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Abstract

This paper studies a class of impulsive switched systems with persistent bounded disturbance
using robust attractor analysis and multiple Lyapunov functions. Some sufficient conditions
for internal stability of the systems are obtained in terms of linear matrix inequalities (LMI).
Based on the results, a simple approach for the design of a feedback controller is presented
to achieve a desired level of disturbance attenuation. Numerical examples are also worked
out to illustrate the obtained results.
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1. Introduction

Switched systems have been studied extensively in recent years, see [2,3,5-7,9,10]
and references therein. Such systems have many applications such as hybrid control of
mechanical systems, the automotive industry, flight and air traffic control, switching
power converters, intelligent vehicle highway systems, etc. The stability of switched
systems is studied in [9,10] by the technique of the common Lyapunov function,
and in [2,5,7] by the multiple Lyapunov functions method. In real life, many fault-
prone dynamic systems may experience abrupt changes in their structures, states and
parameters, caused by phenomena such as component failure or repairs, changing
subsystem interconnections, and abrupt environmental disturbances. Such systems
may be modelled by impulsive switched systems, where structure and parameter
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changes are considered as operations in different forms and are thus described by
system switches, and state changes are described by impulses. Switched systems may
be considered as special cases of impulsive switched systems. It is shown in [5] that
stability in each mode of a switched system does not guarantee the stability of the
switched system. On the other hand, a pair of unstable linear systems may form a
stable switched system under an appropriate switching rule [10]. Similarly, it is shown
in [4] that impulses may destabilise or stabilise a dynamical system. Numerous results
on switched systems and impulsive systems have appeared during the past ten years.
However, there has been very little investigation into impulsive switched systems.

The objective of this paper is to study a class of impulsive switched systems with
persistent bounded disturbance. In practice, it is of interest to consider the effect of
persistent bounded disturbances on a dynamical system. We shall utilise the multiple
Lyapunov functions method together with robust attractor analysis and establish some
sufficient conditions for internal stability of the linear impulsive switched systems
with persistent bounded disturbance. We also show, under some suitable conditions,
that the system has p-performance, which will be defined in the next section. The rest
of this paper is organised as follows. In Section 2, we shall present some preliminary
results and definitions and notation. Then we state and prove, in Section 3, our main
results. We firstly present a linear state-feedback controller for every subsystem and
establish some sufficient conditions for the stability of the whole system. Then we
discuss p-performance of the system under stable conditions. Finally, we give, in
Section 4, some numerical examples to illustrate our main results.

2. Preliminaries

Let QP = [X : XT PX < 1), where P is a positive definite matrix. We use the
norm ||X|| = V E L i xf f o r x e K"- Let <D = {W : ||W|| <l,W e R"}. Denote by
Re(A) the real part of a complex number X, by AT the transpose of a matrix A, and by
A~l the inverse matrix of A.

Consider the following impulsive switched system with disturbance:

AX(tk) = X(t?) - X(tk) = EkX(tk), t = tk; (2.1)

Y(t) = DaX{t),

where X : R -+ W, Ua : R -> Rm and W : 0& -»• \&p are the state, the input and the
external disturbance vectors, respectively. Here Y : D& —*• Kp is the controlled output,
a : D& x W —>• P is a switching signal, where P = {1, 2 , . . . , TV*}, that is, a(t, x) is a
piecewise constant function. We denote by S the family of all the switching signals of
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[3] Robust stability of impulsive switched systems with disturbance 261

system (2.1). We note that Aa, Ba, Ca, Da and Ek are known real constant matrices
of appropriate dimensions, where k = 1 ,2 , . . . , X{tk) = X(tk) = lim/l_).0+ X(tk — h),
X(tk

+) = limA_,.o+ X(tk + h). Here tk is the k-th switching point, 0 < t Y < ••• < tk <
• • •, and tk -*• oo as k —> oo.

DEFINrriON 1. System (2.1) is called internally stable, if X = 0 is asymptotically
stable when W(t) = 0.

DEFINITION 2. A set Q is called a robust attractor of system (2.1), if all the state
trajectories X(t) of the system (2.1) initiating from the exterior of £2 eventually enter
and remain in £2 for all W(t), and those from the interior of Q always remain in £2.

DEFINITION 3. The system (2.1) is said to have p-performance, if for all X(t)
(t > 0) from the origin (diat is, X(0) = 0), ||f(OII 5 P holds, where p is a given
positive scalar.

DEFINITION 4. Let P be an n x n symmetric matrix. We write P < 0 (P > 0),
if P is negative (positive) definite; and P < 0 (P > 0), if P is negative (positive)
semi-definite.

The following lemmas will be used in the proofs of the later theorems.

LEMMA 2.1. Let P be an n x n symmetric matrix, then for any number oa > 0, it
follows that

2XTPCaW < — XTPCaC
T

aPX + oaW
TW,

where Ca is any matrix of appropriate dimensions, and X, W are any vectors of
appropriate dimensions.

PROOF. Since \{\/^)CT
aPX - Jb^wf > 0, namely,

{—CT
aPX - Jb^w) (-CT

aPX - ^w) > 0,
\°~a / \°cr /

then

— X T P C a C l P X - XTPCaW -

Since XTPCa W = WTC^PX, it follows that

2XTPCaW < —X1~PCaC
T

aPX + aaW
TW. •

O
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LEMMA 2.2 (Schur complement [1]). The following three inequalities are equiva-
lent:

(1) [ £ 2 ] < 0 ;
(2) A < 0, and C - BT A~XB < 0;
(3) C < 0, and A - BC~lBT < 0,

where A, B, C are real constant matrices of appropriate dimensions, and A, C are
symmetric.

LEMMA 2.3. Let A,B be symmetric matrices. If A > 0, then the following two
inequalities are equivalent:

(1) B < 0;
(2) ABA < 0.

LEMMA 2.4. If Pnxn is a positive definite matrix, for any vector X, then

^minimi* < XTPX < Xmax||X||2,

where Xmn is the minimal eigenvalue of Pnxn and A.max is the maximal eigenvalue

LEMMA 2.5 ([8]). IfA is a stable matrix, then for any constant (3 > maxisi<n[Reki},
where A.,- is the eigenvalue of A, there exists an N > 0 such that

where X(t) is any solution of the linear system X = AX, X(0) = Xo.

3. Main results

Consider the uncontrolled system

X{t) = AaX(t) + CaW(t), t + tk;

AX(tk) = X(.t?)-X(Lti) = EkX{tk), t = tk; (3.1)

7(0 = DaX(t).

Let ka be the eigenvalue of Aa. Denote by Na the constant TV with respect to y3
0 > maxae/>{Re(Xa)}) in Lemma 2.5. Let N = maXaeP{Na}. Denote by At the
dwell time (that is, the switching interval).
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THEOREM 3.1. For system (3.1), let p be a given positive scalar. If for any a, there
exists a positive definite matrix Qa and a positive number oa such that

and if for any switching signal, there exists /x (0 < \JL < 1) such that the dwell time
At satisfies

(3.3)

where

•̂min = inf[X] and X , ^ = sup {Xak},
a e / > aeP, keN

where X is the minimal eigenvalue of Q~x and Xa<k is the maximal eigenvalue of
(/ + Ek)

TQ-\l + Ek) (a e P,k € N), then system (3.1) is internally stable.

PROOF. For any subsystem a, let Va(x) = XTPaX, where Pa = Q~\ By
Lemma 2.1, we obtain

Va{x) = X(t)TPaX(t) + X(t)TPaX(t)

= X(t)TPa(AaX(t) + CaW(t)) + (AaX(t) + CaW(t))T Pa{t)

= X(t)T(PaAa + AT
aPa)X(t) + 2X(t)TPaCaW(t)

< X(t)T(PaAa + AT
aPa)X{t) + — X(.t)TPaCaC

T
aPaX(t)

+ aaW(t)TW(t)

< X(t)T [PaAa + AT
aPa + —PaCaC

T
aPa + oaPa ) X(t)

-aa(X(t)TPaX(t)-W(t)TW(t)).

By inequality (3.2) and Lemma 2.2, we have

QaA
T

a + AaQa + —CaC
T

a +craQa< 0.
O'er

By Lemma 2.3, we obtain

namely,

Pa(QaA
T

a +AaQa + —CaC
T

a + oaQa)Pa < 0,
oa

PaAa + AT
aPa + —PaCaC

T
aPa + aaPa < 0.
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Moreover, for all X(t) £ SlPa, it follows that X{t)TPaX(j) > 1. Thus, for all
W(t) e <t>, we obtain X{t)T PaX{t) - W(t)TW{t) > 0. So

Va(x) < 0, for all X(t) £ QPt and W(t) e <S>. (3.4)

From inequality (3.4), we see that for all X(0) <£ ^2Q->, all state trajectories X(t)
of the subsystem are attracted to fig^i, and for all X(0) e fig-i, X(t) always remains
in S2Q-I. Therefore QQ-> is a robust attractor of the subsystem a which is internally
stable.

Next we prove that the whole impulsive switched system (3.1) is internally stable.
Let *,a = {the time when the subsystem a is active},

e « ( 0 = | * ' / ! * ' ° ' andl
We consider two sequential switches. Assume that system (3.1) switches into the

subsystem a = i at time t = tk-\, and into any subsystem a = j at time t = tk in
succession.

At the switching points, by Lemma 2.4, we have

T(I + Ek)
TPj{I + Ek)X{t;) -

< Kzx\\X(tk-)\\
2 - /xAmin||X(f+_,)||2.

When W(t) = 0, by condition (3.3) and Lemma 2.5, we obtain

^t,)!!2

0.

Furthermore, for r e (?t-i, 4], V(X(t)) = Va-i(x) along the solution of system
(3.1) is strictly decreasing, and so

0 < V ( X 0 ) < V ( X ( f + _ , ) ) < nV(X(t+_2)) <•••< ix"-1 V ( X ( 0 ) ) .

Since lim^oo/u •"'V(X(0)) = 0, we see that lim^oo V(X(0) = 0, namely,
= C So system (3.1) is internally stable. •

REMARK. The p: utive matrix Qa can be obtained by solving the linear matrix
inequality (LMI)

QaA
T

a +AaQa + —CaC
T

a +aaQa< 0.
oa
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THEOREM 3.2. For system (3.1), if the conditions of Theorem 3.1 hold, and further-
more, if for all i, j € P and k = 1 ,2 , . . . , the following inequalities hold:

ti: Qti: -Th*
then system (3.1) has p-performance.

PROOF. By Theorem 3.1, we see that system (3.1) is internally stable.
Next, we analyse the p-performance of the system. By condition (3.5) and

Lemma 2.2, we have

-Qt + QiU + EkfPj(I + Ek)Q, < 0.

By Lemma 2.3, we obtain

-Pt + V + EtfPjU + Ek) <0.

For any switching signal, assume that at the switching point k, system (3.1) switches
into subsystem j from subsystem /. Then we have

V(X(tk
+)) - V(X(t-))

+)TPjX(t+) - x(tk~)T'PiX(O

f((I + Ek)
TPj(I + Ek) - Pi)X{t-) = 0. (3.7)

When X(0) = 0, since Q.Q-I is the attractor of subsystem a, for all t e (0, fj,
X(t)TPaX(t) < 1. By inequality (3.7), we obtain

X(t+)TPaX(t+) < X{t-)TPa

Therefore, for all t e (fi,f2], X(t)TPaX(t) < 1. Similarly, for all t 6 {tk-\,tk},
X(t)TPaX(t) < 1. By Lemma 2.2, condition (3.6) is equivalent to

By Lemma 2.3, we have

Pa(-p
2Qa + QaD

T
aDaQa)Pa < 0,

namely, -p2Pa + DlDa < 0. Then

l|y(OII = IIA,x(0ll = x(t)TDT
aDax(t) < p2x(t)Tpax(t) < p2.

So system (3.1) has p-performance. •
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Now we consider the controlled system (2.1). Let a state-feedback controller
Ua = KaX{t), then system (2.1) turns into

t = tk, (3.8)

Y(t) = DaX(t).

THEOREM 3.3. For system (3.8), let p be a given positive scalar. If for any a, there
exists a matrix Ga, a positive definite Qa and a positive number aa such that

QaA
T

a +AaQa + aa Qa + GT
aB

T
a + BaGa Ca

CT _ „

and if for any switching signal, there exists \x (0 < \x < 1) such that the dwell time
At satisfies

l n ( ) , (3.10)

where X.mn is the minimal eigenvalue of Q~\ and A.max is the maximal eigenvalue of
(I + Ek)

TQ-\I + Ek) (a 6 P, k = 1, 2 , . . . ) , then system (3.8) is internally stable
and the state-feedback matrix Ka = GaQ~l.

PROOF. Let Ga = KaQa. Condition (3.9) turns into

\QaA
T

a + AaQa + oaQa + QaK
T

aB
T

a + BaKaQa Ca "I

namely,

UK + BaKa)Qa + Qa(A
T

a + KlBl) + oaQa Ca "I < Q (3 n)

L *~-a — oai \

Then the conditions (3.2) and (3.3) of Theorem 3.1 are satisfied by inequalities (3.10)
and (3.11), so the desired results follow. •

THEOREM 3.4. If the conditions of Theorem 3.3 hold, and furthermore, if for all
i, j e P and k = 1, 2, . . . , the following inequalities hold:

tt -Y-°-
then system (3.8) has p-performance.
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PROOF. By Theorem 3.3, we see that system (3.8) is internally stable. Since
conditions (3.12) and (3.13) are the same as conditions (3.5) and (3.6), by Theorem 3.2,
we see that system (3.8) has p-performance. •

4. Numerical examples

Consider the following impulsive switched system with disturbance. Assume that
P = {1, 2} and that we switch between two linear systems:

= tk,= xo+) - xon = [-;8 _?.„]
= [°o

5O
l]X(t)

and

= [ i -2] * ( 0 + [? I] Ux + [0°4 V ] W(t), t * tk,

AX(tk) = X(r+) - X(tk) = [ -1,8 _%] X(tk), t = tk,

= [%\°6]X(t).

Obviously, if there is no state-feedback controller, the system is unstable. Solving
inequalities (3.9), (3.12) and (3.13) for given p = -Jl/2 and ox = CT2 = 1 we obtain

_ [-0.4574 2.2230 ] _ [0.4752 0 1
1 ~ [-0.8349 -0.2370 J ' Ql ~ [ 0 0.4925 J '
_ [ 2.6329 -1.5129] _ [0.6656 0 ]

2 ~ [-2.7058 0.7452 J ' Ql ~ [ 0 0.3427J '
By Theorem 3.2, Ka = GaQa

l and Ua = KaX(t) so the above system transforms
into the following:

t ±tk,

X(tk), t = tk,AX(tk) = X(tk
+) - X(tk~) =

and

[0°4 tk,

AX(tk) = X{tk
+) - X(tk) = [-J-8 _°ht]X(tk), t = tk,

It is internally stable for all switching signals and has p-performance. Assume the
switching interval is two seconds and

W(t) = [^ 2)] .
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We consider the switching signal s = {1,2, 1, 2 , . . . } , s € S. Figure 1 shows the state
response of the above system without disturbance. Figure 2 shows the state response
of the system with disturbance W(t). Figure 3 shows the state response of the system
with disturbance W(t) from the initial state X(0) = 0.

0 1 2 3 4 5 6 7 8

FIGURE 1. The state response of the controlled system without disturbance.

"°20 1 2 3 4 5 6 7

FIGURE 2. The state response of the controlled system with disturbance W(t).
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FIGURE 3. The state response of the controlled system with disturbance W(t) from the initial state
X(0) = 0.

5. Conclusions

In this paper, we have presented a sufficient condition for the robust stability of a
class of impulsive switched systems with persistent bounded disturbance. We have
shown that if the switched system is composed of a finite family of asymptotically
stable subsystems and every switching state can last a sufficiently long time, then the
system is internally stable. Furthermore, we discuss p-performance of the system,
and some results have been derived.
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