ON THE CUBE OF A GRAPH

Jerome J. Karaganis

The $\underline{n}^{\text {th }}$ power G^{n} of a connected graph G is the graph with the same point set as G and where two points u and v are adjacent in G^{n} if and only if the distance between u and v in G is at most n. The graph G^{2} is called the square of G while G^{3} is referred to as the cube of G.

It has been conjectured by M.D. Plummer, among others, that the square of every nonseparable (2-connected) graph is hamiltonian; however, it is known (although evidently never published) that the cube of any connected graph (with 3 or more points) is hamiltonian. In this note we prove the stronger result that the cube of any connected graph is hamiltonian-connected, i.e., every two points are joined by some hamiltonian path.

THEOREM. The cube of every connected graph is hamiltonianconnected.

Proof. Let G be an arbitrary connected graph with p points, and let T be a spanning tree of G. Clearly, if T^{3} is hamiltonianconnected, it follows immediately that G^{3} is hamiltonian-connected.

We proceed by induction on p, the result being obvious for small values of p.

Assume then for all trees T_{1} with fewer than p points that T_{1}^{3} is hamiltonian-connected. Let u and v be any two points of T. Since T is a tree, there exists a unique path P between u and v. We now consider two cases

Case 1. u and v are adjacent. Let x be the line joining u and v , and consider the disconnected forest (two trees) T - x obtained from T by removing x. Denote by T_{u} and T_{v} the trees containing u and v, respectively. By hypothesis $\mathrm{T}_{\mathrm{u}}^{3}$ and $\mathrm{T}_{\mathrm{v}}^{3}$ are hamiltonianconnected. Let u_{1} be any point of T_{u} adjacent to u if T_{u} is non-trivial, and let $u_{1}=u$ otherwise; the point v_{1} in T_{v} is selected analogously. Note that in T^{3} the points u_{1} and v_{1} are adjacent since the distance between u_{1} and v_{1} in T is at most 3 .

Let P_{u} be a hamiltonian path of T_{u}^{3} from u to u_{1} and $P_{v} a$ hamiltonian path of T_{v}^{3} from v_{1} to v. Thus the path P_{u} followed by the line $u_{1} v_{1}$ and then the path P_{v} is a hamiltonian path of T^{3} from u to v.

Case 2. u and v are not adjacent. Let $y=u w ~ b e ~ t h e ~ l i n e ~ o f ~$ P incident with u, and consider the forest T - y. Again, let T_{u} denote the tree of $T-y$ containing u and T_{w} the tree containing w. By hypothesis, there exists a hamiltonian path P_{w} of T_{w}^{3} from w to v. Select u_{1} in T_{u} as a point adjacent to u (or $u_{1}=u$ if T_{u} is trivial), and let P_{u} be a hamiltonian path of T_{u}^{3} from u to u_{1}. Because the distance between u_{1} and w does not exceed $2, u_{1}$ and w are adjacent in T_{3} so that the path of T^{3} beginning with P_{u} and followed by the line $u_{1} w$ and then the path P_{w} is hamiltonian.

This completes the proof.
Since every hamiltonian-connected graph G with $p \geq 3$ is hamiltonian we obtain as corollary the previously mentioned result.

COROLLARY. The cube of every connected graph with $p \geq 3$ points is hamiltonian.

Western Michigan University

