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Abstract Let K be an algebraically closed field of characteristic zero, complete for an ultrametric
absolute value. We show that the p-adic main Nevanlinna Theorem holds for meromorphic functions
inside an ‘open’ disc in K. Let Pn,c be the Frank–Reinders’s polynomial

(n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 − c (c 6= 0, c 6= 1, c 6= 2)

and let Sn,c be the set of its n distinct zeros. For every n > 7, we show that Sn,c is an n-points
unique range set (counting multiplicities) for unbounded analytic functions inside an ‘open disc’, and
for every n > 10, we show that Sn,c is an n-points unique range set ignoring multiplicities for the same
set of functions. Similar results are obtained for meromorphic functions whose characteristic function is
unbounded: we obtain unique range sets ignoring multiplicities of 17 points. A better result is obtained for
an analytic or a meromorphic function f when its derivative is ‘small’ comparatively to f . In particular,
for every n > 5 we show that Sn,c is an n-points unique range set ignoring multiplicities for unbounded
analytic functions with small derivative. Actually, in each case, results also apply to pairs of analytic
functions when just one of them is supposed unbounded. The method we use is based upon the p-adic
Nevanlinna Theory, and Frank–Reinders’s and Fujimoto’s methods used for meromorphic functions in
C. Among other results, we show that the set of functions having a bounded characteristic function is
just the field of fractions of the ring of bounded analytic functions in the disc.
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1. Introduction and theorems

Definitions and notation

We denote by K an algebraically closed field of characteristic zero, complete for an
ultrametric absolute value and by P1(K) the one-dimensional projective space over K.

We denote by A(K) the set of entire functions in K, and by M(K) the set of mero-
morphic functions in K, i.e. the field of fractions of A(K). Given a ∈ K and r > 0,
d(a, r) is the disc {x ∈ K | |x− a| 6 r} and d(a, r−) is the disc {x ∈ K | |x− a| < r}. In
the same way, we denote by A(d(a, r−)) the set of analytic functions in d(a, r−), i.e. the
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K-algebra of power series
∑∞
n=0 an(x− a)n converging in d(a, r−), and by M(d(a, r−))

the set of meromorphic functions inside d(a, r−), i.e. the field of fractions of A(d(a, r−)).
In the sequel, J will denote an interval of the form [ρ, R[, with ρ > 0.
Let log be the real logarithm function of base p > 1. Let R ∈ ]0,+∞[ and let f ∈
M(d(0, R−)) such that 0 is neither a zero nor a pole of f . Let r ∈ ]ρ, R[. We will denote
by Z(r, f) the counting function of zeros of f in d(0, R) \ {0}, i.e. if (an) is the finite or
infinite sequence of zeros of f in d(0, R−) \ {0}, with respective multiplicity order sn, we
put

Z(r, f) =
∑
|an|6r

sn(log r − log |an|) and Z̄(r, f) =
∑
|an|6r

(log r − log |an|).

In the same way, considering the sequence (bn) of poles of f in d(0, r) \ {0}, with
respective multiplicity order tn, we put

N(r, f) =
∑
|bn|6r

tn(log r − log |bn|) and N̄(r, f) =
∑
|bn|6r

(log r − log |bn|).

Here, we need to generalize these counting functions to functions having a pole or a
zero at 0. So, if f admits a zero (respectively, a pole) of order q at 0, we put h = x−qf
(respectively, h = xqf) and Z(r, f) = Z(r, h), N(r, f) = N(r, h).

The Nevanlinna function T (r, f) is defined, when f has neither zeros nor poles at 0,
by

T (r, f) = max(Z(r, f) + log |f(0)|, N(r, f)). (T )

And if f has either a zero or a pole at 0, we put

T (r, f) = max(Z(r, h), N(r, h)). (T ′)

Finally, if S is a subset of K we will denote by ZS
0 (r, f ′) the counting function of zeros

of f ′, excluding 0 and those which are zeros of f − a for any a ∈ S.
In [16] Lazard considered this problem: given a sequence (an) in d(0, R−) and a

sequence of positive integers (qn), can we find f ∈ A(d(0, R−)) admitting each an as
a zero of order qn, and having no other zero? In the general case, he showed the answer
is no, except if K is supposed to be spherically complete. Here this problem has several
consequences. However, we can deal with the problem thanks to Lemma 2.4, which recalls
Theorem 25.5 in [10], so that we could find a function φ (respectively, ψ) in A(d(a, R−))
whose counting function of zeros isn’t much bigger than the counting function of zeros
(respectively, poles) of f .

The p-adic Nevanlinna main theorem for meromorphic functions in all K was proven
in [2,3]. In [15], another statement was made concerning meromorphic functions inside
the disc d(0, 1−). However, its proof did not take into account the fact that, as explained
above, given f ∈ M(d(a, R−)), we cannot be sure to find φ, ψ ∈ A(d(a, R−)) such that
the zeros of φ (respectively, of ψ) be exactly the zeros (respectively, the poles) of f
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counting multiplicities, which put in doubt the claim in [15]. Here, we shall be able to
give a complete proof of the second main Nevanlinna theorem inside any disc d(0, R−)
(Theorems 1.4 and 1.4′).

Notation. For all r ∈ ]0, R[ we denote by ‖ · ‖a,r the norm of uniform convergence
in the disc d(a, r), i.e. given f(x) =

∑∞
j=0 ajx

j , then ‖f‖a,r = sup{|f(x)| | x ∈ d(a, r)} =
supn∈N |an|rn.

We will denote by Ab(d(a, R−)) the K-subalgebra of A(d(a, R−)) consisting of the
bounded analytic functions f ∈ A(d(a, R−)), and byMb(d(a, R−)) the field of fractions
ofAb(d(a, R−)). Then, we will denote byAu(d(a, R−)) the setA(d(a, R−))\Ab(d(a, R−)),
and similarly, we putMu(d(a, R−)) =M(d(a, R−)) \Mb(d(a, R−)).

In the same way, we will denote byAbd(d(a, R−)) the K-subvector space ofA(d(a, R−))
consisting of the f ∈ A(d(a, R−)) such that f ′ ∈ Ab(d(a, R−)).

Let α ∈ ]0, 1[. We will denote byMα(d(a, R−)) the set of f ∈Mu(d(a, R−)) such that
lim supr→R Z(r, f ′(a+x))/T (r, f(a+x)) < α. Finally, we will denote by Aα(d(a, R−)) the
subset A(d(a, R−)) ∩Mα(d(a, R−)) of Au(d(a, R−)). Then it is easily checked that the
setMα(d(a, R−)) contains at least all functions of the form h◦f , with f ∈ Aα(d(a, R−)),
and h a linear fractional function.

Remarks.

(1) As recalled in Lemma 2.1 below, given f ∈ A(d(a, R−)) the functions T (r, f),
Z(r, f), − log(‖f‖a,r) are equivalent up to an additive constant. Consequently, a
function f ∈ A(d(a, R−)) belongs to Aα(d(a, R−)) if and only if

lim sup
r→R

(
log(‖f ′‖a,r)
log(‖f‖a,r)

)
< α.

(2) If f ∈ Au(d(a, R−)) has a bounded derivative, it belongs to Aα(d(a, R−)). For
example, this is the case of h(x) = Log(1 + x) =

∑∞
n=0(−1)nxn+1/(n + 1) in

A(d(0, 1−)).

(3) Now, we place ourselves in Cp and consider g(x) =
∑∞
n=2 xp

n

/p2n ∈ A(d(0, 1−)):
its derivative is not bounded but g belongs to Aα(d(0, 1−)) for all α ∈ ]0, 1[.

Theorem 1.1 is not completely obvious and again requires the use of Lemma 2.4. It
also answers a question asked by Hu and Yang [22]. An analogous statement was made
in [15], but for the same reason as for Theorem 1.4, its proof was not complete.

Theorem 1.1. Let f ∈M(d(0, R−)). Then f belongs to Mb(d(0, R−)) if and only if
T (r, f) is bounded in J .

With the help of Theorem 1.1 we will prove Theorem 1.2.

Theorem 1.2. Let ω, θ, χ, τ ∈ Mb(d(a, R−)) be such that ωτ − χθ is not identically
zero and let h(u) = (ωu + θ)/(χu + τ). For every f ∈ M(d(a, R−)) such that χf + τ is
not identically zero, h(f) belongs to Mb(d(a, R−)) (respectively, Mu(d(a, R−))) if and
only if so does f . Moreover, we have T (r, f) = T (r, h(f)) + O(1).
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Corollary 1.3. Let f ∈ Mu(d(a, R−)), and let h ∈ Mb(d(a, R−)), h 6= 0. Then fh

belongs to Mu(d(a, R−)).

Remarks.

(4) If f, g ∈ Mu(d(0, R−)) satisfy T (r, f) = T (r, g) + O(1), this does not imply that
g is of the form (ωf + θ)/(χf + τ), with ω, θ, χ, τ ∈ Mb(d(0, R−)). For example,
let h ∈ Au(da, r−), and consider f = h2 and g = h2 + h. Clearly, g is not a linear
fractional function in f .

Theorem 1.4. Let α1, . . . , αq ∈ K, with q > 2, let S = {α1, . . . , αq}, and let f ∈
M(d(0, R−)). There exists C ∈ R such that

(q − 1)T (r, f) 6
q∑
j=1

Z̄(r, f − αj) + Z(r, f ′)− ZS
0 (r, f ′) + C ∀r ∈ J.

Moreover, if f belongs to A(d(0, R−)), then

qT (r, f) 6
q∑
j=1

Z̄(r, f − αj) + Z(r, f ′)− ZS
0 (r, f ′) + C ∀r ∈ J.

Theorem 1.4′. Let α1, . . . , αq ∈ K, with q > 2, let S = {α1, . . . , αq}, and let f ∈
M(d(0, R−)). There exists C ∈ R such that

(q − 1)T (r, f) 6
q∑
j=1

Z̄(r, f − αj) + N̄(r, f)− ZS
0 (r, f ′) + C ∀r ∈ J.

Definition 1.5. Given a family of functions F defined in d(a, R−), with values in
P1(K), a set S in K is called an ursim for F if for any non-constant functions f, g ∈
F satisfying f−1(S) = g−1(S), these functions are equal. It is known that the field of
complex meromorphic functions admits ursims of 17 points, and the algebra of complex
entire functions admits ursims of 10 points. In [11] as in [6] n-points ursims for A(K)
are constructed for every n > 9, and in [6] we constructed n-points ursims forM(K) for
every n > 16.

For a subset S of K and f ∈M(d(a, R−)) we denote by E(f, S) the set in (d(a, R−))×
N∗: ⋃

a∈S
{(z, q) ∈ (d(a, R−))× N∗ | z a zero of order q of f(x)− a}.

Let F be a non-empty subset ofM(d(a, R−)). A subset S of K is called a unique range
set (an urs in brief) for F if for any non-constant f, g ∈ F such that E(f, S) = E(g, S),
one has f = g.

It is known that the algebra of complex entire functions admits urs of 7 points, and
that the field of complex meromorphic functions admits urs of 11 points [12].

In [4] we showed that A(K) admits urs of 3 points. More generally, in [9] it was
proven that urs for A(K) are the urs for polynomials (characterized in [4], as the sets
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which are not preserved by any affine transformation, but the identity). According to the
remarkable method due to Franck and Reinders in [12], it is known that M(K) admits
urs of 10 points.

Many other papers were published about properties of uniqueness or strong rela-
tionship, for functions sharing a certain finite set of values, counting or not multiplici-
ties [1,7,8,13,14,16–21].

Here, we consider problems of uniqueness for unbounded functions in A(d(a, R−)),
and for similar meromorphic functions. We will use a process using the p-adic Nevan-
linna Theory, and based upon Frank–Reinders’s method in [12] for certain cases, and
upon Fujimoto’s method [13] (which itself has a relationship with the method of Frank–
Reinders) for the most general case.

Notation. For all the sequel, we choose c ∈ K \ {0, 1, 2}, n ∈ N and denote by Pn,c
the polynomial (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 − c and by S(n, c)
the set of zeros of Pn,c. Since K has characteristic zero, and since c 6= 0 and 2, it is seen
that all zeros of P are simple.

Theorem 1.6. Let f ∈Mu(d(a, R−)) and let g ∈M(d(a, R−)) be two different non-
constant functions satisfying f−1(S(n, c)) = g−1(S(n, c)). Then n 6 16. Moreover, if f ∈
Au(d(a, R−)) and if g ∈ A(d(a, R−)), then n 6 9. Further, if f, g ∈M1/5(d(a, R−)), then
n 6 7. Further, if f, g ∈ A1/5(d(a, R−)), or if f ∈ A1/5(d(a, R−)) and g ∈ Abd(d(a, R−)),
then n 6 4.

Corollary 1.7. Let n > 17. Then S(n, c) is an ursim for Mu(d(a, R−)).

Corollary 1.8. Let n > 10. Then S(n, c) is an ursim for Au(d(a, R−)).

Corollary 1.9. Let n > 8. Then S(n, c) is an ursim for M1/5(d(a, R−)).

Corollary 1.10. Let n > 5. Then S(n, c) is an ursim for A1/5(d(a, R−)).

Examples.

(1) As noticed above, the p-adic logarithm function Log(1 + x) defined in d(0, 1−) lies
in Abd(d(0, 1−)). So, given n > 5 and f ∈ A1/5(d(0, 1−)) such that f−1(S(n, c)) =
Log−1(S(n, c)), then f(x) is identically equal to Log(1 + x).

(2) Consider again the function g(x) =
∑∞
n=2 xp

n

/p2n ∈ A(d(0, 1−)) defined above,
and let f ∈ A1/5(d(0, 1−)) be such that f−1(S(n, c)) = g−1(S(n, c)), with n > 5.
Since g belongs to A1/5(d(0, 1−)), we have f = g.

Theorem 1.11. Let f, g ∈ Mu(d(a, R−)) be two different non-constant functions
satisfying E(f, S(n, c)) = E(g, S(n, c)). Then n 6 10. Moreover, if f, g ∈ Au(d(a, R−)),
then n 6 6.

Corollary 1.12. Let n > 11. Then S(n, c) is an urs for Mu(d(a, R−)).

Corollary 1.13. Let n > 7. Then S(n, c) is an urs for Au(d(a, R−)).
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We cannot obtain similar results on bounded functions. However, in a very particular
case we obtain a set of uniqueness T which is Log−1(S(n, c)), and thereby is infinite.

Application to bounded functions. Let n > 10, let T = Log−1(S(n, c)), let f, g ∈
A(d(a, R−)) be such that f(d(a, R−)) = g(d(a, R−)) = d(1, 1−), and f−1(T ) = g−1(T ).
Then f = g.

Proof. Indeed, as f(d(a, R−)) = g(d(a, R−)) = d(1, 1−) we can define both Log ◦f ,
Log ◦g and check that both are unbounded in d(a, R−). Therefore, we can apply Corollary
1.7 to them. But the hypothesis f−1(T ) = g−1(T ) just means that (Log ◦f)−1(S(n, c)) =
(Log ◦g)−1(S(n, c)). �

Remarks.

(5) In [11] n-points ursim for A(K) are obtained whenever n > 9, and n-points ursim
for M(K) are obtained whenever n > 16. The method used in this previous work
is close to this one and could also let us obtain the same results as those we have
obtained here, as far as A(d(a, R−)) and M(d(a, R−)) are concerned. However,
in [11], with A(K) orM(K) we had the benefit of one point from the intervention
of a term − log r which is not efficient when r is bounded. On the other hand,
Fujimoto’s method here is more efficient when Aα(K) orMα(K) are concerned.

(6) In [4], we had n-points urs for A(K) whenever n > 3. But the method used was
completely different, avoiding the Nevanlinna Theory, and mainly using the fact
that meromorphic functions having neither any zeros nor any poles are just con-
stants. The claim in [4] is generalized in [9], showing that all urs for A(K) are urs
for K[x], i.e. the urs for A(K) are the sets which are never preserved by affine map-
pings other than the identity. But the method is based upon properties of algebraic
curves that we cannot reproduce here in A(d(a, R−)).

2. The proofs

Notation. In K, the valuation v is defined as v(x) = − log |x|.
Given f(x) =

∑∞
n=0 anx

n ∈ A(K) and µ ∈ R, we denote by v(f, µ) the valuation
function defined by v(f, µ) = infn∈N v(an) + nµ. This valuation can be continued to
M(K) by setting v(f/g, µ) = v(f, µ)− v(g, µ).

Let α ∈ K and h ∈ M(K). If h has a zero (respectively, a pole) of order q at α, we
put ωα(h) = q (respectively, ωα(h) = −q). If h(α) 6= 0 and ∞, we put ωα(h) = 0.

Both Lemmas 2.1 and 2.2 are classical. Lemma 2.1 is a consequence of Theorem 23.13
in [10], and Lemma 2.2 is immediate.

Lemma 2.1. Let f ∈ M(d(0, R−)) be such that 0 is neither a zero nor a pole of f .
Then v(f,− log r)+Z(r, f)−N(r, f) is bounded in J . Moreover, v(f,− log r) = v(f(0))−
Z(r, f) + N(r, f) ∀r ∈ ]0, R[.
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Lemma 2.2. Let f ∈ A(d(0, R−)) let (an)n∈L, be the finite or infinite sequence of its
zeros, and for each n ∈ L, let sn be the multiplicity order of an. Let g ∈ A(d(0, R−))
admitting each an as a zero of order un > sn. Then g factorizes in A(d(0, R−)) in the
form fh, with h ∈ A(d(0, R−)).

Remark. Consider a sequence (an) in d(0, R−) such that limn→∞ |an| = R, and a
sequence of integers (qn). As mentioned in the Introduction, we cannot ensure that there
exists f ∈ A(d(0, r)) admitting each an as a zero of order qn, exactly, and having no
other zeros [16]. However, here we can deal with this problem, by using Theorem 25.5
in [10], that we translate in terms of valuation below. We just have to notice a mis-
print in the statement of [10, Theorem 25.5]: the function f satisfying such properties
belongs to A(d(0, r−)), and not to Ab(d(0, r−)): actually this is correctly explained in
the introduction to Chapter 25, and the proof of Theorem 25.5 confirms this fact.

Theorem 2.3. Let (aj)j∈N be a sequence in d(0, R−) \ {0} such that |an| 6 |an+1|
for every n ∈ N and limn→∞ |an| = R. Let (qn)n∈N be a sequence in N∗ and let ε > 0.

There exists f ∈ A(d(0, R−)) satisfying

(i) f(0) = 1,

(ii) −v(f, v(an)) 6
∑n
j=0 qjv(aj/an) + ε whenever n ∈ N,

(iii) for each n ∈ N, an is a zero of f of order zn > qn.

Lemma 2.4. Let f ∈ M(d(0, R−)), and let ε > 0. There exist φ, ψ ∈ A(d(0, R−))
such that f = φ/ψ, and Z(r, φ) 6 Z(r, f) + ε, Z(r, ψ) 6 N(r, f) + ε ∀r ∈ J .

Proof. We can obviously assume f(0) = 1. Next, the claim is obvious when f has
finitely many zeros and poles. So, we can assume that f has infinitely many zeros or
infinitely many poles. Let (an)n∈N (respectively, (bn)n∈N) be the sequence of zeros (respec-
tively, poles) of f , and for each n ∈ N, let sn (respectively, tn) be the multiplicity order of
an (respectively, bn). According to Theorem 2.3 there exists φ ∈ A(d(0, R−)) satisfying
φ(0) = 1, and admitting each an as a zero of order s′n > sn, such that v(φ,− log r) >∑
|an|6r sj(− log r − v(an))− ε ∀r ∈ J , i.e.

Z(r, φ) 6 Z(r, f) + ε ∀r ∈ J. (2.1)

Now, we put ψ = φ/f . Then, by Lemma 2.2, ψ lies in A(d(0, R−)), and by definition,
each pole bn of f is a zero of ψ of multiplicity order > tn. Moreover, we have Z(r, ψ) =
N(r, f) + Z(r, φ)− Z(r, f). Consequently, by (2.1) we obtain Z(r, ψ) 6 N(r, f) + ε and
this ends the proof. �

Proof of Theorem 1.1. We can obviously assume that f(0) 6= 0, f(0) 6= ∞. If f ∈
Mb(d(0, R−)), then f is of the form φ/ψ, with φ, ψ ∈ Ab(d(0, R−)). Consequently, both
Z(r, φ), Z(r, ψ) are bounded, and therefore so are Z(r, f) and N(r, f) because obviously
Z(r, f) 6 Z(r, φ), N(r, f) 6 Z(r, ψ), thereby T (r, f) is bounded. Conversely, suppose that
T (r, f) is bounded. Then so are Z(r, f) and N(r, f). Now, by Lemma 2.4 we can find
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φ, ψ ∈ A(d(0, R−)) such that Z(r, φ) 6 Z(r, f) + 1, Z(r, ψ) 6 N(r, f) + 1, and f = φ/ψ.
Then by Lemma 2.1 both v(φ,− log r), v(φ,− log r) are bounded when r ∈ ]0,+∞[, and
therefore so are ‖φ‖0,r, ‖ψ‖0,r, hence f belongs to Mb(d(0, R−)). This completes the
proof. �

Proof of Theorem 1.2. Let g = h(f). By Lemma 2.4 we can write f = φ/ψ with
φ, ψ ∈ A(d(0, R−)), and Z(r, φ) 6 Z(r, f) + 1, and Z(r, ψ) 6 N(r, f) + 1. Without loss
of generality, we can assume that ω, θ, χ, τ lies in Ab(d(0, R−)). Then we can see that

Z(r, g) 6 Z(r, ωφ + θψ) = −v(ωφ + θψ,− log r)

6 max(−v(ω,− log r)− v(φ,− log r),−v(θ,− log r)− v(ψ,− log r))

6 T (r, f) + O(1),

and similarly

N(r, g) 6 Z(r, χφ + τψ) = −v(χφ + τψ,− log r)

6 max(−v(χ,− log r)− v(φ,− log r),−v(τ,− log r)− v(ψ,− log r))

6 T (r, f) + O(1).

Consequently, T (r, g) 6 T (r, f) + O(1). But since ωτ −χθ is not identically zero, we can
consider the inverse transformation in M(d(a, R−)) and we have f = (τg − θ)/(−χg +
ω). Consequently, T (r, f) 6 T (r, g) + O(1). So, in particular, g lies in Mb(d(0, R−))
(respectively, inMu(d(0, R−))) if and only if so does f . �

Definition 2.5. We call a divisor a mapping ψ from d(0, R−) to N whose support is
countable and has a finite intersection with each disc d(a, r), ∀r < R. The set of divisors
is provided with a natural additive law. Moreover, if ω, ϕ are two divisors such that
ψ(α) > ϕ(α) ∀α ∈ d(0, R−), we can define the divisor ψ − ϕ.

Given f ∈ M(K), we can define the divisor D(f) as D(f)(α) = 0 whenever (α) 6= 0,
and D(f)(α) = s when f has a zero of order s at α.

Finally, we denote by D(f) the divisor defined as D(f)(α) = 0 whenever f(α) 6= 0,
and D(f)(α) = 1 when f has a zero at α.

Lemma 2.6. Let f ∈M(d(0, R−)). Then Z(r, f ′) 6 Z(r, f)+ N̄(r, f)+O(1) (r ∈ J).

Proof. We can obviously assume that f, f ′ satisfy f(0) 6= 0, f ′(0) 6= 0, f(0) 6= ∞,
f ′(0) 6=∞.

Then, by Lemma 2.1, we have Z(r, f)−N(r, f) = −v(f,− log r)+v(f(0)) and Z(r, f ′)−
N(r, f ′) = −v(f ′,− log r) + v(f ′(0)). But v(f ′,− log r) > v(f,− log r) + log r, hence we
obtain Z(r, f ′) 6 N(r, f ′)−N(r, f) + Z(r, f) + O(1). But actually, N(r, f ′)−N(r, f) =
N̄(r, f), which completes the proof. �

According to relation (T ) above, we obtain Lemma 2.7 as a corollary of Lemma 2.6.

Lemma 2.7. Let f ∈ M(d(a, R−)). Then T (r, f ′) 6 2T (r, f) + O(1) (r ∈ J). More-
over, if f ∈ A(d(a, R−)), then T (r, f ′) 6 T (r, f) + O(1) (r ∈ J).
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Lemma 2.8. Let a, b, c, d ∈ K satisfy ad− bc 6= 0 and let φ, ψ ∈ A(d(a, R−)). There
exists A, B ∈ R such that max(Z(r, φ), Z(r, ψ))+A > max(Z(r, aφ+bψ), Z(r, cφ+dψ)) >
max(Z(r, φ), Z(r, ψ)) + B, ∀r ∈ J .

Proof. Since a, b cannot all equal zero, by Lemma 2.1 it is easily seen that

Z(r, aφ + bψ) 6 max(Z(r, φ), Z(r, ψ)) + O(1),

and in the same way

Z(r, cφ + dψ) 6 max(Z(r, φ), Z(r, ψ)) + O(1).

Consequently, there exists a constant A ∈ R such that max(Z(r, aφ+bψ), Z(r, cφ+dψ)) 6
max(Z(r, φ), Z(r, ψ))+B, ∀r ∈ J . But since ad−bc 6= 0, putting θ = aφ+bψ, τ = cφ+dψ,
we have φ = dθ − bτ , ψ = −cθ + aτ , and therefore we get the constant A such that the
second inequality is satisfied. �

Lemma 2.9. Let α1, . . . , αq ∈ K∗ be pairwise distinct and let φ, ψ ∈ A(K). There
exists A ∈ R and for every r ∈ J there exists u(r) ∈ {1, . . . , q} such that

Z(r, φ− αjψ) > max(Z(r, φ), Z(r, ψ)) + A ∀j 6= u(r), 1 6 j 6 q, ∀r ∈ J.

Proof. Suppose Lemma 2.9 is not true. There exist two distinct indices k, l ∈ {1, . . . ,

q} and a sequence (rn) such that

lim
n→∞(max(Z(rn, φ), Z(rn, ψ))− Z(rn, φ− αkψ)) = +∞,

lim
n→∞(max(Z(rn, φ), Z(rn, ψ))− Z(rn, φ− αlψ)) = +∞.

Thus, by Lemma 2.8 we are led to a contradiction. �

Lemma 2.10 is classical and easily checked.

Lemma 2.10. Let α1, . . . , αq ∈ K be pairwise distinct and let S = {α1, . . . , αq}. Let
f ∈M(d(0, R−)). Then

∑n
j=1(Z(r, f −αj)− Z̄(r, f −αj)) = Z(r, f ′)−ZS

0 (r, f ′) ∀r ∈ J.

Proof of Theorems 1.4 and 1.4′. We can obviously assume that f(0) 6= 0, f(0) 6= ai
∀i = 1, . . . , q, f(0) 6=∞. By Lemma 2.4 there exist φ, ψ ∈ A(d(0, R−)) such that f = φ/ψ,
and

Z(r, φ) 6 Z(r, f) + 1, (2.2)

Z(r, ψ) 6 N(r, f) + 1. (2.3)

By Lemma 2.9, there exists A ∈ R and for any r ∈ J , there exists u(r) ∈ {1, . . . , q} such
that Z(r, φ − αjψ) > max(Z(r, φ), Z(r, ψ)) + A ∀j 6= u(r), therefore there exists B ∈ R
such that

Z(r, φ− αjψ) > T (r, f) + B ∀j 6= u(r), ∀r ∈ J. (2.4)
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We check that D(φ)−D(φ/ψ) = D(ψ)−D(ψ/φ), therefore

D(φ− αjψ) = D(f − αj) +D(ψ)−D
(

1
f − αj

)
= D(f − αj) +D(ψ)−D

(
1
f

)
.

Then, applying counting functions, we have Z(r, φ− αjψ) = Z(r, f − αj) + Z(r, ψ)−
N(r, f), and therefore, by (2.3), we obtain

Z(r, φ− αjψ) 6 Z(r, f − αj) + 1. (2.5)

Then, by (2.4) and (2.5) we obtain

(q − 1)(T (r, f) + B) 6
∑

16j6q,
j 6=u(r)

Z(r, φ− αjψ) 6
∑

16j6q,
j 6=u(r)

Z(r, f − αj) + q − 1 ∀r ∈ J.

Putting H = (q − 1)(1−B), we obtain

(q − 1)T (r, f) 6
q∑
j=1

Z(r, f − αj) + H − Z(r, f − αu(r)) ∀r ∈ J. (2.6)

Now, by Lemma 2.10 we have
q∑
j=1

Z(r, f − αj) =
q∑
j=1

Z̄(r, f − αj) + Z(r, f ′)− ZS
0 (r, f ′),

hence by (2.6) we have

(q−1)T (r, f) 6
q∑
j=1

Z̄(r, f−αj)+Z(r, f ′)−Z(r, f−αu(r))−ZS
0 (r, f ′)+H ∀r ∈ J. (2.7)

Suppose that f belongs to A(d(a, R−)). By Lemma 2.1 we have Z(r, f−αu(r)) = T (r, f)+
O(1) ∀r ∈ J , so, by (2.7), we obtain

qT (r, f) 6
q∑
j=1

Z̄(r, f − αj) + Z(r, f ′)− ZS
0 (r, f ′) + H ∀r ∈ J.

Returning to the general case, by Lemma 2.6 for every j = 1, . . . , q, we have a constant
cj ∈ R such that Z(r, f ′) 6 Z(r, f − αj) + N̄(r, f − αj) + cj ∀r ∈ J . Putting M =
max(c1, . . . , cq), we have Z(r, f ′) 6 Z(r, f − αu(r)) + N̄(r, f − αu(r)) + M ∀r ∈ J .

Moreover, N̄(r, f − αu(r)) = N̄(r, f), hence

Z(r, f ′) 6 Z(r, f − αu(r)) + N̄(r, f)− log r ∀r ∈ J. (2.8)

Finally, by (2.7) and (2.8), we obtain

(q − 1)T (r, f) 6
q∑
j=1

Z̄(r, f − αj) + N̄(r, f)− ZS
0 (r, f ′) + H + M − log r ∀r ∈ J.

This completes the proof. �

https://doi.org/10.1017/S0013091599000759 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000759


Urs and ursims for p-adic meromorphic functions inside a disc 495

Lemma 2.11 is easily checked.

Lemma 2.11. Let α1, . . . , αn ∈ K be pairwise distinct and let

P (u) =
n∏
i=1

(u− αi),

and let f ∈M(d(0, R−)). Then

Z(r, P (f)) =
n∑
i=1

Z(r, f − αi) and Z̄(r, P (f)) =
n∑
i=1

Z̄(r, f − αi).

Lemma 2.12. Let F ∈ M(d(a, R−)) and let L = F ′/F . Then, L satisfies Z(r, L) 6
N(r, L) + O(1) (r ∈ J).

Proof. Without loss of generality we can obviously assume that L(0)L′(0) 6= 0. As a
logarithmic derivative, L satisfies v(L,− log r) > log r [5, Lemma 4]. On the other hand,
by Lemma 2.1 we have v(L,− log r) = v(L(0)) − Z(r, L) + N(r, L). Consequently, we
obtain v(L(0))− Z(r, L) + N(r, L) > log r, which proves the claim. �

Lemma 2.13 is easily proven by classical considerations on limited developments [6].

Lemma 2.13. Let F, G ∈ M(d(a, R−)) have the same poles, ignoring multiplicities,
and let H = F ′′/F ′ −G′′/G′. Every pole of H has multiplicity order 1. Let α be a pole
of F and G. If α has same multiplicity for F and G, then H has no pole at α. Moreover,
if α has a multiplicity order 1 for both F and G, then α is a zero of H.

Proof of Theorems 1.6 and 1.11. Suppose that f 6= g. In order to simplify the
notation, we will denote by P the polynomial Pn,c. Let F = 1/P (f), G = 1/P (g) and
H = F ′′/F ′ − G′′/G′. Without loss of generality we may obviously assume that a = 0,
and that 0 is neither a zero nor a pole for f , f ′, g, g′ and H.

We first suppose that H is identically 0. In this case, we will follow the same way as in
[12]. Consequently, there exist A ∈ K∗ and B ∈ K such that P (f) = P (g)/(BP (g)+A).
Therefore, by Theorem 1.2 we have

T (r, f) = T (r, g) + O(1) (r ∈ ]0, R[). (2.9)

Since f is unbounded, we deduce that g is unbounded. As noticed in [12], P (X)+ c is of
the form DXn−2(X−e1)(X−e2), with D ∈ K, e1e2 6= 0, e1 6= e2. We have to distinguish
three cases: (i) B 6= 0, (ii) B = 0, A = 1, (iii) B = 0, A 6= 1. Case (i) is dealt with as
in [12]: we will only verify that the Nevanlinna formula applies without any difference.
Cases (ii) and (iii) need to be thoroughly examined here.

(i) Since AB 6= 0, every zero of P (g)+A/B is a pole of P (f) and therefore is a zero of
order at least n of P (g) + A/B. On the other hand, we check that whenever A, B ∈ K∗,
the polynomial P (X) + A/B admits at least two distinct zeros b1 and b2 of order 1 and
therefore it admits another zero l of order at most n − 2. Consequently, every zero of
g − b1 or g − b2 has order at least n, and every zero of g − l has order at least 2. By a
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change of variable, we can obviously assume that g, g− l, g− b1, g− b2 have neither any
zeros nor any poles at 0. Then, by applying Theorem 1.4, we obtain

2T (r, g)− N̄(r, g) 6 Z̄(r, g − l) + Z̄(r, g − b1) + Z̄(r, g − b2) + O(1)

6 1
2Z(r, g − l) +

1
n

(Z(r, g − b1) + Z(r, g − b2)) + O(1) (r ∈ J),

which leads to n 6 4.
(ii) In this case we have P (f) = P (g). Then putting h = f/g, we deduce that

(n− 1)(n− 2)(hn − 1)g2 − 2n(n− 2)(hn−1 − 1)g + n(n− 1)(hn−2 − 1) = 0.

If h is a constant, it is 1, a contradiction. So, we suppose h not constant. Since g lies in
Mu(d(a, R−)), it is easily seen that so does h. Indeed, suppose that h ∈ Mb(d(a, R−)).
Then clearly we have T (r, (n−1)(n−2)(hn−1)g2) > 2T (r, g)+O(1), while T (r,−2n(n−
2)(hn−1 − 1)g + n(n− 1)(hn−2 − 1)) 6 T (r, g) + O(1), a contradiction.

Now, let θ(X) = (n− 1)2(Xn − 1)− n(n− 2)(Xn−1 − 1)2. In [12] it is proven that, in
C, θ admits 1 as a zero of order 4 and that all other zeros uj (1 6 j 6 2n−6) are simple.
Of course, the proof applies to every algebraically closed field of characteristic zero. By
a change of variable, we can obviously assume that h− uj has no zeros and no poles at
0. Consequently, we check that(

g −
(

n

n− 1

)(
hn−1 − 1
hn − 1

))2

=
n(h− 1)4∏2n−6

j=1 (h− uj)
(n− 1)2(n− 2)(hn − 1)2 . (2.10)

Since
n(h− 1)4∏2n−6

j=1 (h− uj)
(n− 1)2(n− 2)(hn − 1)2

is equal to a square, clearly each zero h − uj (1 6 j 6 2n − 6) has order at least 2.
Consequently,

2n−6∑
j=1

Z̄(r, h− uj) 6 1
2

2n−6∑
j=1

Z(r, h− uj) 6 1
2 (2n− 6)T (r, h) + O(1) (r ∈ J).

Then, applying Theorem 1.4′ to h at the points uj (1 6 j 6 2n− 6), we obtain

(2n− 7)T (r, h) 6
2n−6∑
j=1

Z̄(r, h− uj) + N̄(r, h) + O(1)

6 1
2

2n−6∑
j=1

Z(r, h− uj) + N̄(r, h) + O(1)

6 1
2 (2n− 6)T (r, h) + N̄(r, h) + O(1) (r ∈ J).

Since T (r, h) is unbounded, we have n 6 5.
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Now, suppose that both f and g lie in A1/5(d(0, R−)) (in particular, this happens
when f or g belongs to Abd(d(0, R−))). Actually, we only have to consider the case when
n = 5. Let V (X) = P5,c(X) − c = 2X3(6X2 − 15X + 10). Then V (X) is of the form
2X3(X−a)(X−b) with a 6= b. Let α be a pole of h, hence a zero of g. Since V (f) = V (g),
either α is a zero of f , or it is a zero of (f−a)(f−b). But if α is a zero of f , then we have
ωα(f) = ωα(g), therefore α is not a pole of h. Hence, we have (f(α)− a)(f(α)− b) = 0,
and

ωα(f − a) + ωα(f − b) = ωα(V (g)) = 3ωα(g). (2.11)

Thus, each pole α of h is a zero of order at least 3 either for f−a or for f−b. Consequently,
we have 2N̄(r, h) 6 Z(r, f − a) − Z̄(r, f − a) + Z(r, f − b) − Z̄(r, f − b). And since
Z(r, f−a)− Z̄(r, f−a)+Z(r, f−b)− Z̄(r, f−b) 6 Z(r, f ′), we have 2N̄(r, h) 6 Z(r, f ′).
But since f ∈ A1/5(d(0, R−)), we obtain

lim sup
r→R

N̄(r, h)
T (r, f)

<
1
10

. (2.12)

On the other hand, by (2.11) we check that ωα(f ′) = 3ωα(g)− 1 = −3ωα(h)− 1, hence
3N(r, h)− N̄(r, h) 6 Z(r, f ′). Consequently,

lim sup
r→R

N(r, h)
T (r, f)

6 1
3 lim sup

r→R

(
N̄(r, h)
T (r, f)

+
Z(r, f ′)
T (r, f)

)
.

Now, since f ∈ A1/5(d(0, R−)), by (2.12) we obtain

lim sup
r→R

N(r, h)
T (r, f)

<
1
10

. (2.13)

By Lemma 2.4 we can find φ, ψ ∈ A(d(0, R−)) such that h = φ/ψ, φ(0)ψ(0) 6= 0, and
Z(r, φ) 6 Z(r, h) + 1, Z(r, ψ) 6 N(r, h) + 1. Since T (r, f) = T (r, g) + O(1) (r ∈ ]0, R[)
when r approaches R, it is seen that |Z(r, f)−Z(r, g)|∞ is bounded, and by Lemma 2.1, so
is v(h, µ) when µ approaches − log R. Consequently, |Z(r, φ)−Z(r, ψ)|∞ is also bounded
when r approaches R. Therefore, by (2.13) we have

lim sup
r→R

T (r, h)
T (r, g)

<
1
10

.

Consequently, by Lemma 2.1, we have

lim sup
µ→−logR

v(φ, µ)
v(g, µ)

<
1
10

, (2.14)

lim sup
µ→−logR

v(ψ, µ)
v(g, µ)

<
1
10

. (2.15)

Now, by (2.10), we check that

[g(φ5 − ψ5)− ( 5
4 )(φ4ψ − ψ5)]2 =

5(ψ − φ)4∏4
j=1(φ− ujψ)

48ψ3 . (2.16)
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Now, by (2.9), (2.14) and (2.15), it is easily seen that

lim
µ→−logR

(v(g, µ)− 4v(φ, µ)− v(ψ, µ)) = −∞,

lim
µ→−logR

(v(g, µ)− 5v(φ, µ)) = −∞,

and therefore, when µ approaches − log R, we have v(g(φ5−ψ5), µ) < v( 5
4 (φ4−ψ4)ψ, µ).

Hence

v([g(φ5 − ψ5)− ( 5
4 )(φ4ψ − ψ5)]2, µ) = v(g(φ5 − ψ5), µ) 6 v(g, µ). (2.17)

On the other hand, we can check that

v

(5(ψ − φ)4∏4
j=1(φ− ujψ)

48ψ3 , µ

)
> 5v(φ, µ) + O(1) (µ ∈ ]− log R,+∞[).

Then by (2.9), (2.14) and (2.15) we obtain

v

(5(ψ − φ)4∏4
j=1(φ− ujψ)

48ψ3 , µ

)
> 5

4v(g, µ) + O(1) (µ ∈ ]− log R,+∞[)

a contradiction to (2.16) and (2.17). This shows that the hypothesis ‘h non-constant’
is absurd. This finishes proving that n 6 4 when f ∈ A1/5(d(0, R−)), and g ∈
A1/5(d(0, R−)) ∪ Abd(d(0, R−)) in case (ii).

(iii) Let λ = 1/A. We will check that at least one of the two polynomials

Q1(X) = (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 + c(λ− 1)

and

Q2(X) = (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 + c

(
1
λ
− 1
)

admits n distinct zeros. Indeed, suppose this not true. We notice that

Q′1(X) = Q′2(X) = P ′(X) = n(n− 1)(n− 2)Xn−3(X − 1)2.

Consequently, if both Q1 and Q2 admits at least one zero of order > 1, then this must
be 1, because it cannot be 0. But then, we have c(λ− 1) = c(1/λ− 1) = −2. Since c 6= 0,
and since λ 6= 1, this implies λ = −1, and c = 1, which is excluded by hypothesis.

Now, since λ and 1/λ play symmetric roles, without loss of generality we can assume
that Q1 admits n distinct zeros b1, . . . , bn. Thus, putting

Γ (X) = λXn−2(n− 1)((n− 2)X2 − 2n(n− 2)X + n(n− 1)),

we have
Q1(f) = Γ (g). (2.18)
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So, applying Theorem 1.4′, we obtain

(n− 1)T (r, f) 6
n∑
j=1

Z̄(r, f − bj) + N̄(r, f) + O(1) (r ∈ J).

On the other hand, by Lemma 2.11 we have

n∑
j=1

Z̄(r, f − bj) 6 Z̄(r, Q1(f)) = Z̄(r, g) + Z̄(r, g − e1) + Z̄(r, g − e2) 6 3T (r, g).

But by (2.18) it is seen that T (r, g) 6 T (r, f) + O(1) (r ∈ J), hence finally

(n− 1)T (r, f) 6 3T (r, f) + N̄(r, f) + O(1) (r ∈ J). (2.19)

Consequently, we have n 6 5. Moreover, if f, g ∈ A(d(0, R−)), then N(r, f) = 0, and
then (2.19) leads to n 6 4. This finishes proving the claims of Theorems 1.6 and 1.11
when H = 0.

Henceforth, we suppose that H is not identically 0 and will apply Fujimoto’s method.
Let α be a zero of f − aj , for some j. Then both P (f) and P (g) vanish at α. So, by
Lemma 2.11 we have

∑n
j=1 Z̄(r, f − aj) = Z̄(r, P (f)) = Z̄(r, P (g)). Now, according to

Lemma 2.13, if both P (f), P (g) have a zero of order one, then H also has a zero. Else, at
least one of the two functions P (f) and P (g) admits α as a zero of order strictly greater
than 1, and then (since all zeros of P are simple) at least one of the two functions f ′, g′

has a zero at α, while α is a zero f − ai for some i and a zero of g − aj for some j.
Consequently, we obtain

n∑
j=1

Z̄(r, f − aj) 6 Z̄(r, H) + Z̄(r, f ′) + Z̄(r, g′)− Z̄S
0 (r, f ′)− Z̄S

0 (r, g′). (2.20 a)

Moreover, in the hypothesis of Theorem 1.11, since any zero α of f − ai is a zero of
certain g − aj with the same multiplicity order we have ωα(f ′) = ωα(g′). Consequently,
we obtain this improvement of (2.20 a):

n∑
j=1

Z̄(r, f − aj) 6 Z̄(r, H) + 1
2 [Z̄(r, f ′) + Z̄(r, g′)− Z̄S

0 (r, f ′)− Z̄S
0 (r, g′)]. (2.20 b)

By Lemma 2.12 we know that Z̄(r, H) 6 N(r, H) + O(1) (r ∈ J), hence

n∑
j=1

Z̄(r, f − aj) 6 N(r, H) + Z̄(r, f ′) + Z̄(r, g′)− Z̄S
0 (r, f ′)− Z̄S

0 (r, g′) + O(1) (r ∈ J),

and similarly

n∑
j=1

Z̄(r, g − aj) 6 N(r, H) + Z̄(r, f ′) + Z̄(r, g′)− Z̄S
0 (r, f ′)− Z̄S

0 (r, g′) + O(1) (r ∈ J),
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hence

n∑
j=1

Z̄(r, f − aj) + Z̄(r, g − aj) 6 2N(r, H) + 2[Z̄(r, f ′) + Z̄(r, g′)− Z̄S
0 (r, f ′)− Z̄S

0 (r, g′)].

(2.21 a)
And in the hypothesis of Theorem 1.11, by (2.20 b) we obtain

n∑
j=1

Z̄(r, f − aj) + Z̄(r, g − aj) 6 2N(r, H) + [Z̄(r, f ′) + Z̄(r, g′)− Z̄S
0 (r, f ′)− Z̄S

0 (r, g′)].

(2.21 b)
Consider now N(r, H), and let β be a pole of H. Either β is a zero of F ′G′ or it is a

pole of FG. Let ψ be the counting function of the poles of H occurring when FG has a
pole. So, we have

N(r, H) = Z̄(r, F ′G′) + ϕ(r). (2.22)

Suppose first β is a zero of F ′ but is not a pole of FG. Either β is a zero of f ′, or it
is a zero of P ′(f), or it is a pole of f . Consequently, β is not a zero of P (f) and we have
Z̄(r, F ′) 6 Z̄S

0 (r, f ′) + Z̄(r, P ′(f)) + N̄(r, f). Since

P ′(X) = n(n− 1)(n− 2)(X − 1)2Xn−3,

we have Z̄(r, P ′(f)) 6 2T (r, f), Z̄(r, P ′(g)) 6 2T (r, g), and therefore

Z̄(r, F ′) 6 Z̄S
0 (r, f ′) + 2T (r, f) + N̄(r, f). (2.23)

Similarly, if β is a zero of G′ but is not a pole of FG, we have

Z̄(r, G′) 6 Z̄S
0 (r, g′) + 2T (r, g) + N̄(r, g). (2.24)

Suppose now β is a pole of FG. Then β is a zero of P (f) and P (g) (we notice that
when β is a zero of P (f), it is a zero of P (g), and vice versa), and then by Lemma 2.13,
it cannot be a pole of H when it is a zero of same order of P (f) and P (g). Consequently,
in the hypothesis of Theorem 1.6, ϕ(r) satisfies

ϕ(r) 6 Z̄(r, f ′)− Z̄S
0 (r, f ′) + Z̄(r, g′)− Z̄S

0 (r, g′),

and therefore by (2.22), (2.23) and (2.24) we obtain

N(r, H) 6 Z̄S
0 (r, f ′) + Z̄S

0 (r, g′) + 2T (r, f) + 2T (r, g) + N̄(r, f) + N̄(r, g)

+ Z̄(r, f ′)− Z̄S
0 (r, f ′) + Z̄(r, g′)− Z̄S

0 (r, g′),

hence

N(r, H) 6 2T (r, f) + 2T (r, g) + N̄(r, f) + N̄(r, g) + Z̄(r, f ′) + Z̄(r, g′).
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Thus by (2.21 a), in the hypothesis of Theorem 1.6, we obtain

n∑
j=1

Z̄(r, f − aj) + Z̄(r, g − aj)

6 4(T (r, f) + T (r, g)) + 2(N̄(r, f) + 2N̄(r, g))

+ 4(Z̄(r, f ′) + Z̄(r, g′)) + O(1). (2.25 a)

Now, in the hypotheses of Theorem 1.11, since the order of a zero is the same for P (f)
and P (g), the counting function ψ is identically 0, so, by (2.22)–(2.24), we have

N(r, H) 6 2T (r, f) + 2T (r, g) + N̄(r, f) + N̄(r, g) + Z̄S
0 (r, f ′) + Z̄S

0 (r, g′),

and therefore by (2.21 b) we obtain

n∑
j=1

Z̄(r, f − aj) + Z̄(r, g − aj)

6 4(T (r, f) + T (r, g)) + 2(N̄(r, f) + 2N̄(r, g)) + (Z̄(r, f ′)

+ Z̄(r, g′)) + (Z̄S
0 (r, f ′) + Z̄S

0 (r, g′)) + O(1). (2.25 b)

Now, applying Theorem 1.4′ to f and g at the points aj (1 6 j 6 n), we have

(n− 1)T (r, f) 6 N̄(r, f) +
n∑
j=1

Z̄(r, f − aj)− ZS
0 (r, f ′) + O(1) (r ∈ J),

(n− 1)T (r, g) 6 N̄(r, g) +
n∑
j=1

Z̄(r, g − aj)− ZS
0 (r, g′) + O(1) (r ∈ J),

hence

(n− 1)(T (r, f) + T (r, g))

6 N̄(r, f) + N̄(r, g) +
n∑
j=1

Z̄(r, f − aj)

+ Z̄(r, g − aj)− ZS
0 (r, f ′)− ZS

0 (r, g′) + O(1) (r ∈ J),

hence by (2.25 a), in the hypotheses of Theorem 1.6, we obtain

(n− 1)(T (r, f) + T (r, g))

6 3(N̄(r, f) + N̄(r, g)) + 4(T (r, f) + T (r, g))

+ 4(Z̄(r, f ′) + Z̄(r, g′)) + O(1) (r ∈ J). (2.26 a)

And by (2.25 b), in the hypotheses of Theorem 1.11, we obtain

(n− 1)(T (r, f) + T (r, g))

6 3(N̄(r, f) + N̄(r, g)) + 4(T (r, f) + T (r, g))

+ Z̄(r, f ′) + Z̄(r, g′) + O(1) (r ∈ J). (2.26 b)
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Suppose that we assume the hypotheses of Theorem 1.6. Then, since T (r, f) + T (r, g)
is unbounded, we obtain n 6 16. This shows the first claim. We now suppose that f and
g belong to Au(d(0, R−)). On the one hand N̄(r, f)+ N̄(r, g) = 0. On the other hand, by
Lemma 2.7 we have T (r, f ′) 6 T (r, f) − log r, hence by (2.26 a), we obtain n 6 9. This
shows the second claim.

We now assume the hypotheses of Theorem 1.11. By Lemma 2.7 we have Z(r, f ′) 6
2T (r, f) + O(1), so, by Relation (2.26 b) we obtain n 6 10, which proves the first claim.
Next, we suppose that f and g belong to Au(d(a, r−)). Then N̄(r, f) + N̄(r, g) = 0 and
by Lemma 2.7 we have T (r, f ′) 6 T (r, f)− log r, hence by (2.26 b), we obtain n 6 6. This
ends the proof of Theorem 1.11.

Thus it only remains for us to prove the claims of Theorem 1.6 when f, g belong to
M1/5(d(a, R−)), and when f, g belong to A1/5(d(a, R−)), or f belongs to A1/5(d(a, R−))
while g belongs to Abd(d(a, R−)).

First, suppose that f, g belongs toM1/5(d(a, R−)). By applying Theorem 1.4 instead
of Theorem 1.4′, we obtain

(n− 1)T (r, f) 6
n∑
j=1

Z̄(r, f − aj) + Z(r, f ′)− ZS
0 (r, f ′) + O(1) (r ∈ J),

(n− 1)T (r, g) 6
n∑
j=1

Z̄(r, g − aj) + Z(r, g′)− ZS
0 (r, g′) + O(1) (r ∈ J).

Hence, by (2.25 a),

(n− 1)[T (r, f) + T (r, g)] 6 4(T (r, f) + T (r, g)) + 2(N̄(r, f) + N̄(r, g))

+ 4(Z̄(r, f ′) + Z̄(r, g′)) + Z̄(r, f ′)

− ZS
0 (r, f ′) + Z̄(r, g′)− ZS

0 (r, g′) + O(1) (r ∈ J).

Since f, g lie inM1/5(d(0, R−)), it is clearly seen that

lim
r→R

(T (r, f) + T (r, g)− 5(T (r, f ′) + T (r, g′))) = +∞.

Consequently, n− 1 < 4 + 2 + 5( 1
5 ), i.e. n 6 7.

Finally, suppose that f and g belong to A1/5(d(a, r−)), or that f ∈ A1/5(d(a, r−)) and
g ∈ Abd(d(a, r−)). In both cases, we can check

lim
r→R

(T (r, f) + T (r, g)− 5(T (r, f ′) + T (r, g′))) = +∞. (2.27)

Now, by Theorem 1.4 we obtain

n(T (r, f) + t(r, g))

6
n∑
j=1

(Z̄(r, f − a− j) + Z̄(r, g − a− j)) + Z̄(r, f ′) + Z̄(r, g′) + O(1),
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hence by (2.25 a) we have

n(T (r, f) + T (r, g)) 6 4(T (r, f) + T (r, g)) + 5(Z̄(r, f ′) + Z(r, g′)) + O(1),

so by (2.27) we obtain n 6 4, and this ends the proof of Theorem 1.6. �

Remark. An interesting virtue of Fujimoto’s method towards A1/5(d(a, R−)) and
M1/5(d(a, R−)), is that (2.25 a) and (2.25 b) are equivalent for functions f and g in these
sets. Consequently, in these particular sets, looking for urs or for ursim through this
method becomes equivalent.
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