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Velocities, strain rates, stresses, crevassing and faulting on

Glacier de Saint-Sorlin, French Alps, 1957-76

Louts LLIBOUTRY"
3 Avenue de la Foy, 38700 Corenc, France

ABSTRACT. Stake surveys on Glacier de Saint-Sorlin, French Alps, during the period
1957-76 show that annual surface velocities fit a linear vectorial model, with a term
depending on the site, another on the year, and an important random component. Strain
rates, viscosities and stresses at shallow depth are computed using strain triangles of hecto-
metric (10°m) size. Between 1961/62 and 1972/73 the isotropic point, where streamlines
cease to converge, moved downstream about 200 m. This trend may explain increasing
velocities. Crevasses appear where annual strain is >1.2%. Faults limit the effective shear
stress at the surface to about 0.38 bar. Ten modes of flow are distinguished, instead of only
two for the two-dimensional model (compressive and extensive). The gradients of shallow
stresses, which ensure extra driving forces, are computed with another mosaic of triangles
of similar size (stress triangles). There are also important extra driving forces at the
bottom, which force the flow to deviate from the direction of the steepest surface slope.
Two criteria allow elimination of stress triangles where these unknown basal extra driving
forces are important. Even so, no sliding law in terms of mean annual values can be
obtained. This study shows that the classical perturbation theory, which explains advances
and retreats by the arrival of kinematic waves, is unsuitable for glaciers of kilometric size.

1. INTRODUCTION

From the equation of mass conservation, which has been lin-
earized by considering small perturbations from a reference
state, a deterministic relation may be derived between mass
balance on a glacier and advances or retreats of its terminus
(Weertman, 1958; Nye, 1960, 1963; Lliboutry, 1963, p.739—
762). This equation, known as the “equation of kinematic
waves”, has been used without having been checked directly.
And, when it was tested, the test was negative. Among glaciers
that do not obey the classical equation are Nisqually Glacier,
Washington, U.S.A. (Meier, 1968), and the Irench Alpine
glaciers Glacier dArgentiere above its icefall (Hantz, 1981),
Mer de Glace below its icefall (Lliboutry and Reynaud, 1981)
and Glacier de Saint-Sorlin (Vincent and others, 2000). This

failure of the usual mathematical model has three origins:

1. A fixed relation has often been assumed to exist between
the basal shear stress and sliding velocity. In fact, at least
one additional independent variable intervenes: the
water pressure at the interface.

2. The velocities along a vertical profile are assumed to
depend only on the local thickness, surface slope and
bed slope, but actually they also depend on deviatoric
stresses that may be transmitted over kilometres.

3. To consider annual advances or retreats as mere pertur-
bations of a reference state is incorrect, since these per-
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turbations are the main terms in the equations. The
geometry of the ice edge, and the body and external
forces applied to it, determine the flow. In addition, the
balance at the surface controls the yearly advance or
retreat, and gradually modifies the surface profile on a
decadal time-scale. Therefore, in general, a thickening
of the glacier tongue is not synchronous with its advance,
nor 1s thinning synchronous with retreat. The change in
thickness leads the response of the terminus position.

The goal of this paper is to clarify these points by analyz-
ing field data obtained on a real glacier, rather than by con-
sidering glacier models, which are always more or less
unrealistic. This study will allow assessment of published
analyses and better planning of future glacier monitoring.
A geographical description of Glacier de Saint-Sorlin and
its old terminal moraines is given in a companion paper
(Lliboutry, 2002). In the present paper, the subglacial topog-
raphy of Glacier de Saint-Sorlin is described, and fluctu-
ations of surface velocities from year to year are analyzed.
The existence of a seemingly random component, already
recognized in some much larger glaciers (Meier, 1971, 1974),
is stressed. Strain rates and stresses at shallow depth in 1972/
73 are computed and related to the many faults observed at
the surface. The driving forces in the upper layers of the ab-
lation area are calculated. (This leads to the choice of a
sound way of computing first and second derivatives of a
function of x and y, which is known at some points only,) It
is found that these shallow driving forces cannot explain why
the flow deviates from the direction of the steepest surface
slope. Moreover, in some places, even taking these shallow
driving forces into account, the horizontal shear obtained is
excessive, leading to negative sliding velocities. Thus, at
depth there are extra strain rates and driving forces that can-
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Fig. 1. Local geodetic net, and sightings used for its determin-
ation. Triangles indicate the points used for plotting aerial
photographs.

not be estimated from surface data and knowledge of the
thickness alone, and any attempt to deduce an empirical
law for annual sliding velocities will be unsuccessful. Finally,
the changes in surface strain rates and shallow driving forces
from one year to another are computed, since they may
throw light on this essential point, but this can be done with
confidence only in a restricted area.

2. METHODS
2.1. Topography

The local geodesic net, which is determined with an accuracy
of 1cm, is shown in Figure 1. It has been linked to four points
of the French geodesic net, allowing determination of (X,Y")
coordinates in the French National system (Lambert coordin-
ates). The Lambert projection does not modify angles. In the
area studied, the Y axis of Lambert coordinates has a bearing
of 2.664° with respect to true north (see Lliboutry, 2002, fig. 1).
Bearings with respect to this direction (the Lambert north)
will be called the azimuths. Modified Lambert coordinates
(x=X-901000m and y =Y —325000m) are used in all
maps in this paper.

Stake coordinates in successive years, and all data derived
from them that were used herein, are filed at Laboratoire de
Glaciologie et Géophysique de I'Environnement, Grenoble,
France, and will be sent on request (contact C. Vincent). The
locations of stakes are shown in Figure 2. In the stake num-
bers, the first digit is the transverse row, starting from the ter-
minus, and the second digit identifies, approximately, a
streamline, increasing from west to east. Because annual dis-
placements were small compared to the average distance
between neighbouring stakes (about 130 m), they are not
taken into account when variations in velocity are discussed.
Each stake defines a permanent fixed “site” on the glacier.
When a new stake was not set exactly on the flowline of an
old one that had melted out, the new stake is labelled “bis”.

From 1939 to 1972, ablation stakes were surveyed, to 1 cm,
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Fig. 2. Surface velocities at stakes in 1972/75. Surface as on 16
August 1971, with 10 m contour interval. The map is oriented
with the highest elevations (south-southwest) at the top and
the terminus (north-northeast) at the bottom. The grey streak
is a faint medial moraine.

by sighting their tops from the three points A—C. Later, a
faster method was used: sighting from points close to each
stake to metallic poles placed around the glacier. The altitude
of the tops of the stakes was determined by measuring vertical
angles. The accuracy of vertical positions is an order of
magnitude less than that of horizontal positions (some deci-
metres instead of some centimetres) because of abnormal and
variable atmospheric refraction on glaciers. (For this reason
the vertical velocity of stakes 1s not used in the present study.,)
A standard correction for the elevation of a point at a dis-
tance D, which accounts for the Earth’s curvature and atmos-
pheric refraction, is ¢D? with ¢ = 6.8 x 10 ®m . Precise
geodesic levelling in 1972 showed that correct values in
August (with either overcast or clear sky) ranged from ¢ =0
to ¢ =10 ®m ' for sights that were half over moraine and half

over ice. ¢ was actually negative when the sight was over snow
(for sight to Etendard, ¢ =137 x 10 ®m ).

2.2. Geophysical exploration
The only published thicknesses of Glacier de Saint-Sorlin,

drawn from a seismic survey (Belin, 1962), contain mistakes.
Good seismic surveys of the ablation zone and gravimetric
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studies of the whole glacier were undertaken in 1975 and
1976. Glacier thicknesses thus found, and others based on
borings between 1968 and 1977, are published here for the

first time.
2.3. Borings

In 1967 and 1968, core drilling using an auger driven by the
Minuteman rotary machine of Crealius reached the bed at 36
and 60 m, respectively. In 1968 a 6 kW electrical corer, with an
uninsulated heating element, obtained uncracked cores, 2 m
long, at a rate of 6m h™". These cores were used to determine
the liquid-water and salt content of the ice (Dupuy, 1970). Sub-
sequently, Gillet (1975) used a hot-water drill and attained
rates of up to 60 mh ! during the first hour. This system was
used exclusively in 1972 (17 holes bored, 1063 m in total). How-
ever, this device cannot be used in firn, where water is lost. A
light electrical borer with a silver head, 20 mm in diameter,
was then perfected and used in 1974 and 1977.

In August 1970, four pressure gauges were inserted at the
bottoms of boreholes and sealed in place with a plug of refriger-
ated ice.

3. DATA
3.1. Glacier thickness

The three classical ways of measuring ice thickness — seismic
exploration, gravimetry and drilling—are complementary.
Seismic exploration may lead to serious mistakes when it is
not checked by gravimetry; gravimetry is accurate only if
drilling to the bed allows calibration; and thermal borings
may be misleading if the drill tip encounters a steeply sloping
bed and slips along the bed. (At the foot of Etendard, in 1974,
it was believed that bottom had not been reached after all
available cable, 204 m, was uncoiled. Seismic exploration the
following year showed that the ice thickness there was only
140 m.) As all three methods were used in constructing the
present map of the bed (Fig. 3) and cross-sections, one every
350 m (Fig. 4), we can trust these results. The standard error at
any point should be £5 m.

Glacier de Saint-Sorlin differs significantly from the infi-
nite plane slabs or the glaciers in straight cylindrical valleys
that many theorists use in their simulations, notwithstanding
that it is quite typical of mountain glaciers of its size. Thick-
nesses are commonly about 30 m on the steep western part,
and 60—70 m in the central area with low surface slopes. How-
ever, there 1s a subglacial valley running from Col des Quirlies
towards Lacs de Bramant (north-northeast) where ice thick-
nesses are 100-140 m. This valley appears to lie along the pro-
jection of some visible beds of soft Liassic (early Jurassic) and
Triassic rocks. Glacier erosion has produced two overdeepen-
ings in this valley: the upstream one has a closure of ~25m,
and the downstream one, just southwest of the Centre National
de la Recherche Scientifique (CNRS) hut (Fig. 3), was about
40 m deep. The latter, however, has been breached by a broad
opening towards the Rieu Blanc valley (northeast). Thus, the
axis of the subglacial valley turns ~60° to the right, 300 m up-
glacier from the CNRS hut. As we shall see, it is this hidden
subglacial north—south “rail” which deflects the ice flow from
the northeast direction of the surface slope.

3.2. Annual and seasonal surface velocities

In the area studied, components of the surface velocities in
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Fig. 3. Bed topography and terminus positions in 1952, 1961,
1971, 1974. The map is oriented as in Figure 2. Contour interval:
10m up to 2900 m. Contour interval on the glacter surface in
August 1971: 50 m. Locations of cross-sections in Figure 4 are
indicated.

the z and y directions, denoted u and v, respectively, are
positive and of the same order. Annual velocities in 1972/73
at 37 stakes are shown in Figure 2 (arrows). They converge
in the upper part of the ablation area (rows 8 and 7), and
diverge slightly downstream (rows 5-2). When annual
velocities at the same site in different years are compared, a
significant source of discrepancy may arise from the fact that
stake surveys could not always be done at the same time of
year, after the end of the melt season. In 1965 the survey
was done on 28 July, in 1968 on 12 August, and in 1969 on 19
August. Thus the interval 1965/66 includes August twice, and
the interval 1967/68 only includes one-third of August. Thus,
the increase in surface velocities, due to seasonally larger
sliding velocities, may be underrepresented in some years
and overrepresented in others. Such increases in sliding
speed should be most common at the end of June and during
July, at the climax of the melting season, but may also con-
tinue into August.

Unfortunately, to correct for this inconsistency in survey
dates, the only data at our disposal are extra surveys of
stakes 45 and 66 done on 19 June 1957 and 3 August 1958.
Assuming that seasonal fluctuations were perfectly periodic
during these years, one may infer mean velocities for 19
June—3 August (early summer), 3 August—7 September (late
summer) and 7 September—19 June (“winter” velocities).
These are given inTable L.

In early summer, velocities at both stakes increased sig-
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Fig. 4. Cross-sections of Glacier de Saint-Sorlin every 350 m, starting from Col des Quirlies, all with azimuth 111.5°. Glacier

surface is from August 1971. No vertical exaggeration.

nificantly, and the azimuth shifted counterclockwise. At
stake 45, 420 m downstream from stake 66, this increase
was a little larger than at stake 66, but it decreased faster.
Probably the summer increase of ice flow is important only
in the central ice stream. In June 1972 an extra survey
yielded an apparent uplift of the central area of the ablation
zone of up to 1 m, but this uplift was no longer present in
August (personal communication from C. Carle, 1972). The
June data were thought to be erroneous and were not kept.
Since this phenomenon has been observed elsewhere
(Hodge, 1974; Iken and others, 1983) and has been attributed
to water storage at the bed, it may not have been an error.

Table 1. Magnitude and azimuth of mean seasonal velocities

Stake  Annual 19 June—3 August 3 August—7 September 7 September—19 June
U A, U A, U A, U A,
1o 1 ° 1 ° 1 °
ma ma ma ma

66 1041 312 213 23.8 18.08 26.7 6.12 35.7
45 811 285 227 25.5 9.79 29.3 5.63 303
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3.3. Subglacial water pressures

Water levels in boreholes that reached the bed near the ter-
minus become steady in September (Table 2). Borehole 1967
was halfway between stakes 15 and 23, borehole 1970-1 was
near stake 23, borehole 1970-2 was near stake 25, and bore-
hole 1970-3 was near stake 27. The moderate values of N, the
effective pressure (ice lithostatic pressure, on the hectometric
scale, minus local water pressure), are conducive to separa-
tion on the lee faces of the microrelief. The altitudes reached
by water in the boreholes (Table 2) are consistent with a

Table 2. Steady water levels in boreholes in September

Borehole  Altitude of the bed ~ Altitude of water in borehole  Ice thickness —~ N
m m m bar
1967 2656 2670 36 1.8
1970-1 2658 2710 58 0
1970-2 2659 2697 56 1.4
1970-3 2682 2682 25 2.2
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phreatic surface sloping gently towards the terminus. Thus,
the cavities should be interconnected. Because borings into
bedrock with a diamond bit encountered about 1 m of loose
debris near the terminus (and none upstream), the intercon-
nection may well be through the debris layer.

An interesting case is borehole 1970-1, where the glacier is
more or less afloat and the bottom drag is thus low, maybe
negligible. Just 200 m downstream from this point, the glacier
ended as an ice cliff between 1957 and 1963. Before the forma-
tion of a lake, the base of this cliff was accessible. The basal ice
had very large crystals, with randomly oriented c axes. All
entrapped air was gathered into elongated, finger-sized,
vertical bubbles. During the century or so required to cover
this 200 m distance, this ice had obviously suffered post-kine-
matic recrystallization without being subjected to important
deviatoric stresses, a fact that suggests almost zero friction.

4. ANALYSIS OF ANNUAL SURFACE VELOCITIES
4.1. Fluctuations, 1965-74

Displacements between two annual surveys yield annual
velocities. These velocities are weighted means of often quite
different seasonal values, but, as with most glaciers that have
been studied, they are the only values at our disposal. The
mean velocities for the three central stakes of each of rows
2—4, which move at similar rates each year, are presented in
Table 3. Data are given for the year when velocities were low-
est, 1966/67, for 1967/68, for the year when they were highest,
1969/70, and for 1972/73 when there were more stakes, permit-
ting more detailed study. Most of the differences between
years undoubtedly come from the strong increase in sliding
velocity in summer, which is not the same in all years. How-
ever, when the annual velocity increased, it rotated counter-
clockwise only at stake 15; elsewhere it rotated clockwise.
Because accelerations differ from year to year, changes in
the driving forces should be similarly variable.

For the 8 years 1965—73 we have velocities at up to 20
sites, from stake 15 to stake 55. This gives, for each velocity
component, a table of data with 8 columns and 20 lines. Of
the 160 cells in this table, we have values in 125. As suggested
by Hantz (1981) for Glacier dArgenticre, it is worth adopt-
ing a linear statistical model to analyze these data. At site j,
in year ¢, u and v have the values:

’Lth = ﬂj + Aut + Tjt

v = v + Av + ’I";»t . (1)
Parameters #; and v; are the averages over the 8 years at a
given site. Parameters Au; and Awv; are the same for all 20 sites
in a given year ¢, and their mean is zero. 7 and T}t are centred
random variables, called residuals. Assuming that they have a
Gaussian distribution and that they are independent of each

Table 5. Magnitude and azimuth of annual velocities

Stake Nos. 1966/67 1967/68 1969/70 1972/73
Velocity Azimuth Velocity Azimuth Velocity Azimuth Velocity Azimuth
ma ' ° ma ' ° ma ' ° ma ' °

15 320 759 314 542 337 527 274 475

23-25-27 478 422 507 476 582 465 568 464
34-35-35bis 619 332 663 388 756 384 744 406
45-46-47 794 333 964 382 1034 361 982 386
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other, the best linear unbiased estimators (BLUEs) for the 56
parameters of the model are easily computed.

A simplified method for doing this, without matrix calcu-
lus, is given by Lliboutry (1974) for the case of mass balances
rather than velocities. Let hj be an occupancy function,
equal to 1 when there are data in the (j,t) compartment and
to zero otherwise. First approximations of 4; are:

> hjrue
1) [

i Zhﬁ : (2)

U

These approximations allow one to calculate first centred
approximations for the Auy:

S hi(uge — @)
J

Aug1> = Sy + const
J

Z Auil) =0
t

Successive approximations a" and Au§”> are then calcu-
lated in turn, completing the 20 x 8 table prior to cach itera-
tion using the last computed virtual values ﬂgn_l and
Au,/nil . Three successive approximations were enough to
obtain exact decimals to the third place. Finally, the residuals
for the 125 measured values are calculated.

Auyg and Avy are negative in 1965/66, despite the inclusion
of two Augusts in this time interval. In addition, Av; is posi-
tive in 1967/68, which includes only one-third of August. This
seems to prove that during this entire period, 196573, sliding
velocities were not enhanced in August and thus the compari-
son of annual velocities is sound. No systematic changes of
sign of the residuals appear, as would occur if a kinematic
wave were noticeable at this spatial scale. All residuals for u
and v are plotted in Figure 5. There is no obvious correlation
between them. Fifty per cent of the points (74, 7'}1,) lie within
a circle of radius 0.3 ma . Sixteen per cent are found outside
a circle of radius 0.6 ma ', a ratio that does not falsify the
assumption of a Gaussian distribution. The largest residuals
are for stakes 15, 22 and 28, which are closest to the receding
terminus, and for stakes 44, 45 and 47, which have large
increases in summer velocity. Given the low velocities, the
random term may be important. The mean values of Auy
and Av, are plotted in Figure 6, which may be called the odo-
graph of the mean velocity vector for the entire area studied.
The annual changes are of the same order as the random
“noise” above.

4.2. Surface strain rates and stresses: equations

To compute surface strain rates and stresses, the coordinate
axes are tilted so that the surface becomes the xy-plane.
Because the surface slope is < 0.17 at distances > 200 m from
the terminus, neither x and y, nor u and v need to be modi-
fied. From general theory, the strain rates are:

ou v
.a’w:*7 "12*97 2'.’E1:7 79 4
Car =50 Ew Exy 8a:+ (4)
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Fig. 5. Residuals of the linear model. Half of the points are
within the circle with radius v = 0.3ma ' (median value).
The six stakes that yield residuals larger than twice the median
are named (numbered ).

When the frame of reference is rotated by ¢ about the 2
axis, the new strain rates are:

Epryt = 2 _2|— S + For ; S cos 2 + €4y sin2¢p
Eyy = Exz ‘2f' €y  Eax ; Suy co82p — &,y sin2¢  (5)
Exry = — w sin 2¢ + £,y cos2¢p .
The rotation does not modify 7, defined by:
71 = (e =€) + (26)" (6)

Since 7, = 7,; = 0 at the surface, the z axis is a principal
direction for the stresses. Assuming isotropic rheology, it is
also a principal direction for the strain rates. As ice is incom-
pressible and no firn is found in the area, the corresponding
principal strain rate is:

€g =€, = —(Ezp + Eyy) - (7)
The other two principal strain rates are €1 and €3, with €; < €3
and € not necessarily between them. Let A; = —¢; and 90°

— 1 be the azimuths of the corresponding principal directions
in the zy-plane. (Azimuths are positive in the clockwise direc-
tion, whereas ¢ is positive in the anticlockwise direction.)
Using:
sin 2¢ €os 2¢1 1
= —=—=, (8)

25xy Exx — Eyy YL

Equations (5) yield:
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Fig. 6. Mean annual velocity at 20 stakes in 1965-75. The
mean velocily is a vector going from the origin lo successive
peaks of the zigzag line. Inset above shows this line (odograph)
magnified five times.

Considering the signs of the strain rates, it is found that:

1 2.,
A = — = arctan i if  Epp—Ey >0
2 el (10)

1 2¢,,
A =90° — 3 arctan i if €., —¢&, <0.

Exx — Eyy

Surface strain rates are drawn from annual displacements,
and thus the values obtained are annual means. Because most
of the seasonal fluctuations come from sliding, seasonal fluctu-
ations of surface strain rates should be much smaller than
velocity fluctuations. Therefore, it makes sense to calculate
deviatoric stresses from annual strains. An isotropic third
power law of viscosity is assumed. Let 7;; denote deviatoric
stresses, and 7 and 7 represent the effective shear stress and
twice the effective shear strain rate, respectively, thus:

y=Br’
n=(Br%)" = (B*) (11)
2?’]8.7‘,.7' = Tij -

With o, 0, and o denoting the normal stresses (with
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atmospheric pressure omitted) and noting that o, = 0 at the
surface, the last of Equations (11) reads:

o 2 1
Exze = 50 — 5
ez =370 73

Oy

) 1
2Ny, = — 30¢ + 3%

2775111 = Tay -
It follows that:
Oy = 77(4&:‘%:5 + 25(/[/) (13)
oy = 1(2E2: +4Ey,) .
Since o, = 0 at the surface, the mean normal stress is:
_ Ozt oy
3

The principal stresses (which have the same directions as

o9 =20(Epa + Eyy) = —20€.. . (14)

the principal strain rates) are o3 = 0 and:
g1 = 0y =+ 27’]61 = 27’](51 — ézz)

15
03 = 0o + 2n€e3 :217(8.3—{;;%). ( )

The value of 7y at the surface, say s, 1s obtained from:

V=20, e, +E5) 4,

= (Eau + E.yy)Q + (oo — 2éyy)Q +2¢2, + (2519)2 (16)
=31 +3¢2,.

Laboratory experiments have shown that B increases
with the water content of temperate ice. Its recommended
value is B = 044 bar *a ' (Lliboutry, 1987, p.123, 451) cor-
responding to a liquid water content of 0.65%. In the area of
Glacier de Saint-Sorlin under consideration, the water con-
tent was found to be about zero near the surface, 1.04% at
25 m depth, and 1.24% at 55.5 m depth (Dupuy, 1970). Thus
0.65% may well be a reasonable mean value for the upper
30 m. In any case, owing to the exponent 1/3, the stresses
inferred from the given strain rates are not very sensitive to
the value of B.

Let tan o, and tan oy be the slopes of the surface in the
x and y directions on the adopted hectometric (10%) scale.
These slopes were obtained from a 1:10 000 scale map, with
5 m contour interval, based on aerial photographs taken in
1971. Altitude differences were measured over horizontal
distances of 200 m. At any point, the steepest slope tan o

and its azimuth A, may then be calculated from:
tana, =tanasin A,, tana, =tana,cosA,. (17)

With p denoting ice density and g denoting gravity
(pg =0.088 bar m '), the equilibrium equations read:

aTwz . 80'1» aTu/ .
— = pgsina, + +—— = pgsina, + 9,
0z ox Oy (18)
aTyz . 87—:17y 80'y .
— = pgsin oy, + +—— =pgsinay, + 6.

Ay dr Oy

When the z axis is oriented in the direction of the steep-
est slope, the new shear stress parallel to the surface is:

Tys = TyeSiN Ay + 7y, cos Ay - (19)

Because surface slopes are small, the difference between
sines and tangents 1s negligible. Thus, if the two last correc-
tive terms in Equations (18) are negligible, the classical
relation 07,/,/0z = pgsin «a would result. This, however, is
not the case: we shall see that the derivatives of the surface
stresses are not negligible.
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4.3. Strain triangles and stress triangles

To calculate strain rates from Equations (4), we need the first
partial derivatives of functions u(z,y) and v(z,y), which
are known only at a limited number of points. To obtain
these, we use an interpolating function that is continuous
everywhere, but within a triangle formed by three neigh-
bouring stakes it is a linear function of x and ¥, so its first
partial derivatives are uniform, namely:
u; = ax; + by; + ¢

(20)

vi=dz; +by +7 (i=1,2,3).

To compute a, b, @, V', it is convenient to introduce the mean
of the values of ; and y; at the three corners of a triangle,
say g and yg, and the mean of the velocities, say ug and
(Ven

ri—2a=X; yi—ye=Y;, XiYo-XoV1=A
ui—ug =U;, vi—vg=V,
a:U1Y2—U2Y1 b:Xle—X2U1
A ’ A
a/:V1Y2—V2Y1 b,:X1V2—X2V1.
A ’ A

(21)

Such triangles are called strain triangles. In the present study,
their numerical names have three digits. The first two digits are
the number of a stake at a corner; the third digit increases from
west to east as for stake numbers. Strain triangles have already
been used by other authors such as Hambrey and Miiller (1978)
and Hambrey and others (1980). Their strain triangles, how-
ever, are often of quite different sizes, and include some very
acute or very obtuse angles.

The following objective procedure allows one to build
strain triangles of similar size.

. The distance from every stake to its nearest neighbour is
measured. Let d be the mean value of these distances.
(For the net of 37 stakes of Figure 7, d =137.1m.)

2. Next, draw all segments linking two stakes that are
between 2d/3 and 2d apart. When two such segments
cross each other, the longer one is suppressed. A mosaic
of strain triangles is thus obtained, along with, perhaps,
some useless polygons. The range of triangle sides may be
increased slightly if there are not enough strain triangles.
In Figure 7 three additional triangles were obtained by
raising the upper limit of 2d from 274 m to 290 m.

The surface stresses inferred from surface strain rates
are considered to be uniform within each strain triangle.
Nevertheless, these stresses may be used to estimate the x
and y derivatives of stresses by assuming that the calculated
stresses apply to the centres of mass of the strain triangles.
Then, approximate values of the derivatives are calculated
as above, assuming that they are constant within triangles
having, as corners, the centres of mass of the strain triangles.
These new triangles will be called stress triangles.

If all the centres of mass of the strain triangles were used
to form a mosaic of stress triangles, the latter would be smal-
ler (in the case of Figure 7, d =88.1 m instead of 137.1m), and
hence more numerous. Furthermore, many of them would
be too obtuse. This can be understood by considering the
ideal case of a perfect net of stakes that yields equal equilat-
eral strain triangles (Fig. 8). The centres of mass of the strain
triangles form a mosaic of regular hexagons. Each of these

131


https://doi.org/10.3189/172756502781831575

Journal of Glaciology

Ing. 7. Stakes in 1972/73 (crosses), strain triangles (solid
lines) and their centres of mass ( circles ), and stress triangles
(dashed lines ). Names of stress triangles are given in Figure
11. Same orientation as Figure 2.

hexagons may be divided into an equilateral stress triangle
of the same size as the strain triangles, plus three smaller
obtuse triangles. The obvious solution is to fuse three obtuse
triangles from neighboring hexagons into a single equilat-
eral triangle of the same size as the others. This means that
many centres of mass of the strain triangles (one-half if the
net of stakes had an infinite extent) must be dropped.

The data for 1972/73 (Fig. 7) are not far from this ideal
case. Fifty-one strain triangles are drawn from 37 stakes.
Twenty-eight centres of mass out of 51 have been used to
build 33 stress triangles. The number of output values is
about the same as the number of input data. This is an essen-
tial precaution when correlations in the output are sought.
By using a single analytical function to interpolate scalar
data over many stakes, the number of output values could
be increased at will, but since no mathematical handling
can increase the quantity of information, most of the corre-
lations in the output would be mathematical artifacts.

As shown by the following example, the direct calcula-
tion of stress gradients avoids the potentially ambiguous cal-
culation of second derivatives of the velocity components.
Consider the ideal case depicted in Figure 8, and calculate
0?u/dx0y at the origin from the value at the origin (ug) and
those at the six corners of the hexagon centred at the origin
(w1, ug, ..., ug). First Ou/Or and Ou/dy are calculated at
points A, B, C around the origin (cf. Fig. 8). Then, from these
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Fig. 8. Ideal stake net, with corresponding strain and stress
triangles. The notation shown is used in the calculation of
the mixed second derivative at the origin ( Equation (22) ).

values, it is found that at the origin (d denoting the distance
between stakes):

2(@%#
oy\oxr) — /3d2
0 (0Ou 1

%(8_7;) :ﬁ(—m + ug + 2up —2U3>-

The net of stakes surveyed from 1966 to 1972 is not so
good because the main goal then was to measure mass bal-

(ur — ug + 2us — 2ug)
(22)

ances along traverses. Therefore, on row 4 three stakes out of
six are useless for the present study, whereas on row 3 the
absence of a stake 33 and the loss of stake 36 are unfortunate.
For studying variations between successive years the situ-
ation is worse because many stakes were not surveyed in all
7 years. We will compare the displacements in 1966/67, 1969/
70 and 1972/73. If we replace stakes 35 and 37 with stakes
35bis and 37bis nearby, we then have 12 permanent stakes.
These yield only eight acceptable strain triangles, and three
acceptable stress triangles (Fig. 9).

4.4. Annual surface strains in 1972/73

Surface strain rates for 1972/73 (when data are most numer-
ous) are displayed in Figure 10. The principal strain rate &;
is drawn at the centres of mass of the strain triangles, but
recall that strain rates are assumed to be uniform over the
triangle. Except for triangle 656, €; is always the most com-
pressive (negative) principal strain rate. The most extensive
principal strain rate is either €; or €5. Only in the latter case is
this strain rate shown in Figure 10. A pattern emerges in these


https://doi.org/10.3189/172756502781831575

Lliboutry: Velocities, strain, stress, crevassing and faulting on Glacier de Saint-Sorlin

Fig. 9. Strain and stress triangles constructed using stakes that
lasted from 1966 to 1973.

strain rates. In the western and lower part of the area,
€9 < €3; there, most of the compression, £;, is balanced by
horizontal extension. Elsewhere (except in triangle 255), most
of €; is balanced by a vertical extension.

The highest effective shear strain rates at the surface, and
hence the lowest viscosities, 7, are found in strain triangles
586, 588, 589 and 766, 767, 768, in the upper and eastern part
of the ablation zone, where ice coming from the main accu-
mulation area converges into a much narrower ice stream.
There, 7, given by Equations (6), (11) and (16), is about
10 bar a, the effective shear stress, 7, is about 0.5 bar, and o,
is about —1 bar. Effective shear strain rates are low, and thus
viscosity is high, in the six strain triangles 366—378 where the
surface slope is fairly uniform (tan o = 0.15) and the thick-
ness is 40-55m. In triangle 377, 7 = 0270bar and 7 =
312 bara. In the five other strain triangles, 7 ranges from
0.306 to 0.346 bar, and 1 from 24.3 to 19.0 bar a.

The lowest effective shear stress and highest surface vis-
cosity (7 = 0.240 bar, n = 39.6 bara) are found, isolated, at
strain triangle 755 where the velocity is the fastest (144 ma '
average for 1965—73). With continuous derivatives (as in reality),
at a point where both components of velocity are a maximum,
strain rates must be zero. This is an sotropic point. Stable
patterns of principal strain-rate trajectories have been dis-
cussed by Nye (1983). He has shown that the most frequent
case in glaciers should be a “monstar” pattern around a
single isotropic point. This is indeed the case in the ablation
zone of Glacier de Saint-Sorlin, with the isotropic point in
strain triangle 755.

An important question is to what extent strain rates (and
hence deviatoric stresses) depend on the size of the strain tri-
angles. To study this, strain rates have been recalculated with
data from only 14 stakes (15 strain triangles) covering about
the same area as the 51 strain triangles used above (Fig. 13a,
shown later). Because power dissipation per unit volume is
371/3’5/3/3, the arithmetic mean of 7’2“3 has been adopted
for comparison of these two analyses. The 3/4 power of this
arithmetic mean will be called the power average of ;.
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In 197273, with 31 strain triangles this power average was
0.0280 a”". With 15 strain triangles it becomes 0.0254 a”". This
difference is barely significant. However, the small influence
of strain triangle size does not allow one to decrease the den-
sity of stakes. With the direction of principal stresses known at
only 15 points, the monstar pattern is not clearly seen and the
isotropic point is missed.

4.5. Crevasses and faults: flow modes

Near-surface strain rates and stresses in 1972/73 will be used
to suggest a tentative explanation for crevasses and faults in
the ablation area. Theoretically, crevassing requires a ten-
sile stress large enough to fracture ice. Because atmospheric
pressure, which adds to all normal stresses, is omitted in all
our calculations, it might be thought that the principal ten-
sile stress must be much larger than 1 bar. However, fracture
requires only a local and momentary stress, while the values
computed above are averages on a hectometric and yearly
scale. Moreover, after sunny days melting ice grains at the
surface are actually already more or less separated by water
films. Minute cracks already exist, and stresses are enhanced
at the tips of these cracks. Therefore, the important factor is
the extensional strain rate, which opens the crack. Here, the
calculated annual values are pertinent. Fieldwork on cre-
vasse formation has made little progress since the pioneering
work of Meier (1958), Schram (1966), Ambach (1968) and
Holdsworth (1969). These authors only studied systems of
transverse crevasses, and only two of the five glaciers exam-
ined were temperate (Saskatchewan Glacier, Canada, and a
tributary of Hintereisferner, Austrian Alps). According to
Meier, crevassing requires a principal extensional strain
>1%a ', but Ambach thought that it must be >3%a .
In contrast, Hambrey and Miiller (1978) found a lack of cor-
relation between crevassing and the extensional strain rate.
The few small crevasses in the ablation zone of Glacier de
Saint-Sorlin, as they appear on the aerial photographs of
August 1971, are shown in Figure 10. The most important are
the transverse crevasses between stakes 73 and 74. These
formed in the accumulation zone, were bridged and hidden
by snow, and are now closing (€3 reaches —2.31% a 'in strain
triangle 733). Longitudinal crevasses form in triangles 342,
445, 555,666 and 768. In all of these cases the following three

conditions are met:
g3 >1.2%a ", 01<0. (23)

Among the triangles that satisfy the first condition, tri-
angles 434 and 444 are excluded by the second. The third
condition, which is justified below, excludes triangle 433,

o3 > 0.2bar,

although it has the largest 03. Among the 51 strain triangles,
the only ones in which all three conditions are satisfied and
in which, notwithstanding, no crevasses appear, are trian-
gles 545 and 554, just upstream of triangle 535 in which
there is crevassing. Since some small changes in the strain-
rate field between 1971 and 1973 may be expected, this dis-
crepancy does not disprove the crevassing conditions above.

The faults considered here are not the ones with conspic-
uous overthrusts that are often seen at the fronts of advancing
glaciers (Lliboutry, 1963, plate LVIb; Post and LaChapelle,
2000, p.44). In general, no surface displacement is apparent
in the faults on Glacier de Saint-Sorlin, either because thrust-
ing has ended or because its rate 1s much slower than the
ablation rate. In old clean glacier ice, faults are revealed by
impurities on the line along which the faults intersect the sur-
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Fig. 10. Principal strain rates at the surface in 1972/73. Orientation and scale are as in Figures 2, 3 and 7. Thick line denotes
compressive strain rate and dashed line, extending strain rate where it is larger than the strain rate normal to the surface. The
monstar pattern is clearly seen. Dot-dash line is axis of the subglacial valley. Numbers on a dotted straight line are sites where
Saults were observed in 1957. Double thin lines are crevasses in August 1971
face. Because there are no impurities in the actual fault the fault-line. The upper side (hanging wall) can be removed
plane, these impurities must have been carried by meltwater by a single blow with an ice axe, exposing a very planar surface
which indicates that there must have been a small step along that dips 45-70° up-glacier. These faults are well described in
134
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Klebelsberg (1948-49, p.62-69), and called in German Scer-
rissen (shear cracks). The only American author who mentions
them is Goldthwait (1973).

I observed such faults on Glacier de Saint-Sorlin in August
1957 (Lliboutry, 1958, 1965 (p.607-609)), but I did not look for
them systematically. I studied them only along a straight
traverse (dotted line in Fig. 10). Sites I and 2 (denoted A and B
in 1958) are in strain triangle 535; sites 3 and 4 (formerly C and
D) in triangle 445; and sites 5 and 6 (formerly E and F) in
triangle 344. While Klebelsberg (1948—49) only mentions
reverse faults, implying compression, I also observed normal
faults, implying extension.

This raises an interesting question: why a normal fault,
rather than a crevasse? This may be explained using the
classical theory of Mohr’s envelope as a fracture criterion
(cf,, e.g., Lliboutry, 2000, ch. 12). According to this theory,
the plane of fracture contains the direction of the intermedi-
ate principal stress. Several cases, which will be called modes
as in fracture theory, are then possible. Crevassing will be
denoted C, reverse faulting R, and normal faulting N. This
symbol will be followed by Tor L depending on whether the
feature at the surface tends to be transverse (perpendicular)
or longitudinal (parallel) to the flow direction. Recall that in
this paper o9 is always normal to the surface and is zero.

01 < 03 < 03 (reverse faulting modes): If the compres-
sive stress 1s large enough, there is fracture by shear, with
a fault meeting the surface along the principal direction
in which o3 acts (modes RT and RL). Locally o; then
drops, and the greatest compressive stress becomes o3.
If o3 1s large enough, another reverse fault, in a perpen-
dicular direction, may appear (mode RR).

01 < 09 < 03 (crevassing modes): The fracture plane
must be vertical. If €3 is large enough a crevasse opens
(modes CTand CL). Then, locally, 03 =0 = 03 and re-
verse faulting in the o direction becomes possible
(modes CTR and CLR).

09 < 01 < 03 (normal faulting modes): If o3 is large
enough, there should be a normal fault cutting the sur-
face in the oy direction (modes NT and NL). Then o3
drops and, if oy is large enough, a normal fault in the
perpendicular direction may also appear (mode NN).

Thus, ten different modes are possible, whereas with the
oversimplified two-dimensional glacier model, only modes
RT (“compressive flow”) and CT (“extensive flow”) are
possible. As shown inTable 4, in August 1957, at the six sites
1-6, I observed five distinct modes. At the same sites in 1972/
73, only two modes are predicted. Thus, 16 years after my
observations, a general increase in speed and retreat of the
terminus have modified the flow modes. With the strain-
rate—stress field of 1972/73, normal faults should not appear
and reverse faults should be much more frequent.

The formation of crevasses and faults explains why the
effective shear stress at the surface never rises above

Table 4. Flow modes ( symbols are explained in lext)

Observed mode, 1957 CLR NT NN CLR RT RL RL NN
Predicted 1972/73 CLR CLR CLR CLR RT RT
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Fig. 11. Stress triangles for 1972/73. Velocity directions at the cor-
ners of the triangles (centres of mass of strain triangles) are
wndicated by thin lines. In each stress triangle the driving forces
per unit volume at shallow depth are drawn. These are the com-
ponents of gravily along the steepest slope (double line) and
extra_force due to stress gradients (arrow). The origin of this
vector (small circles) is arbitrary, and chosen to make the figure
clear. The azimuth of the resultant driving force, (I'y,I'y ), is
indicated by a line crossing the stress triangle. ( The driving
Jorce is assumed to be uniform within each stress triangle,)
Orientation of map is as in Figures 2, 7 and 10.

0.50 bar. In 43 strain triangles out of 51, it remains in the
range 0.33-0.46 bar, and its modal value is 0.38 bar. To model
glacier flow at the hectometric scale, a glacier may be consid-
ered as a perfectly continuous medium only below some criti-
cal value, 7, of the effective shear stress. Up to this value, it is
non-linear viscous. When this value is reached, faulting
makes the glacier behave like a perfectly plastic body. At
the surface, 7 is about 0.38 bar. I speculate that it should
increase with pressure and become of order several bars at
the bottom. Otherwise, microrelief would cause extensive
faulting, and the sliding velocity would not be determined
by the basal shear stress.

5. DRIVING FORCES AND SLIDING
5.1. Shallow driving forces in 1972/73

The 33 stress triangles that can be constructed with the
1972—73 stake net are drawn in Figure 11. These form three
stripes denoted L (left, looking downstream), M (middle)
and R (right). In each stripe, they are numbered going
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downstream from 1 to 14, so that when two stress triangles in
neighbouring stripes have a common side, they have the
same number. Two triangles do not belong to these three
stripes. According to the rule above, they are denoted LLI13
and RR8. The directions of surface velocities (ug, vg) at the
corners (Zg, yg) of these stress triangles are indicated. Their
azimuths are A, = arctan(ug/vg).

At any depth, there is a gravitational driving force per
unit volume parallel to the surface, with components
(pgsin ay, pgsin ). This force is in the direction of the
steepest surface slope, with azimuth A,. At shallow depths,
horizontal gradients of stresses yield an important correc-
tive term, with components (0, 6,) (cf. Equation (18)). The
total driving force per unit volume, parallel to the surface,
has the following components and azimuth:

Iy = pgsina, +6,, T'y=pgsina,+6,,

A = arctan& . (24)
y

The surface slope and the corrective terms (0., 6,) have
been determined assuming that they are uniform within a
given stress triangle. All of the data are displayed in Figure
11. Because our calculation of the stresses excludes smooth
variations, the vectors (6, 0,) are sometimes more or less
opposite in adjacent stress triangles as, for example, in M3
and R3, L.12 and M12, and 110 and LI11.

Comparing, for each stress triangle, the azimuths (1) of the
surface slope at its centre of mass (A, ), (2) of the total driving
force near the surface (Ag), and (3) of the mean surface
velocity (mean of the velocities at the three corners of the tri-
angle) (Ay), stress triangles may be classified as follows:

Group I: A < Ay < A,
L12, 113, L14 on the lefi; R3, M8, R11, R12, R13 on the
right.

Group 2: A, < Ay < Ag
M1, M2, M3, M4, L8, L0, MI3, M4, along a central
stripe.

Group 3: Ay < As, Aa
(a) As < Aa: R4, R5, R6, R7, R8, RR8, R9, M10
(b) As = A, M9, M1l
(¢) Aa < Ag M5, M6, M7, R10, M12

Group4: As < Ay < Ay
LLI3, LII.

The usefulness of this classification will appear in section 5.3.
5.2. Friction and sliding velocity: approximations

The shear stress against the bed (hereinafter called the fric-
tion), the sliding velocity, and the sliding law that relates
them, have no meaning if the relevant time- and spatial scales
are not specified. With respect to the former, we are dealing,
herein, with mean annual velocities and thus ignore vari-
ations on shorter time-scales. Therefore, we can, at best, only
obtain an empirical sliding law that could not be inferred
from theory and that does not take subglacial water pressures
into consideration. With respect to spatial scales, herein the
“bed”does not refer to the real interface between ice and rock,
but rather to a smoothed surface (£5m), with a smoothing
length of 100-200 m, as mapped in Figure 3. The difference
between the actual and the smoothed surfaces, termed the
microrelief, includes bumps and crags up to 5 m high, possibly
hollows up to 5 m deep, and possibly steps with a change in
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elevation of up to 10 m. In addition, near the terminus, as
noted, there is about 1 m of loose debris between the ice and
the rock. In the deglaciated forefield, “tails” of moraine in the
lees of crags are very long. Similar features should exist
beneath the glacier margin. All these unknown details, in
addition to the local stresses and fluctuations of velocity that
they provoke, are not considered. We are interested only in
the mean friction and mean velocity. Herein, what are called
“extra” bottom stresses and strain rates are the ones that are
effective on a hectometric scale, and may be considered as
uniform within every stress triangle.

The shear stress on a basal plane parallel to the surface
has components 7, and 7,.. These are not the same as the
components of the friction, 7,, and 7y,y. Ty, and 7, represent
the shear stress on the smoothed bed, which is not parallel to
the surface. However, because the exposed microrelief does
not show regular furrows and ridges in sound rock, and
because the “tails” of loose debris follow the direction of the
flow, it is assumed that the friction and the sliding velocity at
any location are always in the same direction. Let us esti-
mate the difference between these stresses.

Bed slopes in the = and y directions, denoted tan 3, and
tan 3,, as well as surface slopes tanc, and tanc,, are
assumed to be small. Tor the zy-plane to become the smoothed
bed, the frame of reference must be rotated using a rotation
matrix which for small angles can be approximated by:

1 O —93; 0 = . — /8
R=|0 1 -0,{, ° " inradians. (25)
0, 0, 1 0y =y, — 0y

The stress matrix ¥ becomes ¥’ = 'R Y R. In this way
we find:

The = Tgz T+ (Uz - Ua:)aa: - Ttuez/
= Tyz + 277|_(5zz - é.’L‘IL‘)e./L‘ - éwyGyJ

26
0y)0y — Tuybs (26)

Thy = Tyz + (Jz -

= Tye + 20[ (€22 — Eyy)0y — Exyl] -

All the stresses and strain rates in this equation, as well as
the viscosity, are values at the bottom and are unknown. If
the strain rates involved in the corrective terms were the same
as at the surface, they would be of order 10 ®a . Angles 6,
and 0, are of order 10 ! At the bottom, 217 <10 bar a, and thus
the corrective terms would be of order 10 2 bar at most. In
fact, however, there are extra bottom strain rates, and correc-
tive terms as high as 0.1 bar should be possible. This is, never-
theless, much less than the probable values of 7, and 7, at
the bottom (estimates below are in the range 0.4-0.9 bar).
Therefore, to totally ignore the corrective terms and to
assume Ty, R Tz, Thy ~ Ty; should not introduce serious
errors in the qualitative study below.

Another approximation will be made. Consider the rela-
tions:

ou Ow Ty . v ow Ty

0z O 0z Oy (27)

Both of these quantities should equal 0.1-02a . Near the
bed, the vertical velocity (relative to the surface) is:

1

w=|(0,u)” + (9yvb)2}2 <lma*'. (28)

w varies slowly in space, so |Ow/0z| and |0w/dy| should be
of order 10 ?a . These derivatives thus may be neglected in
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Equation (27). With this approximation, putting the origin
of the z axis at the bed:

h
TIZ
U — Up & /—dz,
n
0

The integrand is zero at the surface (2 = h) and becomes

h

vs—vbz/@dz. (29)
n

0

large near the bottom. Because

Un Tha Trz
— = , (30)
Ub Thy Tyz bottom
an admittedly rough approximation is:
Tu Uy
= ~— =tan A, . (31)
Tyz I bottom Us

5.3. Bottom driving forces vs shallow driving forces

Two criteria may be used to show that, for a given stress tri-
angle, the extra bottom driving forces are important and
not related to the surface driving forces. (But the reverse is
not true: these criteria may not necessarily be fulfilled, even
where extra bottom driving forces, not related to surface
forces, are important.)

First criterion: A, is not included between A,, and As.

At shallow depth (h—z), the extra driving force has compon-
ents 6, (h—z) and 6,(h—z), which are known. If this extra
driving force comes from horizontal stresses of distant ori-
gin that are transmitted at shallow depth, it should go
through a maximum and vanish at larger depths. Then
A, = A,. If, on the contrary, it has a local cause at the
bed, it should vary more or less as (h—z)n and remain im-
portant near the bottom. (It would be exactly so if the strain
rates zz, €4y and €,y were independent of depth.) Assuming
that it does not vary at all, another limit for A, is found:
A, = Ag. Thus, when A, is not included between A, and
As, bottom extra driving forces are important and have a
direction quite different from the surface driving forces.

According to the classification in section 3.1 above,
important bottom extra driving forces exist in groups 3 and
4. The stress triangles of group 4, LL13 and L11, are the only
ones on the western side of the subglacial valley. The 15 tri-
angles of group 3 are on the eastern side of the subglacial val-
ley, before it turns eastward. Thus the slopes on both sides of
the subglacial valley cause important extra driving forces.
These forces force the glacier flow closer to the south—north
direction of the subglacial valley, deviating from the south-
west—northeast direction of the steepest surface slope.

These bottom extra driving forces cannot be computed
without adding some assumptions and simplifications that
are questionable in this context. Even with these assump-
tions and simplifications, the computation must be done
numerically and involves areas of increasing size as larger
depths are considered (Van der Veen and Whillans, 1989).
Therefore, it has not been attempted. To derive an empirical
sliding law, without preconceived ideas about its form, the 17
stress triangles described above cannot be used.

Second criterion: A computation that ignores unknown bottom extra
driving forces yields a negative sliding velocity.

Assuming that no unknown driving forces appear near the
bottom, Equation (29) can be integrated from the surface to
the bottom. With the approximations discussed above, the
friction T, is then included between Tél) = (pgsin a)h and
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04 1

Fig. 12. Attempt to find an empirical sliding law v,(Uy,), on
the hectometric and annual scales. Straight segments link lim-

s of (T, Uy ) _for each stress triangle. Dashed lines represent
Equation (33) for different values of C.

T]§2> = (2 + Ffj)l/Qh. Assuming that the shear stress paral-

lel to the surface is the only deviatoric stress, a maximum
value of the sliding velocity is obtained:
h4
1

When both estimates of 7, yield negative values for Uy,
the starting assumption is wrong. Among the 16 remaining
stress triangles, this a(gPlies to L12, M1 and M2, the only ones
for which 7'1()1> are >1.04 bar. These three triangles
are in the subglacial valley, probably over slight adverse
slopes that impede the flow.

up, < ug — BT (32)

and 7

5.4. Can an empirical sliding law be suggested?

The estimated upper and lower limits of 73, and Uy, for the 13
stress triangles that remain, are plotted in Figure 12. For
each triangle, the surface velocity adopted is the arithmetic
mean of the values at the three corners. The two limits are
linked by a straight line. A sliding law 7, = 7,,(Uy,) will be
acceptable if its curve crosses most of the 13 segments.

The result is disappointing: no sliding law emerges from
this figure. For example, a commonly assumed sliding law 1s
of the form:

n = CU;. (33)

Such curves are drawn in Figure 12, with values of C' ran-
ging from 0.550 to 0.338 bar (ma ") "°. Different laws are
acceptable for 5 or at most 6 stress triangles out of 13. The
reason for the failure involves much more than the rough-
ness of the bed. The winter values of the effective pressure
N, and the duration of the period with N =~ 0 during the
melt season are also important and should differ widely
from one stress triangle to another.

5.5. Surface slope and friction on the terminal ice ramp

At a fixed point, the annual variation of the surface altitude is:

%: Ustan0+€.zzh+bv (34)

where h is the thickness and bis the mass balance (in micea ).
As an application, consider point x = 241, y = 905. This
point is the centre of mass of strain triangle 254 with corners
at stakes 15, 23, 25 in 1972/73. This triangle was then at L =

137


https://doi.org/10.3189/172756502781831575

Journal of Glaciology

230 m from the terminus, over the axis of the subglacial val-
ley which has a very slight camber or saddle here. Thus the
bed has a zero slope (§ =0, tan § = tan ). At this point at
the end of September 1972, b = 34 m, tan o = 0.18, and for
strain triangle 254, in 1972/73, €,, = 0.0178 a ! As values of
the surface velocity and of the annual balance, the means
of the values at the corners are adopted: Us = 4.44mafl,
and b = (—272 - 226 — 229)/3 =242 micea " Thus:

oh
¥ =(4.44x 0.18) +(0.0178 x 34) —2.42 = —1.02ma .

(35)

Equation (34) may be applied at the very terminus to de-
termine the balance at that point from the rate of recession
of the terminus, say — L. Using indices 0 for the values at the
terminus, we have:

oh .
—| = Ltanfy = Uytanfy + by . (36)
ot 0

In 197273, L = ~136ma ', tan ay = 0.27, and tan 3y =
0.105, so tanfy = 016. Uy is less than in the previous
example because of the compressive strain in the direction
of flow. If the strain rate of triangle 254 holds down to the
terminus, Uy would be 0.3 m afl, but if the compressive
strain decreases linearly to zero, Uy would be 24m al.
Thus: —2.22 < by < —2.56 m. Because the balance at stake
15 for 1972/73 was —2.72 m of ice, and the terminus was 50 m
lower, a balance close to —3.0 m might be expected, but ow-
ing to drifting, the accumulation of snow, relative to the
arca-averaged snowfall, should be lower at the upper point
and higher at the terminus where the slope changes from
0.27 on the terminal ice ramp to 0.105 ahead of it. Each year
the accumulation of wind-blown snow flattens the ice ramp,
which then becomes more convex in late summer. Weather is
generally fine then, and ablation remains important. The
ablation is caused mainly by a warm breeze ascending from
the valley in the afternoons (Martin, 1975). The air cools as it
flows over the glacier, so ablation is much higher close to the
terminus. In mid-August 1971, mean surface slopes over suc-
cessive 100 m segments, starting from the terminus, were

(based on a 1:10 000 map drawn from aerial photographs):
0.225,0.225, 0.170. At the end of September 1972 (based on an
accurate survey) they were 0.270, 0.240 and 0.160.

The mean friction on the bed over the last 230 m can be
estimated, assuming that the flow in the centre of the ice
ramp is two-dimensional (no shear stresses on the sides im-
peding the motion), and that the bed is a plane with the
same mean slope: tan 8 = (2656 — 2640)/230 = 0.070. The
down-glacier normal stress acting at the upper end of this
ice wedge is assumed to be, over the 34 m of thickness, the
same as that computed at the surface:

o=o,sin’ A, + oy cos® Ay + Tpysin2A, = —0.85bar.
(37)
With tan 0 denoting an average of the values of 0 at the

upper and lower points (0.18 and 0.16, respectively), the for-
ward equilibrium of the ice ramp reads:

L
Th = (—04—% sin )tanﬁ

= (0.85+0.70) x 0.17 = 0.26 bar.

(Note that this equation cannot be applied with L < 100 m
because we are dealing with friction on a hectometric scale.)
The mean sliding velocity, (U + Up) /2, lies between 24 and
34ma . This implies surprisingly low friction. From Figure
12, we might expect 0.7 < 7, <0.9 bar with this sliding speed.
Reverse faults and overthrusts have not been observed and

(38)

cannot explain the discrepancy. Separation should be exten-
sive year-round, so these values of 7, near the terminus could
be compared with those in the remainder of the ablation zone
during early summer, if they were known.

5.6. Changes in surface strain rates and driving forces
from year to year

A complete computation of strain rates, viscosity, stresses
and extra driving forces 0, 6, due to horizontal stress gradi-
ents for different years has been done using measured stake
velocities (as opposed to BLUE values). This has been done
for 1966/67 (when the velocities were a minimum), 1969/70
(when they were a maximum) and 1972/73 (see Table 5). As

Table 5. Evolution with time of surface velocities and surface principal strain rates

Strain triangle Corners ( stake Nos.) Year Centre of mass Strain rates Azimuth of
Us Ay €1 &y =¢x €3 é1=4
ma ! ° 10 *ma’! 10 *ma’ 10 °ma ! °
254 15-23-25 1966/67 3.96 483 —16.14 12.08 4.06 19.8
1969/70 475 48.0 —14.88 1175 313 39.0
1972/73 444 45.5 —-17.82 17.78 0.04 39.2
256 15-25-27 1966/67 4.31 515 13.28 3.87 941 314
1969/70 5.23 487 —14.58 1568 -110 39.9
1972/73 4.92 472 1765 14.38 327 41.7
343 22-23-34 1966/67 4.57 29.9 -9.68 0.57 9.11 24.9
1969/70 544 37.5 —-12.85 6.24 6.61 222
1972/73 5.39 39.3 13.70 569 8.01 28.5
345 25-34-35 1966/67 591 33.8 —-1045 6.27 4.18 259
1969/70 7.08 40.0 —14.78 870 6.08 26.0
1972/73 7.01 39.0 1475 13.96 0.79 226
357 27-35-37 1966/67 5.86 39.0 -5.10 262 248 311
1969/70 7.29 431 5.83 2.85 298 46.6
1972/73 714 43.7 —4.56 -0.23 479 45.3
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noted, only five strain triangles and three stress triangles a 1961-62 b 1972-73
can be compared for these three years.
The evolution with time of surface extra driving forces 86

: \ S 5 o1 86— 85 7585~
(05 and 6,) is puzzling. The variations were of opposite sign, ] 78— l 73
and in the same year were opposite in L14 and M14bis. In \ /
MI3bis and Ml4bis, the behaviours of 6, were roughly 68 65 /615 3
similar, while those of 6, were not. There are too few stress \ / l 58 55 l

triangles to obtain any general pattern that might lead to AT—— 45 l / [
some deterministic explanation. 38/ \36/ \
2 -

5.7. Comparison of strain rates in 1961/62 and 1972/73

Using the 1961/62 stake surveys, 15 strain triangles can be 16\14 15
constructed. For the sake of comparison, the same number
of strain triangles has been kept for 1972/73. While the 1966—
73 data did not clearly show a decadal trend in the velocities,

such a trend becomes apparent for 1961—73. The arithmetic
mean of the surface velocities at the 15 centres of mass
increased from 6.00ma ' in 1961/62 to 8.13ma ' in 1972/73.
The power-averaged effective shear strain rate increased from
00170 a ' to 0.0254a ', more or less in proportion. However,
this quantitative comparison may be fallacious because the
strain triangles are not the same. Therefore, the 15 principal
strain rates for these two years have been drawn on the same
figure (Fig. 13), placing them, as in Figure 10, at the centres of
mass of the respective strain triangles.

Starting from the terminus and going upstream along
the axis of the glacier (stake column 5), in 1972/73 the longi-
tudinal compressive strain rate, |€;], decreased continuously
and vanished at the isotropic point, roughly at y = 0. In
1961/62, |¢1| was smaller at the terminus by about one-half,
but increased up-glacier, reaching its 1972/73 value at y =
500 m. In addition, there is a single datum on the axis, near
y = —200 m, which seems to indicate that the isotropic point
was there. Moreover, on the righthand side (stake column
7), there were large extending strain rates, €3, that had dis-
appeared by 1972/73. Thus, from 1961/62 to 1972/73, with in-
creasing velocities and terminus retreat, the lower part of
the ablation zone became less extensive in the transverse
direction, while the isotropic point probably moved down-
glacier about 200 m. At this point, flowlines begin to diverge
instead of converge. Thus a central stream of ice of given
width in the glacier tongue tapped a wider area of the accu-
mulation zone in 1973 than in 1962.

Further stake surveys on Glacier de Saint-Sorlin have
been analyzed by Vincent and others (2000). Between 1972/
73 and 1982/83 the continuous thinning of the ablation area,
which had averaged —1.0 ma ' since 1952, stopped. Notwith-
standing this, during this time period (and until 1984/85)
velocities increased along the axis of the glacier (Vincent
and others, 2000, fig. 6). In my opinion, this was not due to
a decadal trend in the subglacial conditions, as suggested by
these authors, but rather to a change in the flowlines. The

lower part of the ice stream that they consider narrowed e N o S
with time. i v
X7 Nagps !
o X ;T 1%al
6. CONCLUSIONS ~ P el hammmy 1% a
¥ =7 (1961)
Let us restate the questions that have been answered, and
recommend future studies that may further clarify them. Fig. 13. Comparison of surface strain rates in 1961/62 and
In the ablation zone, surface velocities fluctuate from 1972/75. (a, b) Respective strain triangles (schematic). (¢)
year to year, both in intensity and in direction, in a random Principal strain rates, indicated as in Figure 10 (black =
way. It is only for 1972/73, when the stake net contained 37 1961/62; white = 1972/73). The fifth column of stakes ( stakes
stakes, allowing analysis of 31 strain triangles with sides of 15-85) runs along the axis of the glacier.
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210-290 m, that the trajectories of principal strain rates are
precise enough to show the monstar pattern clearly. The 15
strain triangles drawn from the 1961/62 data do not show
such a pattern, but it seems that the isotropic point, where
streamlines cease to converge and begin to diverge, was
then about 200 m further upstream. This increase in the
area of convergence with time may explain the tendency
for velocities to increase between 1966/67 and 1984/85. Thus,
to consider the mass balance of a central ice stream with
fixed sides may be unsound.

By introducing the creep law for ice, determined in the
laboratory, the stresses at shallow depth can be calculated
for each strain triangle. Strain rates and stresses are pertinent
to crevassing and faulting. While the classical two-dimen-
sional glacier model leads to 2 flow modes (compressive or
extensive), in real three-dimensional glaciers 10 flow modes
must be distinguished. Five of these were observed in 1957. An
explanation has been suggested for the observation that an ex-
tensional strain rate may cause either crevassing or normal
faulting. It seems that, owing to crevasses and to normal and
reverse faults, the effective shear stress (on the hectometric
scale) cannot rise above some limiting value 7.. When this
value is reached, strain rates become undetermined, as in clas-
sical perfectly plastic bodies. It appears that a realistic value of
T, at the surface is 0.38 bar. How 7. increases at depth remains
an unsolved problem.

Friction on the bed and the sliding velocity were sought
for 33 stress triangles, but 20 of these were rejected because
of proven but unknown extra driving forces acting near the
bottom. Even so, no precise empirical sliding law can be sug-
gested. An unknown and essential factor is the increase in
area and in time of the zone with interconnected subglacial
cavities, possibly accompanied by uplift, at the climax of the
melting season. In any case, the very low friction near the
terminus (71, ~0.26 bar) is a further mystery.

It has been shown that the flow deviates from the direc-
tion of the steepest surface slope owing to extra bottom driv-
ing forces that arise from the shape of the bed. There are also
extra driving forces at shallow depth; these forces can be
inferred from the calculated surface stresses. These should
be related, over most of the ablation zone, to flow conditions
at the margins.

The implications of this study for future investigations of
the dynamics of Alpine glaciers (I mean real glaciers, not
the usual oversimplified models) seem to me essential. On
a glacier of moderate length, given the wide spatial fluctua-
tions of velocities and flowlines, a simple array of stakes
along the axis of the glacier yields dubious results. Even at
low velocities, a well-determined sliding law on the hecto-
metric and annual scales does not exist. This fact impedes
solution of the inverse problem, the determination of stresses
and velocities at depth from surface data, even when the bed
topography is well known. “Winter” dynamics and early-
summer dynamics should be tackled separately. Moreover,
to determine surface strain rates and stresses thoroughly,
and thus to make the monstar pattern appear, a dense net
of more than 30 stakes is required. (Of course the monstar
pattern can always be made to appear with fewer stakes by
using an interpolating analytical function, but then the
monstar may well be a mathematical artifact) Weeks of
hard fieldwork are needed, distributed over three or four
successive years.

To obtain a deterministic explanation for the stress fluc-
tuations at shallow depth, the programme must include not

140

https://doi.org/10.3189/172756502781831575 Published online by Cambridge University Press

only an annual survey of the limits of the glacier, but also
data collected very close to the boundaries: particularly bal-
ances and surface slopes. The surface profile must be sur-
veyed at the end of the ablation season because it becomes
more convex in late summer. I am rather pessimistic about
the chances that a thorough study of an Alpine glacier will
be started again in the near future, but this last request
might be included easily in instructions circulated by the
World Glacier Monitoring Service.

Will all these programmes, exclusively grounded on ter-
restrial surveys, become obsolete with the development of syn-
thetic aperture radar (SAR) interferometry? SAR allows one
to measure diurnal velocities on large mountain glaciers with
only limited fieldwork, and even in winter (Rabus and
Fatland, 2000). It will make an invaluable contribution to the
knowledge of glacier dynamics, but it has two drawbacks.
First, it is not accurate enough for small glaciers or near the
termini. On Black Rapids Glacier, Alaska, U.S.A., Rabus and
Fatland measured surface velocities of 10-30 cmd ' with 10%
uncertainty. On Glacier de Saint-Sorlin the range is 0.7—
5cmd ! Thus SAR interferometry gives no hope of interpret-
ing available long-term records of annual advances or retreats
of Alpine glaciers. Second, SAR interferometry only gives one
component of the velocity, so temporal shifts in azimuth are
not resolved. The surface strain rates and stresses at hecto-
metric spatial scale cannot be inferred. Only precise terres-
trial surveys and borings can solve the many problems
thrown up by the present study.
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