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FINITE p-SOLUBLE GROUPS
WITH IRREDUCIBLE MODULAR

REPRESENTATIONS OF GIVEN DEGREES

by J. F. HUMPHREYS
(Received 30th April 1975)

Let G be a finite group, p be a prime and X b e a field of characteristic
p. Let

be a decomposition of the group ring of G over K as a sum of indecom-
posable two-sided ideals. An irreducible K(G)-module is said to be in the
block B, if it occurs as a composition factor of Bt. The block containing the
trivial K(G)-module is called the principal block of G.

Let I be a subset of the positive integers with l e i . We denote by 3S(I)
(or by 36 when I is fixed) the class of finite p-soluble groups G such that
the dimension of every irreducible K(G)-module is in I, and by 3£,(J) (or by
36,) the class of finite p-soluble groups G such that the dimension of each
irreducible K(G)-module in the principal block of G is in I. The object of
this note is to investigate the relationship between 36(1) and 36,(1), and to
calculate these classes in some simple cases. Denoting by OP(G) the largest
normal p-subgroup of a group G, and by FP(G) the largest normal subgroup
of G which has a normal p -complement, we can now state our main result.

Theorem 1. Let I be a subset of the positive integers with 1 6 / . Let 36(1)
and 36,(1) be as defined above. Then

(i) 36(1) = {G|G/OP(G) = HIFP(H) for some H G 36,(1)} and
(ii) 36,(1) = {G|G/FP(G) G £(!)}.

Proof, (i) Let T be an irreducible K(G)-module and suppose
GIOP(G) = HIFP(H) with He36, . By Lemma 1.2 of (2), the kernel of T
contains OP(G) and so we may regard T as a K(H>module whose kernel
contains FP(H). Lemma 2.3 of (2) now gives that T is in the principal block
of K(H). (In fact Lemma 2.3 of (2) is proved under the assumption that K
is algebraically closed, but the techniques of (2) yield the general result quite
easily). Thus dim TGI and so Ge£.

Conversely, let G £ X and define M = G/OP(G). Since every ir-
reducible K(M)-module may be regarded as an irreducible K(G)-module,
M G £ . By construction OB(M)= 1, so by Satz VI.7.20 of (4) there is a
faithful, completely reducible K(M)-module B, say, over the field with p
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elements. Let H be the semi-direct product MB. A standard argument as
used in the proof of (4: VI.7.24), for example, shows that FP(H) = B.

We have thus constructed a group H with

HIFP(H) as MBIB = M = GIOP(G).

By Lemma 2.3 of (2), each irreducible K(H)-module in the principal blocks
of H has FP(H) in its kernel, and so may be regarded as an irreducible
K(G)-module. Since G e i . w e have that H G£,.

(ii) By definition, a p-soluble group G is in 36, if and only if the
dimension of each irreducible KXG)-module in the principal block of G is
in I. In view of Lemma 2.3 of (2), this is equivalent to saying that the
dimension of each irreducible K(G)-module whose kernel contains FP(G)
is in /. Thus G G £, if and only if the dimension of each irreducible
K(G/Fp(G))-module is in I, that is if and only if GIFP(G) is in £.

Corollary 1. With the notation of the theorem, 3£(I) is a formation if and
only if £](/) is a saturated formation.

Proof. If 3£)(I) is a saturated formation, Theorem l(i) together with
Hilfssatz VI.7.24 of (4) give that £(/) is a formation.

Conversely, suppose that £(/) is a formation. Theorem 1 (ii) implies
that a group G is in 3E,(J) if and only if G/FP(G) G 3E(J) and G/F,(G) is a
p-soluble group for q^ p. Thus 3£(I) is a locally defined formation and so is
saturated by the main theorem of Gaschiitz (see (4; VI.7.5)).

Corollary 2. With the notation of the theorem,
(i) for G G £,(/) and N any normal subgroup of G, GIN G £,(!),

(ii) G G £,(/) if and only if G/0(G)G £,(/).

Proof. Let H G 36(1) and L be a normal subgroup of H. Since each
irreducible K(H/L)-module is an irreducible K(H)-module, H / L £ J ( / ) .
Thus 36(1) is closed under epimorphic images. The corollary can now be
deduced from a proof of the theorem of Gaschutz referred to above.

In view of Corollaries 1 and 2, it is natural to ask if, given /, every finite
p-soluble group has 36,(I)-projectors. This is not the case, as is shown by
the following.

Example 1. Let N, be elementary of order 9, and Q, be a subgroup of
GL(2, 3) isomorphic to the quaternion group of order 8. Let G) be the
semi-direct product of JV, by Qj with the natural action of Q, on AT,. Let
G2 = G, be the semi-direct product of N2 (= TV,) by Q2 (= Qt) and let
G = Gxx G2.

Let K be an algebraically closed field of characteristic 3 and / = {1,2}.
Then Gi&£(I) for i = 1, 2 but GfE3£(I) since there is a 4 dimensional
irreducible X(G)-module. Also G has just one block (since Oy(G) = 1), so
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,(i). However G/N, e 3E,(I) (i = 1,2) since

GINl = G2xQt = GIN2.

Suppose that G has an £,(I)-projector F. Then G = FN, and so F D N,
is a normal subgroup of G, giving that F fl N, = 1 by the minimality of Nv

Hence a Sylow 3-subgroup N of F has order 9 and N is normalized by F
and by N{ since N\ x JV2, the unique Sylow 3-subgroup of G, is abelian.
Hence N is a normal subgroup of G. Since the non-identity elements of Nf

are permuted transitively by the elements of Q, (i = 1,2), it follows easily
that Nx and N2 are the only two minimal normal subgroups of G. Thus
N = N2 and FN2 = F # G. This shows that G has no 3E,(/)-projectors.

As our first application of Theorem 1, we consider the situation where k
is the field with p elements, n is a positive integer and /„ is the set of
positive integers which divide n.

Theorem 2. Let nbe a positive integer and Gbe a group of order coprime
to n. Then G e £(/„) if and only if GIOP(G) is abelian of exponent dividing
p " - l .

Proof. Suppose G E l ( / J and V is an irreducible k(G)-module with
N = ker V. By (4: VI.8.1), GIN is cyclic of order dividing p" - 1. Since the
intersection of the kernels of the irreducible fc(G)-modules is OP{G), we
have that GIOP(G) is abelian of exponent dividing p" - 1.

Conversely, suppose that GIOP{G) is abelian of exponent dividing p" - 1
and that V is an irreducible fc(G)-module. It follows by (4: II.3.10) that the
dimension of V divides n.

Recall that for any p -soluble group G, the arithmetic p-rank of G is
defined to be the lowest common multiple of the fc-dimensions of the
p-chief factors of G.

Corollary 3. Let nbe a positive integer and Gbe a group of order coprime
to n. Then G has arithmetic p-rank dividing n if and only if G G3£,(Jn).

Proof. By Theorem 1, Theorem 2 and (4: VI.8.3).
For our second application, denote by Q the algebraic closure of the field

Q of rational numbers. Choose a fixed extension vp of the p-adic exponential
valuation of Q to Q. Let R denote the local ring of vp in Q, P denote the
corresponding prime ideal, and K = RIP. Let Ip. be the set of positive integers
coprime to p. We then have

Lemma 2. Each factor group and each normal subgroup of a group in
3£(Ip) is also in 3£(JP).

Proof. Let G G £(/„.) and suppose N is a normal subgroup of G. By
Mackey's subgroup theorem (4: V.16.9), an irreducible K(N)-module T
occurs as a component of (TG)N. However each composition factor of TG
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has dimension coprime to p and so by Clifford's theorem (4: V.17.3), the
irreducible components of (TG)N have dimension coprime to p.

The result for factor groups is trivial.

Theorem 3. A p-soluble group G is in £(Ip.) // and only if G has a
normal Sylow p-subgroup.

Proof. Suppose G has a normal Sylow p-subgroup N. Then each
irreducible K(G)-module may be regarded as an irreducible K(GIN)-
module and so has dimension coprime to p.

We prove the converse implication by induction on \G\. Let N be a
maximal normal subgroup of G, so that M G 36 by Lemma 2. By induction,
M has a normal Sylow p-subgroup N. If p is coprime to |G:M|, N is a
normal Sylow p-subgroup of G. Thus by the maximality of N, we may
suppose that \G: M| = p. If N^ 1, induction applied to GIN gives the result,
so we may suppose that \M\ is coprime to p.

Since G has a normal p-complement and abelian Sylow p-subgroups,
we can apply a result of Richen (5), to deduce that the restriction of the
character of every irreducible Q(G)-module to the p-regular conjugacy
classes of G is a Brauer irreducible character of G. Thus each irreducible
Q(G)-module has dimension coprime to p and so, by a result of Fong (1:
3D), G has a normal Sylow p-subgroup as required.

Corollary 4. A p-soluble G is in £|(/p) if and only if G has p-length 1.

Proof. By Theorem 1 and Theorem 3.

Remark. Theorem 3 is a modular analogue of Lemma 3D of (1) and
Corollary 4 is an analogue of Theorem 3E of (1).

As a final application, we consider the case where / is a finite set.

Theorem 4. There exists an integer valued function f(p, m,n) so that
for any finite p-soluble group G whose Sylow p-subgroups have order at
most pm with the property that each irreducible K(G)-module in the
principal block of G has dimension at most n, there exists a normal
subgroup N of G of index at most f(p,m,n) such that N' has a normal
p-complement.

Proof. By Theorem 1 and the theorem of (3).

Example 2. Let G = S5, the symmetric group on 5 symbols, so that
F3(G) = 1. Let K be algebraically closed of characteristic 3 and / be the set
of integers coprime to 3. Since G has two irreducible K(G)-modules in its
principal block, of degrees 1 and 4, G G2E,. However GEX since there is
an irreducible K(G)-module of dimension 6. This example shows that
neither (i) nor (ii) of Theorem 1 holds for arbitrary finite groups.
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