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Abstract

The Mach-number series expansion of the potential function for the two-dimensional flow
of an inviscid, compressible, perfect, diatomic gas past a circular cylinder is obtained to
29 terms. Analysis of this expansion allows the critical Mach number, at which flow first
becomes locally sonic, to be estimated as Mt = 0.39823780 ± 0.00000001. Analysis also
permits the following estimate of the radius of convergence of the series for the maximum
velocity to be made: Mc = 0.402667605 ± 0.00000005, though we have been unable to
determine the nature of the singularity of M = Mc. Since Mc exceeds M^ by some 1.1%, it
follows that this particular "airfoil" can possess a continuous range of shock-free
potential flows above the critical Mach number. This result hopefully resolves a 70-year
old controversy.

1. Introduction

The Janzen-Rayleigh approximation to subsonic flow about a right circular
cylinder is used to shed light on the transonic controversy, which may be
formulated as the following question: Can an airfoil have a continuous range of
smooth shock-free potential flows above the critical Mach number? It has been
known since the 1940's that isolated shock-free flows can exist; the question is
whether they have neighbouring solutions. Morawetz [15] has shown that a
smooth solution ceases to exist if the shape of the profile is varied in the
supersonic region with the free-stream Mach number kept fixed. It was conjec-
tured in the 1950's that likewise the flow breaks down for a fixed profile if the
Mach number is varied, but that has never been proved. There is experimental
and numerical evidence on both sides. For example, Nocilla et al. [16] have
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numerical results for flow past biconvex airfoils which suggest that shock-free
flows can exist for a range of values up to about 5% greater than the critical Mach
number. However there remains the possibility of a pathological singularity that
is not manifest until the shock wave is well developed. We expand on this point
subsequently.

For the case studied here, that of steady, two-dimensional flow of an inviscid,
compressible, perfect gas past a circular cylinder without circulation, no answer
that is even moderately convincing has previously been given, despite numerous
attempts over the past 70 years. Prior to discussing these attempts, we shall
formulate the problem precisely. The cylinder is set in a uniform, oncoming
stream. Following both Rayleigh [18] and Janzen [11], we have used the velocity
potential as the dependent variable, rather than the stream function, as the
simplification of the surface boundary condition achieved by using the stream
function as the dependent variable is bought at the price of a more complicated
differential equation. For similar reasons, we have eschewed the use of the
seductively elegant properties of a complex-variable formulation, as this elegance
is found to be obtained at the price of increased computational complexity and
decreased precision.

The equation for the velocity potential <j> is given by Oswatitsch [17] in
Cartesian co-ordinates, and re-expressing this equation in the more appropriate
polar-coordinates, we have

+ (Y - l)(tf + <t>2/r2 - \)(<t>rr + <t>r/r + W 2 ) / 2 ] , (1)
where the variables have been made dimensionless by scaling lengths by the
cylinder radius a and velocities by the uniform-stream speed U. In the above
equation, M is the free-stream Mach number and y is the adiabatic ratio. The
appropriate boundary conditions are

<j>r = 0 at r = 1, (2)

<t> ~ r cos 0 as r -> oo, (3)

together with the requirement that <j> be an even function of 6, to ensure
symmetric flow, free of circulation. For M = 0 the solution is

<f>, = (r+ l/r)cosO. (4)

Frankl and Keldysh [4] have proved that <j>(M2) is analytic in the neighbourhood
of the origin, so that c/> can be written

* = S<M*2"-2- (5)
n=\
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13 ] Subsonic potential flow past a circle 245

From boundary condition (2) it follows that the dimensionless surface speed qs is
given by — (l/r)8<J>/30 | r = 1 , and so qs can also be written as an expansion in M2.
We are interested in the maximum surface speed, which undoubtedly occurs at the
ends of the diameter perpendicular to the direction of flow. Thus

qmax = ?,(« = «/2) = 2 ^ M 2 - 2 . (6)
n = l

The analyticity of qmm near M — 0 follows immediately from the analyticity of <£.
We denote the radius of convergence of the series (6) by Mc

2, and wish to compare
Mc with the critical Mach number M^, the free-stream Mach number at which
flow locally becomes sonic for the first time. The critical Mach number M^ is
given by the solution of

+ l ) 9
2

a x - Y + l ] . (7)

The fundamental question we wish to resolve is whether (a) M^ < Mc> or (b)
M+ = Mc. If the first possibility were true, the transonic controversy posed in the
opening paragraph would be answered in the affirmative. If the second possibility
were true, the position and nature of the singularity in the complex plane would
need to be investigated before comment could be made on the transonic con-
troversy. We subsequently show that the first possibility appears to hold.

Referring now to earlier studies of this problem, the first attempt was made by
O. Janzen [11] in 1913 and by Lord Rayleigh [18] in 1916. Both independently
obtained </>, and <J>2, and Lord Rayleigh expressed the view that Mc = M+. In
1928 Taylor and Sharman [25] supported Rayleigh's view for the cylinder, but
pointed out that there was "no theoretical ground for supposing that this
hypothesis be true in general". Sauer [20] in 1943 also supported Rayleigh's view,
but in 1960 [21] he retracted this statement, preferring to leave the question open.
Ward [28] in 1953 put forward an opposing view to that of Lord Rayleigh, while a
more complex view was advanced by Shapiro [23] who nevertheless agreed that
Mt — Mc. For both the cylinder and the sphere Lighthill [13] expressed the view
that Mc could be expected to be somewhat greater than M, . These later conclu-
sions presumably relied on the work of Imai [10] and Simasaki [24]. In 1938 Imai
extended the series by obtaining the <£3 term, and in 1941 the <f>4 term.* In 1955
Simasaki published the next two terms <f>5 and <j>6, and estimated M% « 0.40 and

Footnote added in proof: In 1952 Max Munk and George Rawling ("Calculation of compressible
subsonic flow past a circular cylinder", NA VORD Rept. 2477, U.S. Naval Ordnance Lab., While Oak,
Md., 1952), in a pioneering application of the computer, wired the control panel of the IBM 604
Calculating Punch to calculate successive approximations and computed <j>s in eight hours handling
and machine time. We are indebted to Andrew Van Tuyl for drawing our attention to this work, and
supplying us with a copy.
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Mc s» 0.50 for y = 1.405. This was a remarkable hand calculation, though as we
shall see the estimate of Mc is significantly in error. Simasaki's calculation
represented the end of the classical era, and in 1970 G. Hoffman [8, 9] used an
IBM 360/67 to calculate the first seven terms of the expansion. Analysis for the
case y = 7/5 gave a value of M# - 0.3983 ± 0.0002, which compares well with
the estimate Mn = 0.39853 ± 0.00002 obtained by Melnick and Ives [14] using a
numerical integration technique. Hoffman attempted to estimate Mc, and con-
cluded that it lay within 5\% of Mm, which, as he points out, is far closer than
Simasaki's estimate. Following Hoffman, W. C. Reynolds (unpublished) obtained
two further terms, but no attempt at analysis was undertaken.

In 1977 one of us (M. V. D.) reformulated the algebraic manipulations in such
a manner as to significantly increase the accuracy and efficiency of the computer
program, and as a result obtained six further terms, extending the series to <j>iS.
Attempts at analysis were still inconclusive, suggesting that further terms were
required. We therefore obtained two additional terms in 1978. A preliminary
analysis of the 17-term series [27] suggested that Mc > M+ by about 4%, but by
no means could we rule out the possibility of equality. Attempting to resolve this
problem, we refined the existing Fortran code in order to achieve optimal
efficiency, and subsequently obtained two further coefficients. Subsequently L.
Schwartz (private communication) pointed out that the computational complexity
could be reduced from O(n9) to O(n6) by treating the triple products in (1) as
repeated double products, and this was found to give a substantial improvement
in both efficiency and accuracy. In this way we have obtained 24 terms in IBM

TABLE 1. Coefficients of the series for maximum speed, qm X(M2)/U= 2 In**1

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

2.0000 00000 00000
1.1666 66666 666667
2.5783 33333 33333
7.5146 48148 14814
2.5590 40743 26026 X
9.6263 29138 24853 X
3.8792 34524 64374 X
1.6439 93333 00068 X
7.2398 71235 76189 X
3.2862 66547 34814 X
1.5286 40406 12112 X
7.2559 39308 37266 X
3.5032 63659 98740 X
1.7161 79062 36987 X
8.5135 18210 10245 X

10
10
102

103

103

10"
105

105

106

107

107

n

16
17
18
19
20
21
22
23
24
25
26
27
28
29

4.2699 75057 42413
2.1624 71459 08896
1.1046 37708 36747
5.6864 98510 09948
2.9477 90091 23257
1.5377 78355O4235
8.0685 3184O2969O
4.2558 75608 01023
2.2557 63517 28074
1.2010 117 X 10'5

6.4210 705 X 10'5

3.4462 56 X 1016

1.8563 27 X 10'7

1.0032 9 X 10'8

X
X
X
X
X
X
X
X
X

108

109

10'°
10'°
10"
10'2

1012

10'3

10'4
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quadruple precision, and 29 terms in IBM double precision. By varying the degree
of precision from single to double to quadruple we can estimate the number of
significant figures in the coefficients. In Table 1 we give the first 29 coefficients
for the expansion qmax with y = 7/5. The coefficients are expected to be accurate
to at least the number of digits quoted.

Analysis of this series gives the estimates Af, = 0.39823780 ± 0.0000001 and
Mc = 0.402667605 ± 0.000000005, so that Mc is about 1.11% larger than M+, and
the transonic controversy in the form posed in the opening paragraph appears to
be resolved in the affirmative for the circular "airfoil". We emphasize that the
errors quoted above are confidence limits, estimated from the apparent rate of
convergence of the sequences used to estimate M^ and Mc and hence are not
rigorous bounds.

In the next section we discuss the derivation of the series, and in the subsequent
section the analysis is presented. The final section comprises a discussion and
conclusion.

2. Series derivation

The differential equation (1) is solved by successive approximations, assuming
that the free-stream Mach number is small. Writing the solution as </> = </>, +
M2^>2 + A/4</>3 + • • •, substituting and equating like powers of M2, and using
<£, = (r + 1/r) cos 6, we have for <J>2 the equation

4 4 ) r (8)
r r / r3

The identity

V2rncosk0 = (n2- k2)r"~2cosk6 (9)

gives the particular integral of (8) vanishing at infinity,

1 1 \ cos 30 . .
cos0-—r—. (10)12r5 2r

Adding multiples of the homogeneous solution that also vanish at infinity in
order to satisfy boundary condition (2) then yields

This procedure is then automated and carried out order by order, with y fixed in
order to obtain as many terms as possible. Careful packing of arrays is necessary
in order to make the program fit on a large virtual storage machine. Optimising
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the Fortran code gave a program with complexity O(n6), and in 6{ minutes on an
IBM 370/67 computer 29 double-precision coefficients were generated. In the
same length of time 24 quadruple-precision coefficients were generated, using 754
kilobytes of storage. At this stage, storage is limiting the quadruple-precision
calculations, while accuracy limits the double-precision calculations. As we show
in the next section, the series now appears to be of adequate length to enable M+
Q I I H A A t r\

3. Analysis of series

We first consider the determination of the critical Mach number Mt. Rewriting
the defining equation (7) as

(y + \)Mlq2
max - Ml(y - 1) - 2 = 0, (11)

TABLE 2. Shanks table applied to sequence of estimates of Mt

0.466252404
0.422SV7127
0.410310037
0.405246403
0.402706318
0.401269S64
0.400338602
0.39981513S
0.3S9424951
0.399150050
0.398950865
0.398803183
0.398691560
0.358 605802
0.398 538984
0.39S4S62S5
0.59S444273
0.398410462
0.398383020
0.398360578
0.39834 2099
0.398326787
0.398314028
0.398303340
0.398 230183
0.398 216819
0.398162984
0.398114266
0.398 071914

0.398 237925
0.398 237909
0.398 237919
0.398 237922
0.39S2378 2S
0.398 237861
0.398237799
0.398 237913
0.39S2379JS
0.593 237861
0 59S237862
0.398237861
0.398 237861
0.39S238 259
0.393 2581S6

0.405S1S882
0.401686944
0.400149592
0.399400216
0.3989897 65
0.39874668 2
0.398594303
0.398494525
0.398426883
0.398379706
0.398346015
0.398321466
0.393303267
0.398 289572
0.398 279128
0.393 271070
0.398264787
0.398 2S9842
0.398255917
0.398 252777
0.398250247
0.398248195
0 398315856
0.398213832
0.398 234596
0.397650506
0.397790157

0.398237915
0.398237923
0.398 237919
0 398237853
0.398 237840
0.398 237839
0.39S237964
0.593 237923
O.39S237S6?
0.39S237361
0.39S237861
0.39S237S61
O.39S258197

0.399119580
0.3986S7551
0.398492693
0.39S393630
0.39S538314
0.398505260
0.398 284501
0.393270956
0.398261842
0.398255550
0.398 251110
0.398247918
0.398 245535
0.398 243854
0.398 24 2554
0.398241565
0.398240306
0.598240216
0.39S2597 55
0.39S239392
0.398250186
0.398 275175
0.393 231085
0.398 214545
0.397763211

0.398 237921
0.398 237924
0.398 237837
0.398 237839
0.398 237840
0.398 237933
0.398 238047
0.398 237861
0.398 237859
0.598 237861
0.398 237861

0.398332599
0.398 291190
0.398268368
0.398256181
0.398 249456
0.398 245523
0.398 243092
0.398 241521
0.398240472
0.398 239751
0.398 239246
0.398 238885
0.398 238622
0.393 233431
0.398 238 286
0.398 238179
0.398 238093
0:398 238033
0.398 239744
0 398 231182
0.398259226
0.398 204616
0.398231714

0.398 237921
0 398237839
0.398 237841
0.398 237839
0.398 237403
0.398 237976
0.398 237859
0.398 237860
0.398237862

0.398240346
0.393242214
0.398 241178
0.39S239982
0 398239156
0.398 238655
0.39S2383S7
0.398 238175
0.398 238055
0.398 237985
0.398237925
0.398 237909
0.39S237847
0.398237867
0.393237851
0.398 237758
0.39S23S096
0.398 233313
0.398237741
0 398240697
0.398222727

0.398 237841
0.398 237840
0.398237841
0.398237651
0.398257879
0.398 257360
0.398237858

0.598241548
0.398248901
0.393 237319
0.398 237877
0.398 237922
0.398 237889
0.398 2378 24
0.398 237886
0.398237565
0.398 237903
0.398 257930
0.398 237862
0.393 237858
0.39S237871
0 398 237831
0.393 233745
0.398238157
0.398 238224
0.398 238159

0.398 23784 2
0 398237840
0.398 237755
0.39S237S61
0.39S237SS8

0
0
0
0
0
0
0
0
0
0
0
0

.398 244403

.398237851

.393237926

.393 237903

.393237958

.398237856
39S257G34

.398 237729

.390237933

.398 237911

.39S2373S3

.398 237861
0.393 237861
0
0
0
0

0.

.398 237869

.398 238387

.398 233217

.398 238191

39823784 2
0.398237802 o.i9S237SJ«
0. 398 237858
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and substituting the expansion qmax = 2 qnM\" 2 into (11), we obtain a sequence
of polynomials whose smallest positive root gives an estimate of M\. The square
roots of this sequence of estimates are shown in the first column of Table 2. In
subsequent columns we show the result of applying a Shanks transformation [22]
to the first column in order to speed the convergence. It can be seen that the
method converges fairly rapidly, and allows us to make the estimate

Mm = 0.3982378 ± 0.0000004,

where the quoted error is based on the apparent degree of convergence. We
subsequently increase the precision of this estimate.

We now estimate Mc, the radius of convergence of the series 1qnM
2n~2. A

wide variety of numerical methods exist for this problem, and many of them are
reviewed in Gaunt and Guttmann [5]. Most existing methods are based on the
assumption that the singularity defining the radius of convergence is a simple
algebraic or algebraico-logarithmic singularity. That being the case, the ratios of
successive terms of the series should approach the radius of convergence in the
following manner:

rn = ? „ / ? „ - , = M~2{l + ajn + a 2 / n 2 + a , / n * + • • • ) . (12)

TABLE 3. Neville table extrapolation of ratios of qmax(M
2)/U. The table shows values of 1/A/C

2(n, k)
as functions of n and k where M*(n, k) = (] + at/n + a2/n

2 + • • • +ak/n
k)/rn, where rn =

an/an_x is the ratio of successive coefficients.

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

k = 0

0.583333
2.210000
2.914537
3.405403
3.761694
4.029817
4.237932
4.403832
4.539123
4.651602
4.746662
4.828133
4 898801
4.960740
5.015523
5.064366
5.108219
5.147840
5.183840
5.216716
5.246876
5.274659

1

3.836667
4.323611
4.878002
5.186859
5.370430
5.486624
5.565134
5.621446
5.663914
5.697262
5.724308
5.746819
5.765951
5.782492
5.796996
5.809869
5.821408
5.831843
5.841350
5.850070
5.858114

2

4.567084
5.452592
5.650144
5.737574
5.777107
5.800663
5.818541
5.833785
5.847328
5.859542
5.870629
5.880741
5.890006
5.898530
5.906409
5.913723
5.920540
5.926919
5.932909
5.938554

3

5.720829
5.795312
5.825004
5.829819
5.839922
5.854298
5.869347
5.883448
5.896183
5.907586
5.917820
5.927062
5.935471
5.943178
5.950291
5.956897
5.963065
5.968852
5.974304

4

5.813933
5.839850
5.833430
5.850025
5.872267
5.891921
5.908125
5.921653
5.933243
5.943405
5.952478
5.960697
5.968227
5.975188
5.981668
5.987737
5.993446
5.998838

5

5.845033
5.830862
5.859982
5.890061
5.911575
5.927570
5.940592
5.951788
5.961695
5.970624
5.978779
5.986299
5.993286
5.999814
6.005941
6.011714
6.017172

6

5.828500
5.869689
5.905100
5.925917
5.940900
5.935613
5.964849
5.974905
5.984018
5.992370
6.000087
6.007259
6.013958
6.020238
6.026148
6.031727
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TABLE 3. (Continued)

n

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

k = l

5.875573
5.915217
5.934839
5.949462
5.962695
5.974480
5.984961
5.994433
6.003108
6.011110
6.018531
6.025440
6.031902
6.037967
6.043681

8

5.920173
5.939744
5.954945
5.969311
5.981845
5.992822
6.002722
6.011782
6.020114
6.027806
6.034941
6.041593
6.047824
6.053682

9

5.941919
5.958323
5.974100
5.987416
5.998920
6.009322
6.018828
6.027520
6.035498
6.042870
6.049724
6.056130
6.062143

10

5.959963
5.977255
5.991411
6.003522
6.014523
6.024532
6.033604
6.041881
6.049504
6.056578
6.063178
6.069359

11

5.978827
5.993985
6.006824
6.018523
6.029081
6.038552
6.047148
6.055048
6.062365
6.069177
6.075540

12

5.995248
6.008964
6.021448
6.032600
6 042499
6.051446
6.059657
6.067243
6.074286
6.080842

13

6.010019
6.023369
6.035174
6.045544
6.054887
6.063446
6.071328
6.078621
6.085381

n

15
16
17
18
19
20
21
22

k = 14

6.024322
6.036860
6.047766
6.057557
6.066503
6.074706
6.082267
6.089244

15

6.037696
6.049221
6.059515
6.068889
6.077441
6.085291
6.092500

.16

6.049941
6.060802
6.070647
6.079579
6.087744
6.095204

17

6.061440
6.071805
6.081155
6.089665
6.097398

18

6 072381
6.082194
6.091083
6.099117

19

6.082194
6.092019
6.100385

20 21

6.082710
6.092484
6.101222 6.101638

With a2, a3, a4,... set to zero we have the ratio method, while relaxing this
constraint gives the ratio method with Neville table extrapolation, in which
subsequent columns of the table take into account successively higher terms in the
polynomial in n~l above. The Neville table applied to the ratios of the gmax series
is shown in Table 3, where only the first 24 ratios are extrapolated, as the lack of
precision in the higher coefficients renders them useless for the higher-order
columns. It can be seen that all columns are monotonically increasing, and
reading from left to right, all rows are monotonically increasing. The remarkable
behaviour immediately suggests that the singularity is not of the assumed form,
that is, not a conventional algebraic singularity.

This is a most unusual situation, and before accepting this conclusion we tried
a variety of other techniques. Firstly, we applied the method of Pade approxi-
mants to the logarithmic derivative of the series, calculating both diagonal and
off-diagonal approximants. The nearest singularity to the origin at each order, as
estimated by the nearest non-defective pole, was substantially beyond Ml, as
shown in Figure 1. There we plot the nearest pole against l/(N + D) where N
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0.183.

0.178

0.173-

0.168

0.163

0.1S8
N + D

0.0 0.0S 0.1

Figure 1. Plot of nearest non-defective pole of logarithmic derivative Pade approximants to
<7max(M2)/U series versus \/(N + D). Diagonal and off-diagonal approximants used.

and D are the degrees of the numerator and denominator polynomials respec-
tively. The essentially linear plot is suggestive of an extrapolated value beyond
M\, and hence suggests that Mc > M^. Nevertheless, it should be recalled that the
Pade method is intrinsically unsatisfactory for dealing directly with cusp-like
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singularities, that is, singularities of the form

f(x)~A(x) + B(x)(l-tix)a, (13)

with a > 0 (except for special cases, such as 0 < a < 1 and A(\/n) = 0).
Such singularities can be analysed by the recurrence-relation method, intro-

duced by Guttmann and Joyce [7, 12]. In this method, the available series
coefficients are fitted to the expansion of a A^th-order differential equation of the
form

2 Pt(x)fi'\x) = Q(x) (14)
i = 0

where P,(x) are polynomials, and Q(x) is identically zero or a polynomial. Here,
/ ( l ) (*) denotes the /th derivative of/. This equation gives rise to solutions with
quite a rich variety of singularity types [7]. In particular, solutions of the form
(13) are contained, as are confluences of conventional algebraic singularities with
logarithmic factors. The application of this method confirmed our earlier conclu-
sion that the singularity is not of the conventional algebraic type, as the estimates
of Mc

2 were quite erratic.
Experience with problems in critical phenomena suggested two further possible

singularity types. One of these is a confluent singularity structure, of the form

f(x) ~ A(x)(\ - vx)° + B(x)(\ - , x x ) P + C(x)(l - nxY +••• ( 1 5 )

where a, /?, y,... are not separated by integers. The other is an exponential
singularity, of the form

f(x)~A(x) + B(x)exp[c/(l-iix)a], a > 0. (16)

Singularities of the confluent type can be identified by a suitable modification of
the recurrence-relation method, as shown by Rehr et al. [19]. Attempts at such an
identification were unsuccessful. An alternative method devised by Baker and
Hunter [1] involves transforming the original power series, using a highly non-lin-
ear transformation, in such a way that the reciprocals of the exponents a, (J,y,...
appear as poles of Pade approximants. The method does however require accurate
knowledge of the position of the singularity, x = l//x. Choosing a range of values
for l/n, including M^ and a posteriori Mc, no remotely consistent estimates of
any exponents were obtained. We therefore discounted the possibility of a
singularity structure of a confluent type.

The exponential singularity is more subtle than the conventional algebraic
singularity, as its nature depends crucially on the sign of the constant c in
equation (16). If c > 0, then as x -» \/\i — , the singularity diverges more strongly
than any simple power. If c < 0 however, then as x -* l/n — , the singular part
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vanishes faster than any power, and the function is, generally speaking, numeri-
cally indistinguishable from its analytic part A(x).

Nevertheless, we found that certain test series with this singularity structure
display some, but not all, of the features observed in the qmax series. In particular,
the function

g(x) = exp(-x/4) + exp[-0.67/(l - x)1/4] = ^anx
n (17)

qualitatively reproduces the monotonic trend observed in both the rows and
columns of the Neville table. One fundamental difference however is that Pade
approximants to g(x) generally have their closest pole nearer to the origin than
the radius of convergence of the series, x = 1, while as mentioned previously, the
nearest pole of Pade approximants to the qmax series is well beyond Mm. This
difference is fundamental, and suggests that the singularity is not of exponential
type. This conclusion is strengthened by an alternative analysis, in which we take
the logarithmic derivative of the logarithmic derivative of the original series, and
then study the behaviour of the Pade approximants. As shown by Guttmann [6],
this procedure will, under certain circumstances, convert singularities of the form
(16) into meromorphic functions. Once again we found no support for an
essential singularity of this type.

Returning to the Neville table, Table 3, the observed monotonic behaviour,
which also displays itself as non-removable curvature in the ratio plots, is
reminiscent of the situation in numerical analysis wherein one attempts to fit a
function, for example /*, by a polynomial. Such an attempt will never be
satisfactory, due to the essentially non-polynomial nature of the function. Indeed,
the ratios, shown in the first column of Table 3 appear to be behaving like
rn ~ n(\ — c/n"), with a < 1. The underlying singularity structure suggested by
such behaviour is not known generally, though it can be found for the special case
a = \/m, where m is an integer. However, very recently Barber and Hamer [2]
have developed an extrapolation technique for sequences of precisely this type.
Their method relies on the judicious application of a one-parameter family of
non-linear transformations introduced by Vanden Broeck and Schwartz [26]. The
transformations are defined by the equations

e<.m) = „,£»-!)

/« ( m + 1 ) = / n
( m ) + V («4m) - eln-\) (18b)

where a is an arbitrary parameter, e*,1' = 0, and the /n
<0), n G.[\, N], are the

original sequence coefficients. As shown by Vanden Broeck and Schwartz [26],
setting a = 0 recovers the Shanks transformation, already used to estimate M%,
while a = 1 corresponds to Wynn's e-algorithm [29] for generating diagonal Pade
approximants, though in that case/,(0) is not the nth coefficient but the nth partial
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sum. Barber and Hamer have proved the following relevant theorem:

THEOREM. Let {/„} approach its limit f^ as

fn~foo= An~x[l + bn~ti + o(n~A)], n -» oo. (19)

Then

fQ\a = _i) - fx = An~xpn (20)

where

Pn= \ A
 A>1' (21)

[0 ( /T A ) , A < 1 asn->oo.

Thus /n
(2) should converge more rapidly than /n

(0). The theorem also suggests that
repeated application of the transformation with a = -1 will accelerate conver-
gence further. However in so doing the parameter a in e*,2) must be reset to zero to
nullify the contribution from e^. Therefore successive transformations are carried
out with a = - 1 , then a — 0, and so on. The sequence of transformations is
therefore given by

(̂m+i) =f(m) + l/[4"° — e ^ ] , (22)

e*,m) = 0Lme(
n

m~i^ + \/[f^+i — / /m*J (23)

where

„ _ / 0[ 0 if m is even 1
I - 1 if m is odd /"

Application of this method is generally limited by one or both of the following
features. At each iterative cycle from/n

(2m) to/n
( 2 m + 2 ) four terms of the sequence

are lost. Secondly, the number of significant digits lost at each iteration can be
quite large. Nevertheless, applying this sequence of transformations to the ratios
of successive coefficients of the qmax series, we obtained the sequences/n

(2) to/n
(10)

before running out of terms. In deriving this table, we used only the first 24
coefficients, which were available in quadruple precision. The remaining coeffi-
cients were known to only a few significant figures (see Table 1). In order to
guard against loss of accuracy, all calculations were performed in quadruple
precision on a DEC VAX 11/780 computer. The results are shown in Table 4,
wherein it can be seen that the sequences /B

(6) to/n
( l0 ) display good convergence,

and allow us to conclude that

M~2 = 6.16746391 ± 0.00000015. (25)

We also used this method to extrapolate the sequence of estimates of Mt . These
results are shown in Table 5, wherein it is seen that convergence is much more
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rapid than for the corresponding Shank's table, Table 2, and allows us to make
the estimate M, = 0.39823780 ± 0.00000001.

We have been able to estimate M+ by a variety of methods, of which two are
shown here, and all methods give values of M% in agreement with that quoted
above, though in most cases with lower precision. For the estimate of Mc however,
we base our estimate only on one comparatively-untried method. Additionally, we
are unable to determine the nature of the singularity at M = Mc, though we have
excluded a number of the more conventional possibilities. Accordingly, while the
sequence of estimates of Mc appear to display a level of precision consistent with
the confidence limits quoted, the possibility of spurious convergence must be
admitted.

4. Discussion and conclusion

Our primary conclusion is that Mc > A/*, by some 1.1% with values of Mc and
M+ as quoted earlier. Hence the transonic controversy is resolved in that it has
been shown that a circular "airfoil" can indeed have a continuous range of
smooth, shock-free potential flows above the critical Mach-number. With the
long-standing transonic controversy resolved, the practical question that should
be answered next is whether, in the continuous range of shock-free flows above
the critical Mach number, the solution is stable.

Our result gains some support from two independent sources. Seebass (private
communication) has calculated flows past a circular cylinder numerically, using
Jameson's-FLO 6 program. His results are that at M = 0.41, which is greater than
M+, there is no hint of a shock wave numerically, while at M = 0.43 the shock
wave is clear. This suggests a region of shock-free flow above M^. The disappoint-
ing aspect of this result is that the value, M = 0.41, found to be shock-free, is also
greater than Mc — 0.4026..., and so cannot be shock-free. Hence Seebass' result
cannot be regarded as totally convincing. Presumably it arises because the nature
of the singularity at Mc is such that it does not manifest itself clearly in the
pressure distribution and related quantities calculated by Seebass until the shock
wave is well developed.

The second source that provides support for our result stems from a detailed
study of the nature of the qmax/U series at M2 = M\. By forming diagonal and
off-diagonal Pade approximants to qmax/U and evaluating these at Ml, we find
the approximants to be well converged, as shown in Table 6, permitting us to
make the estimate

( ) = 2.328346. (26)
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TABLE 6. Diagonal and off-diagonal Pade approximants to qmax( M
2)/U series,

evaluated at M2 = M2 = 0.15859334.

N

5
6
7
8
9

10
11
12
13
14

[N-\/N\

2.327897
2.328198
2.328295
2.328328
2.328340
2.328344
2.328346
2.328346
2.328346
2.328346

[N/N]

2.328103
2.328263
2.328317
2.328336
2.328342
2.328345
2.328346
2.328346
2.328346
2.328346

[N+ \/N]

2.328198
2.328295
2.328328
2.328340
2.328344
2.328346
2.328346
2.328346
2.328346

By subtracting this value of qmax(Ml)/U from the original series—that is,
altering the first coefficient to -0.328346—and investigating the remaining series
by forming Pade approximants to the logarithmic derivative, we find the be-
haviour of the poles and zeros to imply, absolutely clearly, that the remaining
series behaves like const.X(M2 — Ml). Evaluating the constant, and removing
the contribution of that term from the series gives a new series which, upon
similar investigation, is found to be dominated by a term of the form const. X
(M2 - Ml)2. That is, we find

which strongly implies that the series is analytic at Ml. This is, of course,
consistent with our conclusion that Mc > M^.

While this calculation lends some support to our conclusions, it is not unequiv-
ocal for a similar reason that Seebass' result is not completely convincing. If the
singularity is sufficiently weak, the process we have just described would not
detect it. As an example, consider the function f(x) = e-°67/(i-*) + e~

x.
Given the first 25 coefficients in the series expansion of/, the Pade approximant
study we have just discussed implies that / is analytic at x = 1, a result which is
clearly false. This misleading result is, of course, attributable to the nature of the
singularity, which is numerically imperceptible near x = 1.

Nevertheless, both the calculation of Seebass and the study of the nature of the
singularity at the critical Mach-number are valuable in that they provide checks
on our result in the sense of necessity rather than sufficiency.

There still remain two unanswered questions whose resolution would consider-
ably enhance our understanding of this problem and indeed our confidence in our
major conclusion. The first relates to the nature of the singularity. We have shown
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fairly convincingly that it is not of the conventional algebraic or algebraico-loga-
rithmic type, nor is it likely to be a confluent assemblage of such singularities.
Further, it is unlikely to be of exponential type, though in this case our results are
less convincing. Indeed, a recent calculation by Bollmann [3] suggests that this
possibility should be studied more carefully. Bollmann has studied subsonic flow
along a sinusoidal wall in the transonic small-disturbance approximation. He
generates 36 terms in the series expansion for a variety of flow quantities, and
finds that the series is a Stieltjes series. That is, it can be written as

A*) = 2 V» = f 4 ^ ; cn = f'x'P{x) dx. (27)
' XZ

Bollmann claims that an analysis of the moment-generating function p(x) sug-
gests an exponential singularity of the type we have previously discussed, and that
P — - a — 1/z so that the series converge only up to the critical Mach-number.
The series for our problem is not a Stieltjes series, and so Bollmann's procedure
cannot be applied. There is also some doubt whether Bollmann's series satisfy all
necessary conditions for a Stieltjes series.

The second question that arises relates to the generality of our result, that
Mc > Mf Given that it applies to a circle, it is quite clear that it will also apply to
any ellipse of low eccentricity, and it is reasonable to assume that it applies to
most convex, analytic airfoils. But what of non-analytic airfoils? Nocilla's [16]
numerical results on biconvex airfoils suggest that analyticity of the airfoil is not a
necessary condition. In a study of a biconvex airfoil with a 45° vertex angle he
finds a critical Mach number of 0.531, but smooth flows seem to be present at
Mach numbers in excess of 0.55. One must nevertheless remain concerned at the
possibility of a weak singularity not being numerically visible until the shock
wave is well developed, as seems to be the case with Seebass' calculation.
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