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Equal parameter estimates across subgroups is a substantial requirement of statistical tests. Ignoring
subgroup differences poses a threat to study replicability, model specification, and theory development.
Structural change tests are a powerful statistical technique to assess parameter invariance. A core element
of those tests is the empirical fluctuation process. In the case of parameter invariance, the fluctuation pro-
cess asymptotically follows a Brownian bridge. This asymptotic assumption further provides the basis for
inference. However, the empirical fluctuation process does not follow a Brownian bridge in small samples,
and this situation is amplified in large psychometric models. Therefore, common methods of obtaining the
sampling distribution are invalid and the structural change test becomes conservative. We discuss an alter-
native solution to obtaining the sampling distribution—permutation approaches. Permutation approaches
estimate the sampling distribution through resampling of the dataset, avoiding distributional assumptions.
Hereby, the tests power are improved. We conclude that the permutation alternative is superior to standard
asymptotic approximations of the sampling distribution.
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The assumption of parameter invariance across subgroups—assessed as measurement invari-
ance, differential item functioning, heterogeneity, or parameter stability in other contexts—
underlies virtually all statistical tests (Bechger and Maris 2015; Hjort and Koning 2002; Hansen
1997; Mellenbergh 1989). Formally, we can define parameter invariance as,

f (y | v, θ) = f (y | θ),

where f (·) is a parametric distribution that is indexed by a parameter θ , used tomodel an observed
variable y, and v is an auxiliary variable against which we are testing parameter invariance. Thus,
parameter invariance implies that an identical model holds for different subgroups (e.g., males
and females, older and younger persons, and persons with different ethnic backgrounds) or across
measurement occasions (Putnick and Bornstein 2016; van de Schoot et al. 2015). Violations of
this assumption can lead to misspecified models, spurious parameter estimates and test results,
therefore, concealing differences key for theory development, diagnostic procedures, and treat-
ment design (e.g., Kapur et al. 2012; Breslau et al. 2008). Unfortunately, researchers often neglect
parameter invariance, which poses a threat to research development (Borsboom 2006).

Structural change tests (SCTs) allow us to assess parameter invariance across subgroups
(Brown et al. 1975). These tests were initially proposed by Andrews (1993) for parameter sta-
bility assessment in econometric time-series models, but since then have been adapted to assess
models across the statistical sciences (e.g., Chang and Su 2014; Mulaudzi 2016; O’Connell et al.
2018; Strobl et al. 2015; Zeileis et al. 2008; Merkle et al. 2014). SCTs have become a popular
method for assessing parameter invariance because they can be straightforwardly implemented,
even for complicated psychometric models: SCTs do not require explicit specification of which
parameter diverges or which subgroups behave differently (Wang et al. 2018). Different type
of SCTs exist that differ in the particular type of influence measure used [e.g., recursive resid-
uals (Brown et al. 1975) or single-shift test statistics (Andrews 1993)], but depicting closely
related asymptotic properties. In this paper, we focus on SCTs using scores as influence measures
(Merkle and Zeileis 2013; Zeileis 2006; Hjort and Koning 2002). Scores are partial derivatives of
the log-likelihood function with respect to a particular parameter and can be considered similar
to asymptotic influence functions which are used to determine the effect of single observations
on the estimate (Hampel et al. 2005). SCTs assume that if parameter invariance holds, aggre-
gated scores randomly fluctuate about zero and converge to a Brownian bridge (Hjort and Koning
2002); a process that starts and ends at zero and randomly fluctuates about zero in between with its
individual elements being normally distributed. However, if the aggregated scores systematically
change in line with changes of an auxiliary variable v, parameter invariance is violated (Zeileis
2006). This result is used to determine the sampling distribution of the SCT’s test statistic.

The test statistic’s sampling distribution is well-determined for large sample sizes (Hansen
1997; Estrella 2003). However, in finite samples, concerns arise. For a simple linearmodel, the test
shows both sub-optimal power and a type 1 error rate below the expected nominal α-level (Zeileis
and Hothorn 2013). The asymptotic sampling distribution does not exploit the significance level
and is of poor quality compared to the exact conditional and conditional asymptotic distribution
(Hothorn and Zeileis 2008; Zeileis and Hothorn 2013). In short, the SCT becomes increasingly
conservative in finite samples (Jones et al. 2020; Merkle and Zeileis 2013; Strobl et al. 2015). In
this paper, we delve into this issue, focusing on large psychometric models. Our goals are twofold.
Our first goal is to assess the SCT’s behavior in finite samples. In particular, we investigate the
sampling distribution and the distribution of the p value, which should be uniformly distributed
under the null hypothesis.We show that for finite samples, the sampling distribution ismisspecified
and p values are not uniformly distributed. This problem becomes more pronounced the larger
the model (i.e., the more parameters to be estimated). Our second goal is to show a solution
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to this misspecification—permutation approaches—allowing for the SCTs application in large
psychometric models. Permutation approaches are useful for estimating the sampling distribution
when distributional assumptions do not hold or are analytically intractable (Mooney and Duval
1993). We show that permutation approaches provide a correct type I error and tend to increase
the test’s statistical power in finite samples (Zeileis and Hothorn 2013). In this way, permutation
methods are superior to standard asymptotic approaches.

The remainder of this paper is organized as follows. First, we introduce the SCT in detail.
Second, we investigate the SCT’s finite sample behavior, and in particular, the distribution of
p values under the null hypothesis. Here, we establish that the asymptotically derived sampling
distribution is incorrect for finite sample sizes. Third, we elaborate on an alternative approach
to obtaining the sampling distribution—permutation approaches. To illustrate the issues and our
solution, we will use a linear regression model and a Gaussian Graphical model throughout this
paper.

1. Structural Change Tests

The SCT assesses the equivalence of all k model parameters (i.e., j = 1, . . . , k) across
subgroups defined by an auxiliary variable v (Andrews 1993). Under the null hypothesis, the SCT
assumes that a parameter θ j is the same for all subgroups vg , g = 1, . . . ,m, of the auxiliary
variable. That is,

H0 : θ j vg = θ j ; ∀ 1 ≤ g ≤ m, 1 ≤ j ≤ k,

where θ j vg denotes the parameter value of subgroup vg for parameter θ j . The SCT comprises
three steps: First, one estimates the model of interest and determines its parameter influence
measure. Here, we focus on score-based SCTs (Hjort and Koning 2002; Zeileis and Hornik
2007). Secondly, so-called empirical fluctuation processes are derived from the scores. Thirdly,
the fluctuation processes are aggregated into a test statistic and compared against the sampling
distribution to compute the p value. We outline each of these steps below.

The first step consists of estimating the k parameters of a model of interest. This paper
will focus on estimating the model parameters through maximum likelihood estimation (MLE;
for other approaches, see, for example, Kuan and Hornik 1995). With the MLEs, the score for
every particular parameter and observation can be calculated. The score is the gradient of the
log-likelihood function and for a parameter θ j and observation yi , it is denoted by

s(θ j , yi ) = ∂ log L(θ; yi )
∂θ j

,

where L is the likelihood function of the model, θ j the focal parameter and yi the data for an
observation i . Since the MLEs maximize the log-likelihood function, the sum of the scores for a
parameter j across all n observations will sum to zero:

n∑

i=1

s(θ̂ j , yi ) = 0, (1)

which holds for all parameters in the model.
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In the second step, the accumulations of scores across observations are interpreted as empirical
fluctuation processes. These fluctuation processes are analyzed separately for every parameter of
the model. To obtain the fluctuations, the scores are first ordered along the auxiliary variable v

and then aggregated across observations:

�(t; θ̂ j ) = n−1/2
�nt�∑

i=1

s(θ̂ j , yi ),

where �nt� is the floor function of n × t . Note, t is a real number and in practice with discrete
measurements commonly a proportion, such as here a fraction of the n participants (i.e., t = i/n
for i = 1, . . . , n).

∑�nt�
i=1 therefore describes the sum of all scores up until the (n × t)−th term,

which is referred to as the cumulated score. To ensure that the cumulative scores are independent
across parameters, �(t ; θ̂ j ) is decorrelated (Merkle and Zeileis 2013):

B(t; θ̂ ) = Î−1/2�(t; θ̂ ),

where Î is the asymptotic covariance matrix of the scores, thus, an estimate of the Fisher infor-
mation matrix (Zeileis 2006). Observe that the cumulated scores B(t; θ̂ j ) are zero for t = 0 and
also at t = 1. At t = 1, the scores of all observations have been summed up, which by definition
of the MLE is zero, e.g., Eq. (1).

Under H0, the fluctuation processes asymptotically converge to a Brownian bridge (Hjort
and Koning 2002; Andrews 1993) and for a model with k-parameters to k-independent Brownian
bridges,

B(·; θ̂ )
d−→ B0(·),

where
d−→ denotes weak convergence of B(·; θ̂ ) to a k-dimensional Brownian bridge B0(·). Param-

eter stability can now be visually assessed by plotting the fluctuation process. The fluctuation
process randomly varies about zero if H0 were true and parameter invariance holds. However,
in the case of parameter non-invariance, the process systematically deviates from zero. Figure 1
provides an illustration.

In the third and final step, the cumulative scores are combined into a test statistic which can be
conducted in various ways (Merkle and Zeileis 2013; Hjort and Koning 2002). We will introduce
the three test statistics commonly used in literature: The double maximum statistic (DM), the
Cramér–von Mises statistic (CvM), and the maximum Lagrange Multiplier statistic (maxLM).

DM = max
i=1,...,n

max
j=1,...,k

∣∣Bi j
∣∣ (2)

CvM = n−1
n∑

i=1

k∑

j=1

B2
i j (3)

maxLM = max
i=i,...,i

⎛

⎝
{
i

n

(
1 − i

n

)}−1 k∑

j=1

B2
i j

⎞

⎠ , (4)
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Figure 1.
Visualization of empirical fluctuation processes for two exemplary parameters. The dotted line represents the cumulative
scores for a parameter with a random fluctuation around zero; thus, the fit for that parameter does not depend on the
auxiliary variable. The solid line represents a systematic fluctuation coinciding with the auxiliary variable; parameter
invariance is violated.

where Bi j denotes the fluctuation process at an observation i for a parameter θ̂ j , i.e., Bi j = B(t =
i
n ; θ̂ j ). The DM statistic takes the maximum of the cumulated scores across observations and
parameters, and is used to test if any fluctuation process deviates too strongly from zero at any time.
TheCvMcaptures fluctuations that change across a variety of observations and parameters. Lastly,
the maxLM statistic is suited if all k fluctuation processes change along the same observation i .
To circumvent precision issues, the fluctuation process’s tails are not considered when computing
the maxLM statistic.

In null hypothesis significance testing, the test statistic computed from observed data is
compared against the sampling distribution to obtain a p value. Critical values can be obtained by
simulating observations fromaBrownian bridge and applying the relevant statistic to the generated
data (Andrews 1993; Zeileis 2006). Also, closed form solutions exist for specific situations. For
example, Ploberger andKramer (1992) derive the sampling distribution for DM-type statistics and
Hjort and Koning (2002) show that CvM-type statistics follow an approximate χ2-distribution
that depends on the amount of parameters and focal change point assessed. Furthermore, Hansen
(1997) established for the maxLM statistic that if the focal parameter changes close to the half-
point of the auxiliary variable, the sampling distribution converges to a χ2-distribution. Hansen
presented critical statistics and p values for specific combinations of model parameters k and
change point location. Estrella (2003) extends those results for high-dimensional scores. We will
use the simulation method for determining the sampling distribution (Zeileis 2006).

2. Small Sample Behavior of the Structural Change Test

Simulations of the SCT’s behavior concluded that the SCT shows suboptimal behavior in
finite samples (Hothorn and Zeileis 2008; Merkle and Zeileis 2013; Strobl et al. 2015; Jones
et al. 2020). Its power dwindles in finite samples and surprisingly, the type 1 error decreases with
increasing model complexity, staying below the respective significance threshold. To provide a
better understanding of the nature and severity of this issue as well as potential ways to mitigate
it, we will delve into the problem. We will analyze it in two ways, first through simulation and
second through mathematical derivation of the convergence rate.
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Figure 2.
Empirical cumulative distributions (ECDs) for the p value under the null hypothesis for different models and simulation
settings. The top row shows the linear regression model results and the bottom row shows the GGM results. Here, n
denotes the sample size and k the number of covariates for the linear regression model and the number of nodes for the
GGM. In each plot, the black, dashed line shows the expected uniform distribution.

2.1. Simulation of Small Sample Behavior

We will analyze the SCT’s behavior through simulation for two models: A simple linear
regression model and a more complex Gaussian graphical model (GGM). Our simulations vary
the sample size n and the covariates/nodes in the models. For the linear regression, we simulated
models with two, four, and eight covariates (i.e., regression coefficients) for 50, 200, and 1000
observations each. For the GGM, we simulated networks with five, ten, and fifteen nodes for 200,
500, and 2000 observations. Each combination was run 5000 times. Datasets were simulated as a
multivariate normal distribution N (μ,�) with a sparse interaction matrix � (i.e., probability of
interaction was 0.2) without any dependency on an auxiliary variable. Thus, data were generated
under the null hypothesis of equal parameters across subgroups. All simulations were run in the
software R (R-Core-Team 2020); the SCT was conducted using the strucchange function for
the linear regression model (Zeileis et al. 2002) and the partykit::mob function for the GGM
(Zeileis et al. 2008; Hothorn and Zeileis 2015).

We will focus on the results for the maxLM statistic with a continuous auxiliary variable. In
the online appendix, we report the results for a binary auxiliary variable as well as the results for
CvM and DM statistics.1 The simulated p value distributions are shown in Fig. 2. The p value is
expected to follow a uniform distribution under the null hypothesis, which is indicated with the
dashed, black line in each of the plots in Fig. 2. Observe that the p values do not follow this uniform
distribution for the linear regression model in the smaller sample sizes but approximate a uniform
distribution if the sample size increases. For the GGM, the p value is nearly uniformly distributed

1The code, simulation results and online appendix can be found on the project repository https://github.com/
KarolineHuth/sctpermutation.
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Figure 3.
Distributions of the maxLM statistic under the null hypothesis for the linear regression model. The expected sampling
distribution is depicted as a black line and was obtained by simulating observations from a Brownian bridge and applying
the maxLM statistic to them (e.g., see Zeileis 2006).

in small networks for all sample sizes. However, for larger networks, the p value distribution
deviates. A result that appears to be independent of the sample size used in our simulations. The
deviation between the simulated p value distribution and the correct uniform distribution is largest
for networks with 15 nodes and 200 observations; here, even with 2000 observations, the p value
does not follow a uniform distribution.

The simulated sampling distributions are shown in Fig. 3 for the linear regression model and
in Fig. 4 for the GGM. The asymptotic sampling distributions are indicated with a black solid line
in these graphs. They were generated by repeatedly simulating values from a Brownian bridge
and then computing the maxLM statistic on the generated data (e.g., see Andrews 1993; Zeileis
2006). In computing the maxLM statistic, a choice is made to cut off the empirical fluctuation
process’s tails to avoid precision issues. The choice of cut-off points can, in principle, improve
the fit of the estimated sampling distribution and lead to cherry-picking cut-offs that improve the
fit of the sampling distribution. For the GGM, we chose to cut off the process’s tails before n p and
after n − n p observations, respectively, where n p denotes the number of free parameters in the
model (i.e., similar to Jones et al. 2020). For the linear model, we chose to cut-off the bottom and
upper 10%. Results in Figs. 3 and 4 show clearly that for the linear regression model, the sampling
distribution is specified correctly for larger sample sizes, independent of model complexity, but
not for smaller sample sizes. For the GGM, the sampling distribution is properly specified for
small networks, but large discrepancies are found for larger networks.

From the assessment thus far, the true nature of the finite samplemisspecification is unknown.
The k-independent Brownian bridges approximation and thereby the correct specification of sam-
pling distribution depends on two assumptions: the normal approximation to the score distribution
and the accuracy of the estimated information matrix. In order to assess these two fundamental
assumptions, we conducted some small scale simulations. Results indicate that the scores of a
threshold parameter do follow a normal distribution fairly well for all number of nodes and obser-
vations (see Figure S5 in the online appendix). However, for an interaction parameter the score
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Figure 4.
Distributions of themaxLMstatistic under the null hypothesis for theGGM.The expected sampling distribution is depicted
as a black line and was obtained by simulating observations from a Brownian bridge and applying the maxLM statistic to
them (e.g., see Zeileis 2006).

distribution deviates highly from the expected one; the distributions are skewed, multi-modal,
and peaked (see Figure S6 in the online appendix). Furthermore, the estimated Fisher informa-
tion matrix is biased. However, the bias reduces with increased sample size, especially for larger
models (see Figure S7 in the online appendix). A detailed description of the results can be found
in the online appendix.

In sum, the p value and test statistic do not follow the expected distributions in finite samples
for the simple linear regression model and the more complex GGM. This problem was especially
pronounced for small sample sizes in combination with complex models. Both fundamental
requirements—the normal distribution of the scores and the unbiased estimation of the Fisher
information matrix—are not met, however, even in setups where the sampling distribution seems
properly specified.

2.2. Formal Analysis of the Approximation Error and Convergence Rate

Now, we turn to a formal analysis of this error and derive the convergence rate of the normal
approximation for the fluctuation process. The full analysis can be found in Appendix.

Hjort and Koning (2002) used a linear (i.e., second-order) Taylor expansion to derive the
normal approximation of the fluctuation process for θ̂ near θ0, which tends to be accurate in large
samples. They furthermore show that the aggregated fluctuation process (i.e., the canonical mon-
itoring process) approximates several independent Brownian bridges under the null hypothesis
(see Hjort and Koning 2002 Eqs. (2.3) and (2.4), p. 116]). This approximation provides the basis
to derive the SCT’s sampling distribution. Hence, the sampling distribution will be valid (i.e., have
correct type I error rate), if the error of the normal approximation of the fluctuation process goes to
zero sufficiently fast. The error of the approximation can be assessed by looking at the Lagrange
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remainder. Whereas Hjort and Koning ignored this Lagrange remainder in their derivations, we
will assess the rate at which it convergences to zero.

The Lagrange remainder of a linear (i.e., second-order) Taylor approximation is defined as

E2(θ) = f
′′
(θs)

2
(θ̂ − θ0)

2,

for θs between θ0 and θ̂ . Therefore, the full Taylor expansion for the fluctuation process is:

�(t ; θ̂ ) =

Linear Taylor Approximation︷ ︸︸ ︷
1√
n

�nt�∑

i=1

s(yi , θ0) + 1√
n

�nt�∑

i=1

i(yi , θ0)(θ̂ − θ0)+

Lagrange Remainder︷ ︸︸ ︷
1

2
√
n

�nt�∑

i=1

j (yi , θs)(θ̂ − θ0)
2,

where j (yi , θ) denotes the third-order derivative of the log-likelihood function (i.e., the second-
order derivative of the score function). The Lagrange remainder consists of two parts (θ̂ −θ0)

2 and
j (yi , θs). Observe that (θ̂−θ0)

2 is the standard error of the estimator, which tends to zero at rate 1√
n

for an unbiased or asymptotically unbiased estimator. In Appendix, we show that the third-order
derivative j (yi , θs) for exponential family models, such as normal linear regression model and the
GGM, is constant, if their moments are bounded. As a result, the Lagrange remainder is bounded
by 1√

n
, thus tends to zero for sufficiently large sample sizes. Unfortunately, this convergence rate is

not very fast, which means that the approximation error could be significant; thus, the fluctuation
process cannot be accurately described using the Brownian bridge. In this case, the sampling
distribution is misspecified (Zeileis 2006; Estrella 2003; Hansen 1997; Hjort and Koning 2002)
and the reported p value is wrong.

3. A Monte Carlo Permutation Approach to the Structural Change Test

Permutation testing is a popular nonparametric method for statistical testing if distributional
assumptions are not met. Zeileis and Hothorn (2013) used a permutation test approach to increase
the power of the SCT in small samples for linear regression models. Even though their results
were positive, the permutation test alternative to the asymptotic version of the SCT has found
limited application. Here, wewant to assess if a permutation test approach can estimate the correct
sampling distribution in finite samples, even for large psychometric models, and consequently
control the type I error rate. In permutation tests, first introduced by Fisher (1951), sampling
distributions are obtained by calculating the test statistic values under all possible rearrangements
of the observed data points. Applied to the SCT, it would thus consider all n! rearrangements
of the auxiliary variable v, and then compute a test statistic for every possible arrangement.
Since the labels are exchangeable under the SCT’s null hypothesis, the permutation test approach
provides exact significance levels (Good 1993). Compared to parametric tests (e.g., the t-test,
or F-test), permutation tests are equally powerful in large samples (Bickel and van Zwet 2012);
however, permutation approaches are more powerful, if assumptions of the parametric tests are
not met. The permutation approach’s major drawback is that recomputing the statistic for all
possible rearrangements can become unwieldy. A Monte Carlo approach has been proposed in
which possible rearrangements are randomly sampled (Kaiser 2007; Frank and Witten 1998).
This alternative overcomes the exact permutation tests’ computational burden and provides an
approximate permutation test.Wewill use the approximate permutation test approach and illustrate
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Figure 5.
Empirical cumulative distributions (ECDs) for the p value under the null hypothesis using the permutation approach. The
top row shows the linear regression model results and the bottom row the results for the GGM. Here, n represents the
sample size and k the number of covariates for the linear regression model and number of nodes for the GGM. In each
plot, the black, dashed line shows the expected uniform distribution.

that it provides accurate sampling distributions, even for small sample sizes and large psychometric
models.

The Monte Carlo permutation approach to the SCT comprises three steps. The test statistic
for the original dataset is computed in the first step. We will consider the maxLM test statistic in
Eq. (4) here. In the second step, we randomly rearrange the values of the grouping variable v. For
example, say we have an original dataset with six observations belonging to two subgroups (i.e.,
Group A: 1, 2, and 3; Group B: 4, 5, and 6). After rearranging, observations three, four, and six
might now belong to Group A and observations one, two, and five to Group B (i.e., Group A: 3, 4,
and 6; Group B: 1, 2, 5). The maxLM test statistic is computed for every random rearrangement.
We have used 5,000 random rearrangements in our simulations. It gave a good trade-off between
accuracy and computation speed; however, the more samples are obtained, the more accurate the
determined p value. In the final step, we estimate the p value by calculating how many resampled
test statistics were larger than the original statistic.

We revisit the previous section’s simulations to illustrate the SCT’s behavior when combined
with the Monte Carlo permutation test approach. The results are shown in Fig. 5. It is evident that
the p values now nicely follow a uniform distribution in all simulation setups. No differences can
be found depending on sample size or model complexity. Thus, the permutation test approach
has solved the underlying issue of the misspecified sampling distribution. Furthermore, we have
investigated the power of the SCT under the permutation alternative for GGMs. The effect of the
permutation approach on the power of the SCT has been studied before for linear models (e.g.,
Hothorn and Zeileis 2008; Zeileis and Hothorn 2013). Previous results indicate that permutation
testing leads to small power improvements in large samples but leads to huge power improvements
in small samples. We show the results of our analyses for GGM in Table 1. In line with previous
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Table 1.
Power of the SCT using the common asymptotic approach and the permutation alternative

k = 5 k = 10 k = 15

n Distribution / �θ = 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

200 Asymptotic Approach 0.57 0.85 0.96 0.01 0.02 0.21 0.00 0.00 0.00
Permutation Alternative 0.60 0.85 0.97 0.05 0.15 0.52 0.03 0.10 0.19

500 Asymptotic Approach 0.70 0.98 1.00 0.03 0.30 0.94 0.01 0.02 0.31
Permutation Alternative 0.69 0.98 1.00 0.07 0.45 0.98 0.07 0.22 0.65

2,000 Asymptotic Approach 0.90 1.00 1.00 0.13 0.99 1.00 0.06 0.86 1.00
Permutation Alternative 0.92 1.00 1.00 0.19 1.00 1.00 0.09 0.91 1.00

We altered sample size (i.e., n = 200, 500, and 2,000), amount of nodes (i.e., k = 5, 10, and 15) as well as
the size of the parameter invariance (i.e., �θ = 0.1, 0.3, and 0.5). Datasets were simulated using a similar
simulation setup as Jones et al. (2020).

results for linear models, we find that the power of the permutation test approach is similar to
the power based on the asymptotic sampling distribution for large samples. In small samples,
however, we see considerable improvements.

Based on these results, we conclude that the Monte Carlo permutation approach is a valuable
method to perform the SCT, particularly for large psychometric models and small sample sizes.
It leads to correct specification of the sampling distribution under the null hypothesis and tends
to improve power.

Unfortunately, the permutation alternative comes with high additional computational efforts,
which might hamper the use of the permutation approach in large models. However, the biggest
misspecification is established for larger models and thus the permutation approach has the great-
est benefit here. Therefore, alternatives should be considered that allow for the assessment of
parameter invariance but employ sound inference also in finite samples. As a concrete example,
we could feed the SCT’s scores into the conditional inference tree (CTree; Hothorn et al. 2006).
CTree is a recursive partitioning algorithm assessing parameter invariance using permutation
approaches to obtain the sampling distribution (Schlosser et al. 2019). The algorithm evaluates
the association between the transformed responses h(Y ) and each of the transformed splitting vari-
ables g(Z j ). CTree requires the specification of an influence function h(·) and the transformed
split variable function g(·). In case a parametric model is fitted to the observed data, one can obtain
a model-based transformation function h(·), for example, a score-function. Here, CTree closely
resembles the SCT, however, leveraging a conditional inference framework. Through simulations,
we could confirm that CTree circumvents the small sample issues in finite samples also for large
models; the p value distribution is uniform for all setups of k and n (see Figure S8 in the online
appendix). Thus, CTree serves as an additional solution to circumvent a misspecified p value in
small samples, which is readily implemented in the R-package networktree for GGMs (Jones
et al. 2020).

4. Discussion

This paper has shown that the score-based structural change test’s (SCT’s) small sample
behavior can be problematic, especially for large psychometric models. The SCT assumes that
the accumulation of scores for a parameter across observations resembles a Brownian bridge.
This property holds for large samples but not for small samples. As a result, standard methods
that rely on this asymptotic property cannot determine the SCT’s correct sampling distribution.
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However, using a Monte Carlo permutation test approach, the proper sampling distribution can
be obtained. As a result, the correct p values can be determined even for small samples and large
psychometric models. This permutation approach also improves the power of the test.

Previous research has observed finite sample problems for the SCT, concluding that the
SCT constitutes a conservative test with decreasing sample size (Strobl et al. 2015; Merkle and
Zeileis 2013; Hothorn and Zeileis 2008). The SCT’s sampling distribution is misspecified in small
samples, which leads to problemswith controlling the type I error, thus, incorrect inference. These
findings are concerning. In particular, since the SCT has been adapted to larger psychometric
models where small sample issues are amplified (e.g., Strobl et al. 2015; Jones et al. 2020).
These adaptations additionally combine large models with the model-based recursive partitioning
(MOB). The MOB is a recursive algorithm that uses the SCT to detect parameter invariance and
splits data into smaller subsets for which it recalculates the SCT (Merkle and Zeileis 2013). When
using subsets of the data in recursive applications of the SCT, its small sample properties can
become more pronounced. In sum, the small sample properties of the SCT are a timely matter.

The Monte Carlo permutation approach offers a straightforward alternative to obtain the
sampling distribution. We showed that the alternative approach leads to a correct specification of
the samplingdistribution, and consequently, a correct specificationof thepvaluedistribution.Also,
we were able to corroborate previous demonstrations of the increased power of the permutation
approach over asymptotic approximations in linear models (Hothorn and Zeileis 2008; Zeileis and
Hothorn 2013), by extending these results to theGGM.We found higher power for the permutation
approach, especially for large psychometric models combined with small sample sizes. Therefore,
the permutation approach solves the issue of the misspecified sampling distribution and increases
the power of the test, leading to an optimal result in finite samples.

The permutation test algorithm comes with some drawbacks. First, the algorithm has a highly
increased computational effort. Our current implementation is in base R (R-Core-Team 2020) and
could be improved through computationally more efficient programming languages like the Rccp
plugin for R (Eddelbuettel and François 2011). Second, researchers should bewary that the permu-
tation results depend on the number of permutations and random seeds of the sampling algorithm.
It is therefore advised to use a sufficiently large number of permutations and test different random
seeds. Nonetheless, by solving the misspecified sampling distribution and increasing the power,
we conclude—similar to previous researchers—that the additional computational power needed
for the permutation approach is justified and necessary in finite samples (Hothorn and Zeileis
2008; Zeileis and Hothorn 2013).

Still, researchers should consider alternative parameter invariance tests. In the paper, we
discussed the readily implemented algorithm CTree (Schlosser et al. 2019; Hothorn et al. 2006).
CTree provides a correct p value distribution also in finite samples, however, has even less power
than the asymptotic SCT algorithm. Thus, if researchers are mainly concerned with a high power,
it would still be advisable to apply the permutation approach to the SCT. Other alternatives could
still be derived. Here, we need to understand the nature of the problem; in particular, the two
fundamental requirements: the normal distribution of the scores and the unbiased estimation of
the information matrix. Our preliminary assessment showed that the scores of the interaction
parameters do not follow a normal distribution and the bias of the Fisher information matrix
is inflated. Astoundingly, the assumptions are not met, even in situations where the sampling
distribution is properly specified. More research is needed to understand the nature of this issue
and perhaps offer parametric alternatives for the sampling distributions.

To conclude, finite sample misspecification of the structural change test needs to be acknowl-
edged. Here, permutation approaches are a superior method to standard asymptotic approxima-
tions of the sampling distribution. Especially in large psychometric models, a wider adaptation
of permutation approaches for SCTs is advisable.
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Appendix: Formal Analysis of the Approximation Error and Rate of Convergence

We derive the error associated with the Brownian bridge approximation of the fluctuation process.
First, we introduce the derivation of this approximation as shown in Hjort and Koning (2002).
Second, we derive the error associated with the approximation, the Lagrange remainder in the
Taylor approximation and conclude its convergence rate is bounded by 1/

√
n.

The Cumulative Score Process

Let s(yi , θ) denote the first-order derivative of the log-likelihood function gwith respect to θ—the
score—and i(yi , θ) the second-order derivative. To determine whether scores fluctuate along a
third variable of interest (e.g., gender, time), we compute the cumulative sum of the score:

�(t; θ0) = 1√
n

�nt�∑

i=1

s(yi , θ0),

where �nt� is the floor function of n × t—index n the sample size and index t a fraction of all n
participants (i.e., t = i/n for i = 1, . . . , n). Here, θ0 describes the parameter estimate under the
null-hypothesis. Themean of the cumulative score process is zero and the variance the information
matrix J = −E(i(yi , θ0)). Given the Donsker and Cramér-Wold Theorem, one can derive

�(t; θ0)
d−→ Z0(t) in Dp[0, 1],

where Z0(t) is a zero-mean Gaussian, which is a linear transformation of independent Brownian
motions (Hjort and Koning 2002). This convergence takes place in the the space Dp[0, 1] thus
for t being in the range zero to one (i.e., t ∈ [0, 1]).

The Estimated Cumulative Score Process

Given that θ0 is commonly unknown, we use the maximum likelihood estimator (MLE)—θ̂—and
calculate the cumulative score process as

�(t ; θ̂ ) = 1√
n

�nt�∑

i=1

s(yi , θ̂ ).

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 15:17:31, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core


K. B. S. HUTH 1077

For MLE estimators the cumulative score process is bounded at zero, both at t = 0 and t = 1.
Using a Taylor expansion up to the first-order derivative, e.g., which for a function f would be,

f (θ̂) = f (θ0) + f ′(θ0)(θ̂ − θ0),

Hjort and Koning approximate the cumulative score process for θ̂ near θ0 as

�(t; θ̂ )
.= 1√

n

�nt�∑

i=1

s(yi , θ0) + 1√
n

�nt�∑

i=1

i(yi , θ0)(θ̂ − θ0)

where
.= denotes an approximate equation. The linear approximation using the first- and second-

order derivative at θ0 tends to approximate the cumulative score process of θ̂ in probability. Hjort
and Koning use this Taylor expansion to derive a canonical monitoring process that approximates
several independent Brownian bridges under the null hypothesis (see Hjort and Koning 2002, Eqs.
(2.3) and (2.4), p. 116).

The Approximation Error

Hjort andKoning ignore theLagrange remainder of theTaylor expansion. TheLagrange remainder
characterizes the error associated with the approximation of θ̂ . The full Taylor expansion for a
function f is commonly written as:

f (θ̂) = f (θ0) + f ′(θ0)(θ̂ − θ0) + E2(θ),

where E2(θ) denotes the Lagrange remainder. The largest term in E2(θ) can be described by:

E2(θ) = f
′′
(θs)

2
(θ̂ − θ0)

2,

for θs between θ0 and θ̂ . More specifically, the full Taylor expansion for the cumulative score
process is:

�(t ; θ̂ ) = 1√
n

�nt�∑

i=1

s(yi , θ0) + 1√
n

�nt�∑

i=1

i(yi , θ0)(θ̂ − θ0) + 1

2
√
n

�nt�∑

i=1

j (yi , θs)(θ̂ − θ0)
2,

where j (yi , θ) denotes the third-order derivative of the log-likelihood function g.
We will next assess the Lagrange remainder to determine the magnitude of the error associated
with the linear Taylor approximation dependent on the sample size. We will discuss both facets
composing the error: (θ̂ − θ0)

2 and f
′′
(θs). First, we evaluate (θ̂ − θ0)

2, where θ0 denotes the
parameter estimate underH0 : θ1 = . . . = θn . Since θ0 is unknown, we use its MLE—θ̂ . Observe
that in this case (θ̂ − θ0)

2 is the standard error of the approximation and for an unbiased or
asymptotically unbiased estimator it holds that (θ̂ − θ0)

2 = Op(1/
√
n). Here,Op is the Big-O in

probability notation for random variables Xn and set of constantsmn . The notation Xn = Op(mn)

states that there is a finite, positive M and an n0 such that P(|Xn/mn| > M) < ε for all n > n0
and any positive ε. Thus, (θ̂ − θ0)

2 is bounded by 1/
√
n.
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Second, we evaluate f ′′(θs) which comprises the individual third-order derivatives j (yi , θs) of
the log-likelihood function g. To illustrate this derivative, we assume g is part of the exponential
family:

p(x | η) = h(x)eηTt (x)−A(η),

where h(x) denotes the base function, η the natural parameter of the model, t (x) denotes the
sufficient statistic, and A(η) the log-normalizing constant—

∫
x h(x) exp(ηᵀt (x))dx—that ensures

that the density integrates to one. The first-, second-, and third-order derivatives of exponential
family distributions w.r.t. the natural parameter are

∂p(x | η)

∂ηi
= h(x)eηTt (x)−A(η)

(
t (x)i − ∂

∂ηi
A(η)

)
,

∂2 p(x | η)

∂2ηi
= h(x)eηTt (x)−A(η)

((
t (x)i − ∂

∂ηi
A(η)

)2

+ ∂2

∂2ηi
A(η)

)
,

∂3 p(x | η)

∂3ηi
= h(x)eηTt (x)−A(η)

×
((

t (x)i − ∂

∂ηi
A(η)

) ((
t (x)i − ∂

∂ηi
A(η)

)2

− 3
∂2

∂2ηi
A(η)

)
− ∂3

∂3ηi
A(η)

)
.

The third-order derivative consists of two parts h(x)eηTt (x)−A(η) and everything inside the bracket.
Note that the first part is the distribution itself and is bounded to lie between zero and one.
Therefore,we need to take a closer look at the second part,whichmainly depends on the derivatives
of A(η). It is a convenient feature of the exponential family distributions that the moments of the
sufficient statistics can be derived from the derivatives of A(η). We will show this for the first
moment, but it can be shown for all other moments.

∂

∂ηi
A(η) = ∂

∂ηi

{
log

∫
h(x)eηTt (x)dx

}

=
∫
t (x)i h(x)eηTt (x)dx
∫
h(x)eηTt (x)dx

=
∫

t (x)i h(x)eηTt (x)−A(η)dx

= E[t (x)i ]

Thus, if the moments of the specific exponential family distribution are bounded, the third-order
derivative is bounded and f

′′
(θ̂) = O(1).

Taking everything together—(θ̂ − θ0)
2 = Op(1/

√
n) and f

′′
(θ̂) = O(1)—we obtain:

�(t ; θ̂ ) = 1√
n

�nt�∑

i=1

s(yi , θ0) + 1√
n

�nt�∑

i=1

i(yi , θ0)(θ̂ − θ0) + Op

(
1√
n

)
.

This shows that the approximation error depends on the sample size, and the error will be larger
for smaller samples. The approximation error tends to zero as the sample size grows. If the sample
size is sufficiently large, the calculations of Hjort and Koning hold.
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