 2 shows the results of the dimensionality reduction using MDS for the simulated XAS of the Mn
compounds with different charges and crystal field parameters. The results indicated that the XAS data
can be directly projected onto the physical parameter subspace, and automated estimation of charge and
crystal field parameters from the XAS data was expected. The red circle in Fig. 2 corresponded to the
experimentally measured XAS of MnO. It was shown that the physical parameters of Mn*" with 10 Dq =
0.9 eV estimated from the figure agreed very well with the values estimated manually [5]. This
methodology to estimate the physical parameters from the measured data should be applied to various X-
ray microscopy analyses (i.e., for images, 3D data) and will significantly contribute to the analysis of large
amounts of experimental data. This machine learning approach also contributes to achieve a spatially
simplified description of the spectromicroscopy data [14].
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Figure. 1. Machine learning methodology of efficient Figure. 2. Dimensionality reduction
estimation of material parameters based on similarity of and visualization of calculated Mn 2p
the data. The key to this method is a utilization of machine XAS spectra and experimentally
learning to feature extraction and comparison of spectra. obtained XAS spectrum of MnO
(inset)[5].

The experimentally obtained XAS
spectrum of MnO with 10Dq = 0.9 eV
is located in the appropriate position.
The numbers in this figure correspond
to 10Dq (eV) multiplied by 10.
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