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Abstract
A prefix monoid is a finitely generated submonoid of a finitely presented group generated by the prefixes of its
defining relators. Important results of Guba (1997), and of Ivanov, Margolis and Meakin (2001), show how the
word problem for certain one-relator monoids, and inverse monoids, can be reduced to solving the membership
problem in prefix monoids of certain one-relator groups. Motivated by this, in this paper, we study the class of
prefix monoids of finitely presented groups. We obtain a complete description of this class of monoids. All monoids
in this family are finitely generated, recursively presented and group-embeddable. Our results show that not every
finitely generated recursively presented group-embeddable monoid is a prefix monoid, but for every such monoid,
if we take a free product with a suitably chosen free monoid of finite rank, then we do obtain a prefix monoid.
Conversely, we prove that every prefix monoid arises in this way. Also, we show that the groups that arise as groups
of units of prefix monoids are precisely the finitely generated recursively presented groups, whereas the groups
that arise as Schützenberger groups of prefix monoids are exactly the recursively enumerable subgroups of finitely
presented groups. We obtain an analogous result classifying the Schützenberger groups of monoids of right units
of special inverse monoids. We also give some examples of right cancellative monoids arising as monoids of right
units of finitely presented special inverse monoids, and we show that not all right cancellative recursively presented
monoids belong to this class.
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1. Introduction

The main themes of the present paper draw inspiration from the beautiful algebraic theory surrounding
one of the longest-standing and most important open problems in combinatorial algebra and semigroup
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theory: the word problem for one-relator monoids. The classical result of Magnus [21] that all one-
relator groups have algorithmically decidable word problems, as well as the method [20] it entails, is
one of the cornerstones of combinatorial group theory [19]. However, the question of decidability of the
word problem for one-relator monoids has been a subject of a series of serious attacks, most notably by
Adian [1] and his students, among others. We refer to the survey [29] for a thorough historical account
of this fascinating topic.

There have been notable partial successes for the word problem of one-relator monoids, perhaps the
most outstanding being the case of special one-relator monoids – those of the form Mon〈𝐴 | 𝑤 = 1〉,
where the word problem is always decidable. This result was proved by Adjan [1], who also showed
that these one-relator monoids have several other good algebraic properties. For example, he proved
that the group of units of a one-relator special monoid M is a one-relator group. Later, Makanin [22]
generalised this by showing that for any special monoid M (that is, one given by defining relations of
the form 𝑤𝑖 = 1, 𝑖 ∈ 𝐼), the corresponding group of units can be defined by no more relations than in
the original presentation for M. Furthermore, all maximal subgroups of a special monoid M must be
isomorphic to its group of units [23], whereas the submonoids of right units (right invertible elements)
always turn out to be free products of the group of units and a free monoid (of finite rank, in the case
when M is finitely presented). See also the related work of Lallement [17] and Zhang [34, 35].

Today, we know, due to Adian and Oganessian [2], that the general one-relator problem for monoids
reduces to the cases of the form Mon〈𝑎, 𝑏 | 𝑎𝑢𝑏 = 𝑎𝑣𝑎〉 and Mon〈𝑎, 𝑏 | 𝑎𝑢𝑏 = 𝑎〉, where 𝑢, 𝑣 ∈ {𝑎, 𝑏}∗

are arbitrary words. All monoids in these reduced cases are right cancellative, and this spurred Ivanov,
Margolis and Meakin [15] to introduce yet another type of algebraic structure into the discourse:
inverse monoids (more precisely, special inverse monoids), ones given by presentations of the form
Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉. By embedding a right cancellative one-relator monoid into a one-relator special
inverse monoid, they proved that the word problem for (ordinary) one-relator monoids reduces to the
word problem for one-relator special inverse monoids. However, surprisingly, the second-named author
of this paper has recently shown in [8] that there exist one-relator special inverse monoids in which
the word problem is undecidable. Still, this does not invalidate the approach suggested in [15], as the
reduction presented there always produces a reduced – albeit not cyclically reduced – relator word,
while the relator words constructed in [8] are necessarily nonreduced.

The connection between prefix monoids of groups and the submonoid of right units (i.e., right
invertible elements) of special inverse monoids comes from the fact that the natural surjective ho-
momorphism from a special inverse monoid 𝑇 = Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 to its maximal group image
𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 maps the submonoid R of right units of T surjectively to the prefix monoid
of G, with respect to this presentation. Here, the prefix monoid P is the submonoid of G generated
by all elements represented by the prefixes of the relator words 𝑤𝑖 (𝑖 ∈ 𝐼). In general, this homomor-
phism from R onto P is not injective, but it is in the case that T is an E-unitary inverse monoid. There
are many equivalent definitions, but for our purposes, it is the best to express it in the following way:
𝑇 = Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is E-unitary if in the natural homomorphism from T to its greatest group im-
age 𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉, the only pre-images of the identity element of G are the idempotents of
T. Now, yet another major result of [15] shows that when 𝑇 = Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is E-unitary then,
provided Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 has decidable word problem, the decidability of the word problem of T
reduces to the membership problem for the prefix monoid of G. In the same paper, they also prove that
when w is a cyclically reduced word, then Inv〈𝐴 | 𝑤 = 1〉 is E-unitary, and thus the word problem re-
duces to the prefix membership problem for the corresponding one-relator group in this case. The prefix
membership problem for one-relator groups has been studied by several authors (e.g., in [16, 25]) and
more recently by the present authors in [7]. The close connections between prefix monoids of groups
and right units of special inverse monoids described above mean that it is natural to investigate both
classes in parallel.

Further motivation for the study of the right units of special inverse monoids comes from the fact
that the main undecidability results [8] are proved by constructing special inverse monoids in which
membership in the submonoid of right units is undecidable. Also, the relevance of the study of prefix
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monoids is highlighted by the important work of Guba [11]. As mentioned above, the word problem
remains open for monoids of the form Mon〈𝑎, 𝑏 | 𝑎 = 𝑎𝑢𝑏〉. It follows from the results of Guba [11] that
the word problem for one-relator monoids of the form Mon〈𝑎, 𝑏 | 𝑎 = 𝑎𝑢𝑏〉, 𝑢 ∈ {𝑎, 𝑏}∗ reduces to the
prefix membership problem in one-relator groups of the form Gp〈𝑥, 𝑦, 𝐶 | 𝑥𝑈𝑦𝑥−1 = 1〉, where 𝑥 ≠ 𝑦,
C is a finite alphabet and U is a positive word over {𝑥, 𝑦} ∪𝐶. The prefix membership problem for this
class of one-relator group presentations remains open.

For brevity, we shall use the expression prefix monoid to always mean a monoid isomorphic to the
prefix monoid of some finitely presented group, and by an RU-monoid, we mean one that is isomorphic
to the submonoid of right units of some finitely presented special inverse monoid. In this paper, we are
shall consider the following four questions:

(1) Which monoids are prefix monoids?
(2) Which monoids are RU-monoids?
(3) What can the groups of units of these monoids be?
(4) What can the Schützenberger groups of these monoids be?

For prefix monoids, we shall obtain complete answers to all these questions – that is, we answer (1), (3)
and (4) in this case. By the very definition, prefix monoids are all finitely generated, recursively presented
and group-embeddable. Thus, it is natural to wonder whether the answer to (1) could be exactly the class
of finitely generated, recursively presented and group-embeddable monoids. It turns out this is not the
case. Our results will show that not every finitely generated recursively presented group-embeddable
monoid is a prefix monoid, but for every such monoid, if we take a free product with a suitably chosen
free monoid of finite rank, then we do obtain a prefix monoid. Conversely, we prove that every prefix
monoid arises in this way, thus answering question (1); see Theorem 3.6. Concerning the subgroups of
prefix monoids, because any group-embeddable (and, more generally, any right cancellative) monoid can
have only a single idempotent, namely the identity element, it follows that the only maximal subgroup
that the prefix monoid has is its group of units. We are going to answer (3) for prefix monoids by showing
(in Theorem 4.3) that the class of groups of units of prefix monoids is precisely the class of finitely
generated recursively presented groups (which, by the Higman Embedding Theorem [12], is precisely
the class of all finitely generated subgroups of finitely presented groups). Lacking any other subgroups,
semigroup theory provides us with ‘hidden’ group structures within arbitrary monoids, the so-called
Schützenberger groups (defined in a precise fashion in the next section), which are generalisations of the
notion of maximal subgroups to all (including nonregular) 𝒟-classes of a semigroup. We shall answer
question (4) for prefix monoid in Theorem 4.5 where we show that the class of Schützenberger groups
of all prefix monoids is precisely the class of recursively enumerable subgroups of finitely presented
groups.

The structure of RU-monoids is more complex than that of prefix monoids. RU-monoids were studied
in [10] where it was shown that the RU-monoid of a one-relator special inverse monoid need not be
finitely presented and need not decompose as a free product of the groups of units and a free monoid (as
they do in the case of non-inverse special monoids). By definition, all RU-monoids are right cancellative
and recursively presented. We shall see that not every right cancellative recursively presented monoid is
an RU-monoid. Conversely, we shall identify a large class of monoids that do all arise as RU monoids,
called finitely RC-presented monoids. Although the problem of completely describing RU-monoids
remains open, we do succeed in classifying their Schützenberger groups. For the groups of units of RU-
monoids, this question was answered in the recent paper [9, Theorem 4.1] where the groups of units of
finitely presented inverse monoids are shown to be precisely the finitely generated recursively presented
groups. Because the group of units of the right units U of a special inverse monoid M is equal to the
group of units of the submonoid of right units R of M, it follows from [9, Theorem 4.1] that the groups
of units of RU-monoids are exactly the finitely generated recursively presented groups. So that result
answers question (3) for RU-monoids. In our final main result (Theorem 5.6), we answer question (4)
for RU-monoids showing that the class of Schützenberger groups of all prefix monoids is precisely the
class of recursively enumerable subgroups of finitely presented groups. Hence, although prefix monoids
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and RU-monoids are in general wildly different classes of monoids, on the level of groups of units and
Schützenberger groups, the possible behaviours coincide.

The remainder of the paper consists of four sections beyond this introduction: one of preliminary
nature where we accumulate the necessary notions and prerequisites, followed by two sections concerned
with characterisations of prefix monoids and their associated groups, respectively, and the final section
dealing with RU-monoids.

2. Preliminaries

2.1. Presentations, prefix monoids, RU-monoids

In the course of working with monoids, inverse monoids and groups, and presentations thereof, we
shall be concerned with alphabets representing their generating sets (finite or infinite), such as A in the
monoid case and ‘doubled alphabets’ 𝐴 = 𝐴 ∪ 𝐴−1 in the inverse monoid and group case. To represent
elements of these structures, we use words over these alphabets. The free monoid 𝐴∗ consists of all
words (finite sequences of letters) over A. The free group 𝐹𝐺 (𝐴) on A is defined on a subset of 𝐴

∗
whose

elements are called reduced words: these are words that do not contain subwords of the form 𝑎𝑎−1 and
𝑎−1𝑎 for any 𝑎 ∈ 𝐴. Every word 𝑤 ∈ 𝐴

∗
has its reduced form red(𝑤) obtained by successively removing

subwords of the indicated form; the reduced form of a word is unique as this process can be shown to
be confluent. So, in 𝐹𝐺 (𝐴), 𝑢 · 𝑣 = red(𝑢𝑣). For any letter 𝑎 ∈ 𝐴, we define (𝑎−1)−1 = 𝑎, and then for
any word 𝑎1 . . . 𝑎𝑘 ∈ 𝐴

∗
, we define (𝑎1 . . . 𝑎𝑘 )

−1 = 𝑎−1
𝑘 . . . 𝑎−1

1 . With this notation, if w is a reduced
word, then 𝑤−1 is the unique reduced word representing the inverse of w in the free group. Finally, the
free inverse monoid 𝐹𝐼𝑀 (𝐴) is obtained as the quotient of the free monoid 𝐴

∗
by the so-called Wagner

congruence, generated by the pairs (𝑢𝑢−1𝑢, 𝑢) and (𝑢𝑢−1𝑣𝑣−1, 𝑣𝑣−1𝑢𝑢−1) for all 𝑢, 𝑣 ∈ 𝐴
∗
. An elegant

geometric description of 𝐹𝐼𝑀 (𝐴), with elements represented as finite connected birooted subgraphs
of the Cayley graph of 𝐹𝐺 (𝐴), was given by Munn [27] (see also Scheiblich [31]), thus explaining the
term Munn trees used for such graphs.

Combinatorial algebra studies algebraic structures by representing them using presentations: as
quotients of corresponding free structures by certain congruences whose generating pairs are written as
‘defining relations’ (or relators). So, for a monoid, we write 𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 if 𝑀 � 𝐴∗/𝜃,
where 𝜃 is the congruence of the free monoid 𝐴∗ generated by the set of pairs of words {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ 𝐼}.
Analogously, 𝑇 = Inv〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 is defined to be the quotient of the free inverse monoid
𝐹𝐼𝑀 (𝐴) by the congruence on 𝐹𝐼𝑀 (𝐴) generated by the set of pairs of words {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ 𝐼}.
Finally, for a group G, we write 𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 if 𝐺 � 𝐹𝐺 (𝐴)/𝑁 where N is a normal
subgroup of 𝐹𝐺 (𝐴) generated (as a normal subgroup) by the words 𝑤𝑖 , 𝑖 ∈ 𝐼 (in fact, to be precise,
by the words red(𝑤𝑖) as some of the 𝑤𝑖 might not be reduced). By a finitely presented monoid, inverse
monoid or group, we mean one that admits a presentation with finitely many generators and finitely
many defining relations. It is easy to prove that a group is finitely presented as a group if and only if it is
finitely presented as a monoid if and only if it is finitely presented as an inverse monoid. Interestingly,
the same is not true for monoids and inverse monoids since even free inverse monoids are not finitely
presented as monoids; see [32].

In general, for the element represented by a word w (over the suitable alphabet) in the structure S
given by the presentation 〈𝐴 |ℜ〉 (be it a monoid, an inverse monoid, or a group), we write [𝑤]𝑆 .

For further background in combinatorial group theory (such as free products and HNN extensions),
we refer to [19].

Definition 2.1. Let G be a finitely presented group. We say that M is a prefix monoid in G if there exists
a finite presentation of G,

𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉,
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such that M is isomorphic to the submonoid of G generated by all elements [𝑝]𝐺 such that the word
p is a prefix of 𝑤𝑖 for some 𝑖 ∈ 𝐼. We simply say that M is a prefix monoid if it is a prefix monoid
in some finitely presented group. Notice that a group might have a number of prefix monoids, as this
definition depends on the presentation, not just the group it defines; it might happen (see Example 2.3)
that by changing a presentation of a given group, we arrive at a different prefix monoid. For a fixed
group presentation, we talk about the prefix monoid of the group with respect to that presentation.

Remark 2.2. It is important to note that, because we are often concerned with considering group
presentations and inverse monoid presentations given by the same generators and relators, here we
do not assume that the relator words appearing in group presentations are cyclically reduced or even
reduced. Also, when considering inverse monoid presentations that turn out to define groups, we do
not necessarily assume that the relations 𝑎𝑎−1 = 𝑎−1𝑎 = 1 for 𝑎 ∈ 𝐴 are in the presentation; the fact
that an element represented by a letter is invertible might be shown in an entirely different way (e.g., by
deducing relations of the form 𝑎𝑢 = 𝑣𝑎 = 1 for some words 𝑢, 𝑣 ∈ 𝐴

∗
).

Example 2.3. The following example, taken from [15, page 90], shows that the prefix monoid can
depend on the choice of presentation for the group. The prefix monoid of the group presentation

𝐺 = Gp〈𝑎, 𝑏 | 𝑎𝑏𝑎 = 1〉

is generated by {𝑎, 𝑎𝑏} = {𝑎, 𝑎−1} which, because 𝑏 = 𝑎−2 in this group, is the whole group G. However,
the prefix monoid of the presentation

𝐺 = Gp〈𝑎, 𝑏 | 𝑎𝑎𝑏 = 1〉

is generated by {𝑎, 𝑎2} and hence is equal to the submonoid of G generated by {𝑎}. Because 𝑏 = 𝑎−2,
this generator is redundant, and eliminating it, we see that G is isomorphic to the infinite cyclic group
generated by {𝑎}. So in the latter case, the prefix monoid is isomorphic to the infinite monogenic monoid
{𝑎𝑖 : 𝑖 ≥ 0}. Hence, these two different presentations for G yield two different prefix monoids.

It is immediately clear that all prefix monoids are finitely generated and group-embeddable. So, the
following general question arises naturally.

Question 2.4. Which finitely generated group-embeddable monoids arise as prefix monoids?

Definition 2.5. Let M be a finitely presented special inverse monoid,

𝑀 = Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉.

We call the submonoid 𝑅 = {𝑚 ∈ 𝑀 : 𝑚𝑚−1 = 1} of right units of M the RU-monoid of M. A monoid T
is an RU-monoid if it is isomorphic to the RU-monoid of some finitely presented special inverse monoid.

It follows from the argument in the proof of [15, Proposition 4.2] that the RU-monoid of
𝑀 = Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is generated by the set of all elements [𝑝]𝑀 represented by prefixes p
of the set of defining relators 𝑤𝑖 , 𝑖 ∈ 𝐼. Of course, the RU-monoid of a special inverse monoid M does
not depend on the choice of presentation for M, but different choices of special presentation can give
different finite generating sets for the monoid given by the prefixes of the defining relators. Because an
RU-monoid is by definition an RU-monoid of a finitely presented special inverse monoid, it follows that
the set of prefixes of defining relators is finite; hence, all RU-monoids are finitely generated, and it is very
easy to see that they are necessarily right cancellative. Indeed, if 𝑎, 𝑏, 𝑐 are right units of any monoid,
then choosing x to be an element satisfying 𝑐𝑥 = 1, we see that if 𝑎𝑐 = 𝑏𝑐, then 𝑎 = 𝑎𝑐𝑥 = 𝑏𝑐𝑥 = 𝑏. So,
we instantly have an analogous question to the one before.

Question 2.6. Which finitely generated right cancellative monoids arise as RU-monoids?
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2.2. Green’s relations and Schützenberger groups

The most basic tool in studying the structure of semigroups are the five equivalence relations called
Green’s relations. The first three of them, ℛ,ℒ,𝒥, classify the elements of a semigroup according to
the right/left/two-sided principal ideals they generate. Because we only work with monoids in this paper,
we give the definitions here just for monoids. So, in a monoid S we have the following definitions:

𝑎ℛ 𝑏 ⇔ 𝑎𝑆 = 𝑏𝑆, 𝑎ℒ 𝑏 ⇔ 𝑆𝑎 = 𝑆𝑏, 𝑎𝒥 𝑏 ⇔ 𝑆𝑎𝑆 = 𝑆𝑏𝑆.

Further, ℋ = ℛ ∩ ℒ and 𝒟 = ℛ ∨ ℒ, which is just ℛ ◦ ℒ as it may be shown that ℛ and ℒ

commute. We say that 𝑎 ∈ 𝑆 is regular if 𝑎 = 𝑎𝑥𝑎 for some 𝑥 ∈ 𝑆. The 𝒟-classes are exclusive with
respect to regularity: either all elements of a 𝒟-class are regular, or none of them are. In the former
case, each ℛ-class and each ℒ-class contains at least one idempotent. The ℋ-classes containing
idempotents are maximal subgroups of a monoid and, in turn, every maximal subgroup arises in this
way. Group ℋ-classes within a given 𝒟-class are all isomorphic; hence, there is a natural way to
associate a group with each regular 𝒟-class. Also, note that by the definition of ℛ, it is immediate
that in any monoid M, an element m belongs to the ℛ-class of 1 in M if and only if m is right
invertible. In particular, the RU-monoid of a special inverse monoid is equal to the ℛ-class of 1 in that
monoid.

Even though nonregular 𝒟-classes do not contain idempotents and hence do not contain any sub-
groups, they carry a ‘hidden’ group structure encapsulated by the concept of a Schützenberger group.
Namely, let H be anℋ-class within a 𝒟-class D, say of a monoid S. Define first the right stabiliser of H,

Stab(𝐻) = {𝑠 ∈ 𝑆 : 𝐻𝑠 ⊆ 𝐻}.

Then, if 𝑠 ∈ Stab(𝐻), it turns out that the right translation corresponding to the element s, 𝜌𝑠 : 𝑎 ↦→ 𝑎𝑠
(𝑎 ∈ 𝑆) restricts to a permutation of the set H. It is not difficult to see that Stab(𝐻) is a submonoid of S,
and upon defining an equivalence relation 𝜎 on Stab(𝐻) by (𝑠, 𝑡) ∈ 𝜎 if and only if 𝜌𝑠 |𝐻 = 𝜌𝑡 |𝐻 , then
𝜎 is a congruence and the quotient Stab(𝐻)/𝜎 is a group. This is the right Schützenberger group Γ(𝐻)

of H. Analogously, we can define the the left Schützenberger group of an ℋ-class, but it may be shown
that it is always isomorphic to the right one. This group has |𝐻 | elements, and Schützenberger groups
of ℋ-classes from the same 𝒟-class are isomorphic to each other. As is expected, the Schützenberger
group of an ℋ-class H from a regular 𝒟-class is just isomorphic to the maximal subgroup contained in
that class; in particular, if an ℋ-class H is a group, then Γ(𝐻) � 𝐻.

For further background in semigroup theory, we refer to [6, 14], and, specifically for inverse semi-
groups, to [18, 30].

2.3. Recursive enumerability and the Higman Embedding Theorem

A set of natural numbers 𝐴 ⊆ N is recursively enumerable (r.e. for short) if it is an image of a unary
(primitive) recursive function – that is, 𝐴 = {𝜑(𝑛) : 𝑛 ∈ N} for some primitive recursive 𝜑 : N → N.
The notion of recursive enumerability can be extended to languages as well (and then also to sets of
tuples of words) via some of the standard enumerations of all words over a finite alphabet. It is one of the
principal results of Turing [33, 24] that r.e. languages are precisely the languages of Turing machines:
𝐿 ⊆ Σ∗ is r.e. if and only there exists a Turing machine M such that 𝐿(M) = 𝐿, which means that M
halts and accepts on any input word 𝑤 ∈ 𝐿, whereas if 𝑤 ∉ 𝐿, then M either halts and rejects the word
or works forever. Actually, this is the criterion of a language being r.e. that we use throughout, as is the
case in modern theoretical computer science [13].

Now we say that a finitely generated group G is recursively presented if

𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉,

https://doi.org/10.1017/fms.2023.99 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.99


Forum of Mathematics, Sigma 7

where A is a finite set and {𝑤𝑖 : 𝑖 ∈ 𝐼} is a r.e. language over 𝐴 = 𝐴 ∪ 𝐴−1. Similarly, a monoid M is
recursively presented if

𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉

for a finite set A and a r.e. subset {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ 𝐼} of 𝐴∗ × 𝐴∗.

Theorem 2.7 (The Higman Embedding Theorem [12]). A finitely generated group embeds into a finitely
presented group if and only if it is recursively presented.

In fact, there is a counterpart of the previous theorem for semigroups/monoids and inverse semi-
groups/monoids, obtained, respectively, by Murskiı̆ [28] and Belyaev [3], so that a finitely generated
(inverse) monoid embeds into a finitely presented one if and only if it is recursively presented.

Let 𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 be a finitely presented group and 𝐿 ⊆ 𝐴
∗

be a r.e. language such that
𝐻 = {[𝑤]𝐺 : 𝑤 ∈ 𝐿} is a subgroup of G. Then we say that H is a recursively enumerable subgroup
of G. It is not difficult to see that any finitely generated subgroup of G is recursively enumerable:
if the generating elements of such a subgroup are represented by words 𝑢1, . . . , 𝑢𝑘 ∈ 𝐴

∗
, then the

(rational) language 𝐿 = {𝑢1, . . . , 𝑢𝑘 }
∗ suffices to see this. Therefore, by Higman’s Theorem, any finitely

generated recursively presented group arises as a recursively enumerable subgroup of some finitely
presented group. In fact, although we will not need it here, more generally it follows from the argument
in [12, Corollary to Theorem 1] that any not necessarily finitely generated recursively presented group
is isomorphic to a recursively enumerable subgroup of a finitely presented group.

3. A characterisation of prefix monoids

By their very definition, prefix monoids are finitely generated submonoids of finitely presented groups.
Therefore, our first aim is to take a closer look at such monoids. It turns out that the following holds.

Proposition 3.1. A finitely generated monoid embeds into a finitely presented group if and only if it is
group-embeddable and recursively presented.

To prove this, we use an auxiliary result that is often labelled as folklore (such as in [5, 26, 29]). A
proof of the result may be found in [4, Proposition 0.9.1], which in turn makes use of [6, Construction
12.3].

Lemma 3.2. If the monoid 𝑀 = Mon〈𝐴 |ℜ〉 is group-embeddable, then it embeds into the group with
the same presentation, 𝐺 = Gp〈𝐴 |ℜ〉.

Proof of Proposition 3.1. (⇒) Assume M embeds into a finitely presented group G. Then G is also
finitely presented as a monoid. Now the conclusion follows by Murskiı̆’s semigroup/monoid version of
the Higman Embedding Theorem [28].

(⇐) Suppose 𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 is group-embeddable and {(𝑢𝑖 , 𝑣𝑖) : 𝑖 ∈ 𝐼} is a r.e.
subset of 𝐴∗ × 𝐴∗. By the previous lemma, M embeds into the group G with the same presentation,
which is the same as Gp〈𝐴 | 𝑢𝑖𝑣

−1
𝑖 = 1 (𝑖 ∈ 𝐼)〉 where {𝑢𝑖𝑣

−1
𝑖 : 𝑖 ∈ 𝐼} is now a r.e. language over 𝐴.

Then, by the Higman Embedding Theorem, G in turn embeds into a finitely presented group, and hence,
so does M. �

Corollary 3.3. Any prefix monoid is a group-embeddable recursively presented monoid.

The previous corollary immediately raises the question: Which group-embeddable recursively pre-
sented monoids arise as prefix monoids? Possibly all of them? We refute this by quickly looking at the
special case when the prefix monoid (of a finitely presented group) is itself a group.

Lemma 3.4. If a group arises as a prefix monoid, then it is finitely presented.
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Proof. Assume that 𝐺 = Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is a finitely presented group whose prefix monoid P
is also a group. Let 𝑎 ∈ 𝐴 be any letter occurring in some 𝑤𝑖 , so that 𝑤𝑖 = 𝑤′𝑎𝑤′′. Then both [𝑤′]𝐺
and [𝑤′𝑎]𝐺 are values of prefixes of 𝑤𝑖 in G, so they belong to the generating set of P. However, the
assumption that P is a group implies that [𝑤′]−1

𝐺 ∈ 𝑃, and so

[𝑎]𝐺 = [𝑤′]−1
𝐺 [𝑤′𝑎]𝐺 ∈ 𝑃,

as well as [𝑎]−1
𝐺 ∈ 𝑃. We conclude that P coincides with the subgroup of G generated by the subset

𝐵 ⊆ 𝐴 of all letters from A appearing in the relators 𝑤𝑖 , 𝑖 ∈ 𝐼. But because 𝐺 = Gp〈𝐵 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 ∗
𝐹𝐺 (𝐴\𝐵), it is then straightforward to see that 𝑃 = Gp〈𝐵 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉, so P is finitely presented. �

In fact, the converse is true as well, but we show this as part of the following more general result for
group-embeddable monoids.

Proposition 3.5. Every group-embeddable finitely presented monoid arises as a prefix monoid.

Proof. Let 𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 be a group-embeddable finitely presented monoid. By Lemma
3.2, M embeds into the group𝐺 = Gp〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 via the homomorphism induced by the identity
map on A. However, the following is then also a presentation for G:

Gp〈𝐴 | 𝑢𝑖𝑣
−1
𝑖 = 1 (𝑖 ∈ 𝐼), 𝑎𝑎−1 = 1 (𝑎 ∈ 𝐴)〉.

Now, computing the generating set for the prefix monoid P with respect to this presentation of G would
lead us to the prefixes of the words 𝑢𝑖 , words of the form 𝑢𝑖 𝑝, where p is a prefix of 𝑣−1

𝑖 , and the
individual letters 𝑎 ∈ 𝐴. In the first of these cases, however, note that if 𝑣−1

𝑖 = 𝑝𝑞, then 𝑣𝑖 = 𝑞−1𝑝−1 and
[𝑢𝑖 𝑝]𝐺 = [𝑞−1]𝐺 , so indeed, P is generated by the elements of G represented by the prefixes of 𝑢𝑖 , 𝑣𝑖
(𝑖 ∈ 𝐼) and the letters 𝑎 ∈ 𝐴. Because both 𝑢𝑖 and 𝑣𝑖 are positive words (containing no inverses of letters),
we conclude that P is the submonoid of G generated by {[𝑎]𝐺: 𝑎 ∈ 𝐴}, which is isomorphic to M. �

Proposition 3.5 shows that all group-embeddable finitely presented monoids occur as prefix monoids.
In contrast, Lemma 3.4 shows not all group-embeddable recursively presented monoids occur as prefix
monoids (for example, the non-finitely recursively presented groups). However, we will now see that
taking a free product of such a monoid with a free monoid of sufficient finite rank will give a prefix
monoid. This leads to a complete characterisation of prefix monoids in the following result.

Let Σ∗
𝑘 denote the free monoid of rank k.

Theorem 3.6. For every group-embeddable recursively presented monoid M, there is a natural number
𝜇𝑀 such that 𝑀 ∗ Σ∗

𝑘 is a prefix monoid if and only if 𝑘 ≥ 𝜇𝑀 . Moreover, up to isomorphism, the class
of all prefix monoids is equal to

{𝑀 ∗ Σ∗
𝑘 : 𝑀 is a group-embeddable recursively presented monoid and 𝑘 ≥ 𝜇𝑀 }.

Proof. Let us start by noting that if G is a finitely presented group that embeds the finitely generated
monoid M, then there exists a finite presentation

Gp〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉

of G such that M is isomorphic to its submonoid generated by some subset 𝐵 ⊆ 𝐴. So actually, we
may identify 𝑀 = Mon〈[𝑏]𝐺 : 𝑏 ∈ 𝐵〉. We begin by first showing that there exists some finite set C
and a presentation for 𝐺 ∗ 𝐹𝐺2, the free product of G and a free group of rank 2, such that 𝑀 ∗ 𝐶∗ is
isomorphic to the prefix monoid for the presentation of 𝐺 ∗ 𝐹𝐺2 in question.

The presentation of 𝐾 = 𝐺 ∗ 𝐹𝐺2 for which we aim to describe the prefix monoid, is the following
one:

Gp〈𝐴, 𝑠, 𝑡 | 𝑠𝑤𝑖𝑠
−1 = 1 (𝑖 ∈ 𝐼), 𝑡𝑏𝑡−1𝑡𝑏−1𝑡−1 = 1 (𝑏 ∈ 𝐵)〉.
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The required prefix monoid P is generated by the elements represented in G by the words 𝑠𝑝, where
p is a (possibly empty) prefix of 𝑤𝑖 for some 𝑖 ∈ 𝐼, and by 𝑡, 𝑡𝑏, 𝑡𝑏𝑡−1 (𝑏 ∈ 𝐵). Let 𝑃1 denote the
submonoid of P generated by {[𝑡]𝐾 , [𝑡𝑏]𝐾 , [𝑡𝑏𝑡

−1]𝐾 : 𝑏 ∈ 𝐵} and 𝑃2 be the submonoid generated by
{[𝑠𝑝]𝐾 : 𝑝 ∈ pref (𝑤𝑖), 𝑖 ∈ 𝐼}. We claim that

(1) 𝑃1 � 𝑀 ∗ {[𝑡]𝐾 }
∗;

(2) 𝑃2 is a free monoid of finite rank;
(3) 𝑃 � 𝑃1 ∗ 𝑃2.

For (1), start by noting that the generators of 𝑃1 of the second type are redundant, as [𝑡𝑏]𝐾 =
[𝑡𝑏𝑡−1]𝐾 [𝑡]𝐾 for all 𝑏 ∈ 𝐵. So 𝑃1 is the submonoid of K generated by [𝑡]𝐾 and {[𝑡𝑏𝑡−1]𝐾 : 𝑏 ∈ 𝐵}.
Now 𝑃1 is isomorphic to [𝑡]−1

𝐾 𝑃1 [𝑡]𝐾 , which is the submonoid of K generated by {[𝑏]𝐺 : 𝑏 ∈ 𝐵} and
[𝑡]𝐾 , and this monoid is isomorphic to 𝑀 ∗ {[𝑡]𝐾 }

∗ by the Normal Form Theorem for free products [19,
Theorem IV.1.2] applied to the group K. Let us note at this point that all elements of 𝑃1 are of the form
[𝑡𝑚1 . . . 𝑡𝑚𝑘 𝑡

−1]𝐾 for some 𝑘 ≥ 1 and 𝑚1, . . . , 𝑚𝑘 ∈ 𝐵∗.
To prove (2), we claim that 𝑃2 is a free monoid on {[𝑠𝑝]𝐾 : 𝑝 ∈ pref(𝑤𝑖), 𝑖 ∈ 𝐼}. Indeed, if

[𝑠𝑝1]𝐾 . . . [𝑠𝑝𝑚]𝐾 = [𝑠𝑝1 . . . 𝑠𝑝𝑚]𝐾 = [𝑠𝑞1 . . . 𝑠𝑞𝑟 ]𝐾 = [𝑠𝑞1]𝐾 . . . [𝑠𝑞𝑟 ]𝐾

holds in 𝑃2 (and so in K), then again by the Normal Form Theorem in free products, we must have
𝑚 = 𝑟 and [𝑝𝑘 ]𝐺 = [𝑞𝑘 ]𝐺 for all 1 ≤ 𝑘 ≤ 𝑚, so [𝑠𝑝𝑘 ]𝐾 = [𝑠𝑞𝑘 ]𝐾 for 1 ≤ 𝑘 ≤ 𝑚. Hence, 𝑃2 satisfies
no nontrivial equality among its generators.

Finally, for (3), notice first that 𝑃1 ∪ 𝑃2 generates P. Also, by the observations already made in the
previous two paragraphs, we have that the reduced forms (with respect to K) of all elements of 𝑃1 are
either of the type [𝑡𝑢1𝑚1 . . . 𝑡

𝑢𝑘𝑚𝑘 ]𝐾 or of the type [𝑡𝑢1𝑚1 . . . 𝑡
𝑢𝑘𝑚𝑘 𝑡

−1]𝐾 for some 𝑢 𝑗 ≥ 1 and words
𝑚1, . . . , 𝑚𝑘 ∈ 𝐵∗ such that [𝑚 𝑗 ]𝐺 ≠ 1 for all 1 ≤ 𝑗 ≤ 𝑘 . Similarly, the reduced forms of all elements
of 𝑃2 are of the type [𝑠𝑣1 𝑝1 . . . 𝑠

𝑣𝑙 𝑝𝑙]𝐾 for some 𝑣 𝑗 ≥ 1 and words 𝑝1, . . . , 𝑝𝑙 ∈ 𝐴
∗

(specifically, all
these words are nonempty prefixes of relator words 𝑤𝑖 , 𝑖 ∈ 𝐼) such that [𝑝 𝑗 ]𝐺 ≠ 1 for all 1 ≤ 𝑗 ≤ 𝑙.
Therefore, if we have an equality

[𝛼1𝛽1 . . . 𝛼𝑚𝛽𝑚]𝐾 = [𝛾1𝛿1 . . . 𝛾𝑛𝛿𝑛]𝐾 ,

where [𝛼𝑞]𝐾 , [𝛾𝑟 ]𝐾 ∈ 𝑃1, [𝛽𝑞]𝐾 , [𝛿𝑟 ]𝐾 ∈ 𝑃2 (1 ≤ 𝑞 ≤ 𝑚, 1 ≤ 𝑟 ≤ 𝑛) are all nontrivial, except
possibly some of [𝛼1]𝐾 , [𝛽𝑚]𝐾 , [𝛾1]𝐾 , [𝛿𝑛]𝐾 , and the words 𝛼𝑞 , 𝛽𝑞 , 𝛾𝑞 and 𝛿𝑞 are all words in the
reduced forms described above for 𝑃1 and 𝑃2.

Because every word 𝛼𝑞 , 𝛾𝑟 begins with t and ends with either a letter from B or 𝑡−1, and every word
𝛽𝑞 , 𝛿𝑟 begins with s and ends with a letter from A, it follows that both the words 𝛼1𝛽1 . . . 𝛼𝑚𝛽𝑚 and
𝛾1𝛿1 . . . 𝛾𝑛𝛿𝑛 are already in reduced form with respect to the free product K. This yields an equality of
reduced forms in K of the following type:

[𝑥1𝑦1 . . . 𝑥𝜎𝑦𝜎]𝐾 = [𝑥 ′1𝑦
′
1 . . . 𝑥

′
𝜏𝑦

′
𝜏]𝐾 ,

where 𝛼1𝛽1 . . . 𝛼𝑚𝛽𝑚 = 𝑥1𝑦1 . . . 𝑥𝜎𝑦𝜎 and 𝛾1𝛿1 . . . 𝛾𝑛𝛿𝑛 = 𝑥 ′1𝑦
′
1 . . . 𝑥

′
𝜏𝑦

′
𝜏 and each 𝑥 𝑗 , 𝑥

′
𝑗 is either a

power of t, or a power of s, or of the form 𝑡−1𝑠𝑣 for some 𝑣 ≥ 1, and each 𝑦 𝑗 , 𝑦
′
𝑗 is a word over 𝐴

representing a nontrivial element of the group G (in case of words occurring immediately after powers of
t, there are in fact words from 𝐵∗). By employing the Normal Form Theorem in free products once again,
we conclude that 𝜎 = 𝜏 and that 𝑥 𝑗 = 𝑥 ′𝑗 and [𝑦 𝑗 ]𝐺 = [𝑦′𝑗 ]𝐺 for all 1 ≤ 𝑗 ≤ 𝜎. But then combining
this with the equalities of words 𝛼1𝛽1 . . . 𝛼𝑚𝛽𝑚 = 𝑥1𝑦1 . . . 𝑥𝜎𝑦𝜎 and 𝛾1𝛿1 . . . 𝛾𝑛𝛿𝑛 = 𝑥 ′1𝑦

′
1 . . . 𝑥

′
𝜏𝑦

′
𝜏 , it

follows that 𝑚 = 𝑛, [𝛼𝑞]𝐾 = [𝛾𝑞]𝐾 and [𝛽𝑞]𝐾 = [𝛿𝑞]𝐾 for all 1 ≤ 𝑞 ≤ 𝑚. This suffices to establish
that P is a free product of 𝑃1 and 𝑃2.
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For the remainder of the proof, assume that, for some k, 𝑀 ∗ Σ∗
𝑘 is a prefix monoid in the finitely

presented group 𝐿 = Gp〈𝑋 |ℜ〉. Let y be a symbol not in X and consider the group

𝐿 ′ = Gp〈𝑋, 𝑦 |ℜ, 𝑦𝑦−1 = 1〉.

We have that 𝐿 ′ � 𝐿 ∗ 𝐹𝐺 (𝑦). Then the prefix monoid for the given presentation of 𝐿 ′ is generated
by the prefix monoid of the considered presentation of L and the element represented by the letter y.
Therefore, the prefix monoid of 𝐿 ′ is isomorphic to 𝑀 ∗ Σ∗

𝑘 ∗ {𝑦}
∗ � 𝑀 ∗ Σ∗

𝑘+1. Hence, if 𝜇𝑀 is the
minimal value of k such that 𝑀 ∗ Σ∗

𝑘 arises as a prefix monoid (of a finitely presented group), it follows
that 𝑀 ∗ Σ∗

𝑘 is a prefix monoid for all larger values of k. From this remark, the statement of the first
sentence in the theorem follows.

Conversely, given any group-embeddable recursively presented monoid M that arises as a prefix
monoid, we have 𝜇𝑀 = 0, and so 𝑀 � 𝑀 ∗ Σ∗

0 belongs to the class in the statement of theorem. �

Remark 3.7. The size of the finite set C appearing in the first part of the proof of the previous result is
bounded from above by one plus the sum of lengths of relators needed to define the finitely presented
group G so that the generating set of M is included into the generating set of G. More precisely, |𝐶 | − 1
is actually the number of different elements of the group G represented by all prefixes of relators.

4. Groups of units and Schützenberger groups of prefix monoids

Bearing in mind the goals of this section, the characterisation of the classes of groups arising as groups
of units and Schützenberger groups in prefix monoids, respectively, we first record several basic facts
about group-embeddable monoids. Actually, the scope of some of these auxiliary results extend to the
wider classes of (right, left) cancellative monoids.

Proposition 4.1. Let M be a monoid with 𝑥, 𝑦 ∈ 𝑀 and let U be its group of units.

(1) If M is right cancellative, then 𝑥ℒ 𝑦 if and only if 𝑦 = 𝑢𝑥 for some 𝑢 ∈ 𝑈. Consequently, 𝐿𝑥 = 𝑈𝑥.
(2) If M is left cancellative, then 𝑥ℛ 𝑦 if and only if 𝑦 = 𝑥𝑢 for some 𝑢 ∈ 𝑈. Consequently, 𝑅𝑥 = 𝑥𝑈.
(3) If M is cancellative, then 𝐻𝑥 = 𝑈𝑥 ∩ 𝑥𝑈 and 𝐷𝑥 = 𝑈𝑥𝑈.
(4) If M is a submonoid of a group G, then the Schützenberger group of 𝐻𝑥 is isomorphic to𝑈∩ 𝑥−1𝑈𝑥.

Proof. (1) 𝑥ℒ 𝑦 holds if and only if 𝑦 = 𝑢𝑥 and 𝑥 = 𝑣𝑦 for some 𝑢, 𝑣 ∈ 𝑀 . But then 𝑥 = 𝑣𝑢𝑥, and by
right cancellativity of M, it follows that 𝑣𝑢 = 1. Similarly, 𝑦 = 𝑢𝑣𝑦 implies 𝑢𝑣 = 1, so both 𝑢, 𝑣 must be
units of M. (2) is dual to (1), and (3) follows from (1) and (2).

Assume now that M is a submonoid of a group G; we compute the right Schützenberger group of
𝐻𝑥 . Indeed, 𝑚 ∈ 𝑀 stabilises 𝐻𝑥 from the right if and only if 𝐻𝑥𝑚 ⊆ 𝐻𝑥 . In particular, 𝑥𝑚ℛ 𝑥,
which by (2) implies 𝑚 ∈ 𝑈. Furthermore, we must have 𝑥𝑚ℒ 𝑥, so 𝑥𝑚 = 𝑢𝑥 for some 𝑢 ∈ 𝑈.
This, in G, yields 𝑚 = 𝑥−1𝑢𝑥 ∈ 𝑥−1𝑈𝑥. Conversely, the assumption 𝑚 ∈ 𝑈 ∩ 𝑥−1𝑈𝑥 implies that
𝑥𝑚 ∈ 𝑥𝑈 ∩ 𝑥𝑥−1𝑈𝑥 = 𝑥𝑈 ∩ 𝑈𝑥 = 𝐻𝑥 . Because 𝑥𝑚 ∈ 𝐻𝑥 , it follows by Green’s Lemma [14] that
𝐻𝑥𝑚 = 𝐻𝑥 . So, Stab(𝐻𝑥) = 𝑈 ∩ 𝑥−1𝑈𝑥. However, the (right) Schützenberger group of 𝐻𝑥 must
coincide now with its right stabiliser, as left cancellativity of M implies that its every element must
induce a different permutation of 𝐻𝑥 . �

Proposition 4.2. Let M be a right (or left) cancellative monoid and let U be its group of units.

1. 𝑀 \𝑈 is an ideal of M. Consequently, if M is finitely generated (resp. recursively presented), so is U.
2. Every Schützenberger group of M embeds into U.
3. If M is recursively presented, then every Schützenberger group of M is a recursively enumerable

subgroup of a finitely presented group.

Proof. We consider only the case when M is right cancellative (the left cancellative case being dual).
(1) Assume that 𝑥, 𝑦 ∈ 𝑀 are such that 𝑥𝑦 ∈ 𝑈. Then 𝑥𝑦𝑧 = 𝑧𝑥𝑦 = 1 for some 𝑧 ∈ 𝑀 . Hence,

𝑦𝑧𝑥𝑦 = 𝑦, which by right cancellativity implies 𝑦𝑧𝑥 = 1. So, 𝑧𝑥 is an inverse of y, and 𝑦𝑧 is an inverse
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of x. Thus, 𝑥, 𝑦 ∈ 𝑈. Therefore, if any of 𝑎, 𝑏 ∈ 𝑀 does not belong to U, it follows that 𝑎𝑏 ∈ 𝑀 \𝑈,
showing that 𝑀 \𝑈 is an ideal of M.

Now if 𝑋 ⊆ 𝑀 is any generating set of M, it follows that 𝑋 ∩𝑈 must be a (monoid) generating set of
U. Indeed, the previous paragraph shows that if for 𝑢 ∈ 𝑈 we have 𝑢 = 𝑥1 . . . 𝑥𝑛 for some 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 ,
then in fact we must have 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 ∩𝑈. So, if X is finite (witnessing that M is finitely generated),
so is 𝑋 ∩𝑈. Thus, U is a finitely generated group.

Finally, assume that M is recursively presented. As just shown, this implies that the group U is finitely
generated, and it embeds, together with the whole M, into a finitely presented monoid [28]. So, as a
monoid, U is recursively presented, say 𝑈 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉. Because U is a group, the group
presentation Gp〈𝐴 | 𝑢𝑖𝑣

−1
𝑖 = 1 (𝑖 ∈ 𝐼)〉 also defines U. Here, {𝑢𝑖𝑣−1

𝑖 : 𝑖 ∈ 𝐼} is a r.e. language, showing
U to be a recursively presented group.

(2) Here we use the fact (already mentioned in the preliminary section) that the (right) Schützenberger
group of an ℋ-class is isomorphic to the left Schützenberger group of that ℋ-class. Because M is right
cancellative, if H is an ℋ-class of M, the condition 𝑢𝐻 = 𝐻 for some 𝑢 ∈ 𝑀 implies, by Proposition
4.1 (1), that u is a unit of M. Furthermore, if 𝑢′ ≠ 𝑢 is also a unit of M, then for any ℎ ∈ 𝐻, we have
𝑢ℎ ≠ 𝑢′ℎ because of the right cancellative property. Hence, every element u of the left stabiliser of H
induces (via the left translation 𝜆𝑢 : ℎ ↦→ 𝑢ℎ, ℎ ∈ 𝐻) a different permutation of H, implying that it
coincides with the left Schützenberger group of H and embeds into U.

(3) Let H be an ℋ-class of 𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉. By (2), the Schützenberger group K of H
embeds into U. By (1), the group of units U is recursively presented, say 𝑈 = Gp〈𝐴 ∩𝑈 |ℜ〉, and so it
embeds into a finitely presented group. By combining these two facts, we obtain that K is a subgroup
of a finitely presented group 𝐺 = Gp〈𝐵 |ℜ′〉; in this sense, we aim to show that K is a recursively
enumerable subgroup of a finitely presented group.

Assume that 𝐻 = 𝐻𝑥 for some 𝑥 ∈ 𝑀 and let 𝑤 ∈ 𝐴∗ be any word such that [𝑤]𝑀 = 𝑥. Also, because
U embeds into G, there is a mapping which assigns to each letter 𝑎 ∈ 𝐴 ∩𝑈 a word 𝑤𝑎 ∈ 𝐵

∗ inducing
the embedding𝑈 → 𝐺 from the previous paragraph, so that [𝑎1 . . . 𝑎𝑚]𝑈 is mapped to [𝑤𝑎1 . . . 𝑤𝑎𝑚 ]𝐺
for all 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴 ∩𝑈. Now note that for 𝑢 ∈ 𝐴∗, [𝑢]𝑀 ∈ 𝐾 if and only if [𝑢]𝑀 is a unit of M and
there exist words 𝑝, 𝑞 ∈ 𝐴∗ such that [𝑢𝑤]𝑀 = [𝑤𝑝]𝑀 and [𝑤𝑝𝑞]𝑀 = [𝑤]𝑀 . The latter two equalities
ensure that [𝑢]𝑀 𝑥ℛ 𝑥 and so [𝑢]𝑀 𝑥ℋ 𝑥 (as we have [𝑢]𝑀 𝑥ℒ 𝑥 for granted, by Proposition 4.1 (1)),
and by Green’s Lemma (see, for example, [14, Lemma 2.2.1 and its dual, Lemma 2.2.2]), the condition
[𝑢]𝑀 𝑥 ∈ 𝐻𝑥 = 𝐻 is equivalent to [𝑢]𝑀𝐻 = 𝐻.

Therefore, (3) will be proved as soon as we construct a Turing machine M that halts on input 𝑢 ∈ 𝐴∗

if and only if the word u has the properties described in the previous paragraph. Then, the language

{𝑤𝑎1 . . . 𝑤𝑎𝑚 : 𝑎1 . . . 𝑎𝑚 ∈ 𝐿(M)} ⊆ 𝐵
∗
,

whose words represent the elements of the image of K under the considered embedding 𝑈 → 𝐺, is
clearly r.e. In more detail, M should ‘detect’ the words 𝑢 ∈ 𝐴∗ such that the equalities

[𝑢𝑣]𝑀 = [𝑣𝑢]𝑀 = 1, [𝑢𝑤]𝑀 = [𝑤𝑝]𝑀 , [𝑤𝑝𝑞]𝑀 = [𝑤]𝑀

hold for some 𝑣, 𝑝, 𝑞 ∈ 𝐴∗.
Because M is a recursively presented monoid, its word problem (that is, the set {(𝑢, 𝑣) ∈ 𝐴∗ × 𝐴∗ :

[𝑢]𝑀 = [𝑣]𝑀 }) is well-known to be r.e. (For groups, this is already contained in the results of Higman
[12], and for monoids, this is a consequence of the work of Murskiı̆ [28].) Hence, there exists a Turing
machine M𝑀 whose language is the word problem of M. Use some of the standard enumerations of
triples of all words over 𝐴 to obtain 𝐴

∗
× 𝐴

∗
× 𝐴

∗
= {(𝑣𝑛, 𝑝𝑛, 𝑞𝑛) : 𝑛 ∈ N}. Then, use countably

infinitely many copies M𝑛 𝑛 ∈ N, of the machine M𝑀 and feed the inputs (𝑢𝑣𝑖 , 1), (𝑣𝑖𝑢, 1), (𝑢𝑤, 𝑤𝑝𝑖)
and (𝑤𝑝𝑖𝑞𝑖 , 𝑤) into the machines M4𝑖 , M4𝑖+1, M4𝑖+2, M4𝑖+3, 𝑖 ∈ N, respectively, so that the resulting
machine first performs the first step of machine M0, then the first step of machine M1 and the second
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step of machine M0, and so on. Such a machine M will halt and return a positive answer if and only if
the word u represents (in M) an element of K, the required Schützenberger group of H. �

Theorem 4.3. A group arises as a group of units of a prefix monoid if and only if it is a recursively
presented group.

Proof. By (1) of the previous proposition, it is immediate that the group of units of any prefix monoid
is recursively presented.

Conversely, let 𝐺 = Gp〈𝐴 |ℜ〉 be a recursively presented group. Then 𝐺 = Mon〈𝐴 ∪ 𝐴′ |ℜ′,
𝑎𝑎′ = 𝑎′𝑎 = 1 (𝑎 ∈ 𝐴)〉 is a monoid presentation for G, where 𝐴′ is a bijective copy of A disjoint form
A and the relations from ℜ′ are obtained from ℜ by replacing each 𝑎−1 by 𝑎′, 𝑎 ∈ 𝐴. This shows that
G, as a monoid, is recursively presented. By Theorem 3.6, there is an integer 𝑘 ≥ 0 such that 𝐺 ∗ Σ∗

𝑘 is
a prefix monoid. It remains to note that G is the group of units of 𝐺 ∗ Σ∗

𝑘 . �

The main technical tool for studying Schützenberger groups in various classes of group-embeddable
finitely generated monoids is the following.

Theorem 4.4. Let K be a class of group-embeddable recursively presented monoids such that for
any group-embeddable recursively presented monoid M and any embedding 𝛼 : 𝑀 → Γ into a finitely
presented group Γ, there exist 𝑁𝑀 ∈ K, a finitely presented group Γ1, monoid embeddings 𝛽 : 𝑀 → 𝑁𝑀

and 𝛼′ : 𝑁𝑀 → Γ1, and a group embedding 𝛽′ : Γ → Γ1 such that the following diagram commutes:

𝑀
𝛽 ��

𝛼

��

𝑁𝑀

𝛼′

��
Γ

𝛽′
�� Γ1

and that the restriction 𝛽 �𝑈𝑀 to the group of units of M is an isomorphism between 𝑈𝑀 and 𝑈𝑁𝑀 , the
group of units of 𝑁𝑀 .

Then for any group K that is a recursively enumerable subgroup of a finitely presented group, there
is a monoid 𝑆 ∈ K such that K is isomorphic to the Schützenberger group of an ℋ-class of S.

Proof. Let 𝐻1 = Gp〈𝐴 |ℜ〉 be a finitely presented group such that K embeds into 𝐻1 so that the image of
this embedding, 𝐾1 = {[𝑤]𝐻1 : 𝑤 ∈ 𝐿} (for some r.e. language L), is a recursively enumerable subgroup
of 𝐻1. By [9, Lemma 5.2], there is a finitely presented group containing two conjugate subgroups, both
isomorphic to 𝐻1, such that their intersection is isomorphic to 𝐾1 � 𝐾 . In more detail, let 𝐺0 be the
HNN extension of 𝐻1 with a stable letter t, conjugating each element of 𝐾1 to itself. A presentation for
this group is Gp〈𝐴, 𝑡 |ℜ ∪ℜ0〉, where ℜ0 = {𝑡−1𝑤𝑡𝑤−1 : 𝑤 ∈ 𝐿}. Here, ℜ0 is clearly a r.e. language,
so 𝐺0 is finitely generated and recursively presented. By the Higman Embedding Theorem, it embeds
into some finitely presented group G. Within G, we have 𝐻2 = [𝑡]−1

𝐺 𝐻1 [𝑡]𝐺 � 𝐻1 and 𝐻1 ∩ 𝐻2 = 𝐾1.
Now, let M be the submonoid of G generated by 𝐻1 and [𝑡]𝐺 . This is a finitely generated submonoid

of G, a finitely presented group, so M is a group-embeddable recursively presented monoid. A generating
set of M is {[𝑎]𝐺 , [𝑎]−1

𝐺 : 𝑎 ∈ 𝐴}∪{[𝑡]𝐺}. Let us pause for a moment to analyse the group of units of M.
Indeed, for a word 𝑤 ∈ (𝐴∪ {𝑡})∗, we have that [𝑤]𝐺 is invertible in M if and only if [𝑤]𝐺 , [𝑤]−1

𝐺 ∈ 𝑀 .
Let w be one such word. Then we can write

[𝑤]𝐺 = [ℎ0𝑡ℎ1𝑡 . . . 𝑡ℎℓ]𝐺

for some ℓ ≥ 0 and words ℎ𝑖 ∈ 𝐴
∗
, 0 ≤ 𝑖 ≤ ℓ, such that [ℎ𝑖]𝐺 ∈ 𝐻1. Note that the word ℎ0𝑡ℎ1𝑡 . . . 𝑡ℎℓ is

already in a reduced form with respect to the HNN-extension structure of 𝐺0 (see [19, p.181]). Hence,

[𝑤]−1
𝐺 = [ℎ−1

ℓ 𝑡−1 . . . 𝑡−1ℎ−1
1 𝑡−1ℎ−1

0 ]𝐺 .
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The word on the right-hand side is also already in a reduced form. However, the condition [𝑤]−1
𝐺 ∈ 𝑀

and the very definition of M implies that there must be words ℎ′0, ℎ
′
1, . . . , ℎ

′
𝑝 ∈ 𝐴

∗
with [ℎ′𝑗 ]𝐺 ∈ 𝐻1 for

all 0 ≤ 𝑗 ≤ 𝑝 such that

[ℎ−1
ℓ 𝑡−1 . . . 𝑡−1ℎ−1

1 𝑡−1ℎ−1
0 ]𝐺 = [ℎ′0𝑡ℎ

′
1𝑡 . . . 𝑡ℎ

′
𝑝]𝐺 .

This is now an equality of two reduced forms in the HNN-extension 𝐺0, and by [7, Lemma 6.2], it is
impossible unless ℓ = 𝑝 = 0 and [ℎ′0]𝐺 = [ℎ0]

−1
𝐺 ∈ 𝐻1. However, it is clear that any element of 𝐻1 is a

unit in M, so 𝑈𝑀 = 𝐻1.
Next, start with M and its inclusion map into G. By the condition of the theorem, there is a monoid

𝑆 = 𝑁𝑀 ∈ K, a finitely presented group 𝐺1 and embeddings 𝜙, 𝜓, 𝜉 such that the diagram

𝑀
𝜙 ��

⊆

��

𝑆

𝜓

��
𝐺

𝜉
�� 𝐺1

commutes, and the corresponding restriction of 𝜙 induces an isomorphism between the group of units𝑈𝑀

and𝑈𝑆 . By Proposition 4.1 (4), the Schützenberger group of𝐻 [𝑡 ]𝐺 is isomorphic to𝑈𝑀∩[𝑡]−1
𝐺 𝑈𝑀 [𝑡]𝐺 =

𝐻1 ∩ 𝐻2 � 𝐾 . Applying Proposition 4.1 (4) to 𝐻t in S, where t = [𝑡]𝐺𝜙, the Schützenberger group of
𝐻t is isomorphic to

𝑈𝑆𝜓 ∩ (t−1𝑈𝑆t)𝜓.

However, because𝑈𝑆 = 𝑈𝑀𝜙 and 𝜙𝜓 = 𝜉 �𝑀 , the latter group is just 𝐾1𝜉, an isomorphic copy of K. �

Theorem 4.5. The Schützenberger groups of prefix monoids are exactly the recursively enumerable
subgroups of finitely presented groups.

Proof. (⇒) By Corollary 3.3, if M is a prefix monoid, then it is group-embeddable (and so right
cancellative) and recursively presented. Hence, by Proposition 4.2 (3), every Schützenberger group of
M is a recursively enumerable subgroup of a finitely presented group.

(⇐) In Theorem 4.4, set K to be the class of prefix monoids. The first part of the proof of Theorem
3.6 shows that for any group-embeddable recursively presented monoid M and any embedding 𝑀 → 𝐺
into a finitely presented group G, there exists a finite set C such that 𝑀 ∗ 𝐶∗ is isomorphic to a prefix
monoid in𝐺 ∗𝐹𝐺2. Because the group of units of 𝑀 ∗𝐶∗ is the same as that of M, the natural embedding
𝑀 → 𝑀 ∗𝐶∗, the isomorphism between 𝑀 ∗𝐶∗ and a prefix monoid of 𝐺1 = 𝐺 ∗ 𝐹𝐺2 as in the proof
of Theorem 3.6, and the group embedding 𝐺 → 𝐺1 defined by

𝑔 ↦→ [𝑡]𝐺1𝑔[𝑡]
−1
𝐺1

for all 𝑔 ∈ 𝐺, provide us with all the required parameters for the application of Theorem 4.4. It now
yields that any recursively enumerable subgroup of a finitely presented group occurs as a Schützenberger
group of a prefix monoid. �

5. On RU-monoids

In the previous two sections, we studied prefix monoids, giving a characterisation of those monoids
that arise as prefix monoids and of their groups of units and Schützenberger groups. In this section, we
start by collecting a few basic facts about the submonoids of right units of finitely presented special
inverse monoids which, as mentioned above, we call the RU-monoids; subsequently, we provide a
characterisation of groups arising as Schützenberger groups of RU-monoids. Although prefix monoids

https://doi.org/10.1017/fms.2023.99 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.99


14 I. Dolinka and R. D. Gray

are all group-embeddable, for RU-monoids we need to work with the wider class of right cancellative
monoids.

Lemma 5.1. Every RU-monoid is a right cancellative recursively presented monoid.

Proof. First of all, every RU-monoid R is finitely generated, namely by the elements represented by
all prefixes of the relator words appearing in the presentation of the finitely presented special inverse
monoid 𝐼 = Inv〈𝐴 |ℜ〉, the monoid of right units of which is isomorphic to R. However, as a monoid,
𝐼 � 𝐴

∗
/𝜃ℜ, where 𝜃ℜ is the smallest congruence of the free monoid 𝐴

∗
containing ℜ and the Wagner

congruence. We conclude that I is recursively presented as a monoid, and thus it embeds (together with
R) into a finitely presented monoid M. Therefore, R is a recursively presented monoid. �

Analogously to the case of prefix monoids, the first question that arises following the previous lemma
is whether all right cancellative recursively presented monoids arise as RU-monoids. (Shortly, we shall
see that there are two approaches to defining right cancellative monoids by means of presentations.)
The answer is negative; namely, there is a parallel result to that of Lemma 3.4.

Lemma 5.2. If the monoid R of right units of a finitely presented special inverse monoid 𝑀 =
Inv〈𝐴 | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is a group, then it is finitely presented.

Proof. First of all, recall that R is the submonoid of M generated by all of its elements of the form
[𝑝]𝑀 where p is a prefix of a word 𝑤𝑖 , 𝑖 ∈ 𝐼. Let 𝑎 ∈ 𝐴 be any letter occurring in some 𝑤𝑖 , so that
𝑤𝑖 = 𝑤′𝑎𝑤′′. Similarly as in the proof of Lemma 3.4, we have that both [𝑤′]𝑀 and [𝑤′𝑎]𝑀 are values
of prefixes of 𝑤𝑖 in M, so they belong to R. Because R is a group, [𝑤′]−1

𝑀 ∈ 𝑅. Therefore, [𝑤′]−1
𝑀 is a

right unit of M, so [𝑤′]−1
𝑀 [𝑤′]𝑀 = 1. This allows us to conclude that

[𝑎]𝑀 = [𝑤′]−1
𝑀 [𝑤′𝑎]𝑀 ∈ 𝑅,

and so [𝑎]𝑀 is a unit of M for any letter 𝑎 ∈ 𝐴 that appears in some 𝑤𝑖 . If 𝐴′ ⊆ 𝐴 denotes the set of all
such letters, we obtain that the special inverse monoid Inv〈𝐴′ | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉 is a group and it coincides
with the group with the same presentation, 𝐺 = Gp〈𝐴′ | 𝑤𝑖 = 1 (𝑖 ∈ 𝐼)〉. Now, 𝑀 � 𝐺 ∗ 𝐹𝐼𝑀 (𝐴 \ 𝐴′),
where this free product is taken in the category of inverse monoids, from which it instantly follows that
𝑅 � 𝐺. So R is a finitely presented group. �

The converse of this lemma is also true, as any finitely presented group is finitely presented as a
special inverse monoid (by adding in the relations 𝑎𝑎−1 = 1 and 𝑎−1𝑎 = 1 for all generators a) and,
viewed this way, is the monoid of right units of itself.

Now, while dealing with right cancellative monoids, there is yet another type of presentation that
is worthwhile to consider in this context. Namely, because right cancellative monoids form a quasi-
variety (defined by the implication 𝑥𝑧 = 𝑦𝑧 ⇒ 𝑥 = 𝑦), we have that for any monoid M and any family
{𝜌𝑖 : 𝑖 ∈ 𝐼} of its congruences with the property that 𝑀/𝜌𝑖 is right cancellative, the intersection 𝜌
of this family is again a congruence of M such that 𝑀/𝜌 is right cancellative. For this reason, not
unlike the greatest group image (of an inverse monoid, for example), there exists the greatest right
cancellative image of a monoid. In particular, if 𝑀 = Mon〈𝐴 |ℜ〉, this greatest right cancellative
image is denoted by MonRC〈𝐴 |ℜ〉, and it is defined as 𝐴∗/ℜRC, where ℜRC is the intersection of
all congruences 𝜎 of 𝐴∗ with the property that 𝜎 ⊇ ℜ and 𝐴∗/𝜎 is right cancellative. So, a monoid
𝑀 = Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 is right cancellative (and there are conditions implying this; see, for
example, [1]) if and only if Mon〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 = MonRC〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉.

When both 𝐴,ℜ are finite, 𝑀 = MonRC〈𝐴 |ℜ〉 is said to be finitely RC-presented. The previous
remark implies that when the finitely presented monoid Mon〈𝐴 |ℜ〉 happens to be right cancellative, it is
also finitely RC-presented; the converse of this, however, is not true in general (cf. [5] and the references
mentioned there). So, finitely RC-presented (right cancellative) monoids form a strictly wider class than
that of finitely presented monoids which are right cancellative. By the following result, we include the
former class into the scope of our considerations.
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Theorem 5.3. Every finitely RC-presented monoid 𝑇 = MonRC〈𝐴 | 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉 is an RU-monoid.

Proof. Begin by defining a finitely presented special inverse monoid

𝑀𝑇 = Inv〈𝐴 | 𝑎𝑎−1 = 1 (𝑎 ∈ 𝐴), 𝑢𝑖𝑣
−1
𝑖 = 1 (𝑖 ∈ 𝐼)〉.

We claim that its monoid of right units is isomorphic to T. Notice that the inverse monoid 𝑀𝑇 is also
presented by Inv〈𝐴 | 𝑎𝑎−1 = 1 (𝑎 ∈ 𝐴), 𝑢𝑖 = 𝑣𝑖 (𝑖 ∈ 𝐼)〉: under the assumption that all the letters 𝑎 ∈ 𝐴
represent right units, the equations 𝑢𝑖𝑣−1

𝑖 = 1 and 𝑢𝑖 = 𝑣𝑖 are equivalent, by using that fact that if a word
𝑤 ∈ 𝐴

∗
and an inverse monoid K is such that [𝑤]𝐾 is a right unit of K, then [𝑤]𝐾 = [red(𝑤)]𝐾 (see,

for example, [8, Corollary 3.2]).
We proceed by mimicking the argument from [15, Theorem 2.2]. Namely, T is a right cancellative

monoid, so [6, Theorem 1.22] applies: T is isomorphic to the monoid of right units of its inverse hull
𝐼𝐻 (𝑇), the inverse monoid of partial bijections on T generated by the right translations 𝜌𝑡 , 𝑡 ∈ 𝑇 (since T
is right cancellative, each 𝜌𝑡 must be an injective transformation of T, with the left ideal 𝑇𝑡 as its image).
Since for all 𝑖 ∈ 𝐼, both [𝑢𝑖]𝐼 𝐻 (𝑇 ) and [𝑣𝑖]𝐼 𝐻 (𝑇 ) are right units of the inverse monoid 𝐼𝐻 (𝑇), we have
[𝑢𝑖𝑣

−1
𝑖 ]𝐼 𝐻 (𝑇 ) = 1 in this inverse monoid. Hence, there is a surjective inverse monoid homomorphism

𝜇 : 𝑀𝑇 → 𝐼𝐻 (𝑇) extending the map [𝑎]𝑀𝑇 ↦→ 𝜌𝑎, 𝑎 ∈ 𝐴; also, there is a natural surjective involutory
monoid homomorphism 𝜈 : 𝐴

∗
→ 𝑀𝑇 . Write 𝑇 ′ = 𝐴∗𝜈, which is a submonoid of 𝑀𝑇 generated by

[𝑎]𝑀𝑇 for all 𝑎 ∈ 𝐴. This is precisely the generating set for the monoid of its right units of 𝑀𝑇 , so this
monoid must be 𝑇 ′. However, 𝑇 ′𝜇 is just the monoid of right units of 𝐼𝐻 (𝑇) (the latter being isomorphic
to T). But we have [𝑢𝑖]𝑀𝑇 = [𝑣𝑖]𝑀𝑇 for all 𝑖 ∈ 𝐼, and because 𝑢𝑖 , 𝑣𝑖 ∈ 𝐴∗, this implies [𝑢𝑖]𝑇 ′ = [𝑣𝑖]𝑇 ′ .
As 𝑇 ′ is right cancellative (being an RU-monoid), it is a homomorphic image of T, forcing 𝜇 �𝑇 ′ to be
a monoid isomorphism. Thus, T is an RU-monoid. �

Corollary 5.4. All group-embeddable finitely presented monoids are RU-monoids.

However, as the previous theorem shows, RU-monoids are not confined to group-embeddable
monoids; for example, the submonoid of right units of

𝑀 = Inv〈𝑎, 𝑏, 𝑐 | 𝑎𝑎−1 = 𝑏𝑏−1 = 𝑐𝑐−1 = 1, 𝑎𝑏𝑐−1𝑎−1 = 1〉

is a right cancellative monoid that is not group-embeddable. Indeed, the proof above tells us
that, in fact, 𝑀 = Inv〈𝑎, 𝑏, 𝑐 | 𝑎𝑎−1 = 𝑏𝑏−1 = 𝑐𝑐−1 = 1, 𝑎𝑏 = 𝑎𝑐〉. Now, in the monoid R of right
units of M we clearly must have [𝑎𝑏]𝑀 = [𝑎𝑐]𝑀 , but certainly not [𝑏]𝑀 = [𝑐]𝑀 (as, in fact,
𝑅 = MonRC〈𝑎, 𝑏, 𝑐 | 𝑎𝑏 = 𝑎𝑐〉), which contradicts group-embeddability of R.

Because every unit of an inverse monoid is automatically a right unit, it follows that the group of
units of the RU-monoid of an inverse monoid M coincides with the group of units of of M; therefore,
as mentioned in the introduction, [9, Theorem 4.1] shows that the class of groups of units of all RU-
monoids is precisely the class of recursively presented groups.

In the final result of this paper, we describe the Schützenberger groups of RU-monoids. For this,
we recall a construction from [10, Section 6] and a couple of pertinent results from that paper that we
are going to use in the following. Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be a finite alphabet and let Q and W be two
subsets of 𝐴

∗
with 𝑊 = {𝑤1, . . . , 𝑤𝑘 } finite and 𝑄 = {𝑟𝑖 : 𝑖 ∈ 𝐼}, where I contains a distinguished

index 1. Furthermore, let t be a letter not in 𝐴. Let 𝐾𝑄 = Gp〈𝐴 | 𝑟𝑖 = 1 (𝑖 ∈ 𝐼)〉. For any list of words
𝑢1, . . . , 𝑢𝑚 ∈ 𝐴

∗
, we define

𝑒(𝑢1, 𝑢2, . . . , 𝑢𝑚) = 𝑢1𝑢
−1
1 𝑢2𝑢

−1
2 . . . 𝑢𝑚𝑢

−1
𝑚 .

Now we define the special inverse monoid

𝑀𝑄,𝑊 = Inv〈𝐴, 𝑡 | 𝑓 𝑟1 = 1, 𝑟𝑖 = 1 (𝑖 ∈ 𝐼 \ {1})〉,
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where

𝑓 = 𝑒(𝑎1, . . . , 𝑎𝑛, 𝑡𝑤1𝑡
−1, . . . , 𝑡𝑤𝑘 𝑡

−1, 𝑎−1
1 , . . . , 𝑎−1

𝑛 ).

As noted in [10], it was shown in [8, Lemma 3.3] that 𝑀𝑄,𝑊 is equal to the monoid defined by the
presentation with generating set 𝐴 ∪ {𝑡} and defining relations

𝑟𝑖 = 1 (𝑖 ∈ 𝐼),

𝑎𝑎−1 = 𝑎−1𝑎 = 1 (𝑎 ∈ 𝐴),

𝑡𝑤 𝑗 𝑡
−1𝑡𝑤−1

𝑗 𝑡
−1 = 1 (1 ≤ 𝑗 ≤ 𝑘).

We are going to make use of the following results from [10].

Proposition 5.5 [10, Theorem 6.3]. With the above notation and definitions, we have the following.

1. Let 𝑇𝑊 be the submonoid of the group 𝐾𝑄 generated by {[𝑤 𝑗 ]𝐾𝑄 : 1 ≤ 𝑗 ≤ 𝑘}. The submonoid of
right units of 𝑀𝑄,𝑊 is isomorphic to the submonoid of the group 𝐺𝑄 = 𝐾𝑄 ∗ 𝐹𝐺 (𝑡) generated by

{[𝑡]𝐺𝑄 } ∪ 𝐾𝑄 ∪ [𝑡]𝐺𝑄𝑇𝑊 [𝑡]−1
𝐺𝑄

.

2. The group of units of 𝑀𝑄,𝑊 is isomorphic to the subgroup U of 𝐺𝑄 generated by

𝐾𝑄 ∪ {[𝑡𝑤𝑡−1]𝐺𝑄 : 𝑤 ∈ 𝑊 ′},

where 𝑊 ′ ⊆ 𝑊 consists of all 𝑤 𝑗 ∈ 𝑊 such that the word 𝑡𝑤 𝑗 𝑡
−1 represents a unit of 𝑀𝑄,𝑊 .

Furthermore, U is generated by its subgroups 𝐾𝑄 and [𝑡]𝐺𝑄𝐻𝑊 ′ [𝑡]−1
𝐺𝑄

, where 𝐻𝑊 ′ is the subgroup
of 𝐾𝑄 generated by {[𝑤]𝐾𝑄 : 𝑤 ∈ 𝑊 ′} and is in fact isomorphic to the free product of these
subgroups.

Item (1) of the previous proposition is precisely Theorem 6.3 (iii) from [10], whereas item (2) may
be found within the proof of part (v) of the same theorem.

Theorem 5.6. The Schützenberger groups of RU-monoids are exactly the recursively enumerable sub-
groups of finitely presented groups.

Proof. (⇒) By Lemma 5.1, if M is an RU-monoid, then it is right cancellative and recursively pre-
sented (as a monoid). Hence, by Proposition 4.2 (3), every Schützenberger group of M is a recursively
enumerable subgroup of a finitely presented group.

(⇐) The initial setup for our argument is the same as in the beginning of the proof of Theorem
4.4. Namely, let K be an arbitrary group that arises as a recursively enumerable subgroup of a finitely
presented group. Let 𝐻1 = Gp〈𝐵 |ℜ1〉 be a finitely presented group and L a r.e. language such that
𝐾1 = {[𝑤]𝐻1 : 𝑤 ∈ 𝐿} is a subgroup of 𝐻1 isomorphic to K. We let 𝐺0 be the HNN extension of 𝐻1,
this time with z as the stable letter (the letter t will be reserved for a different purpose in this proof),
conjugating each element of 𝐾1 to itself. As seen in Theorem 4.4,𝐺0 is a recursively presented group, so
it embeds into a finitely presented group𝐺 = Gp〈𝐴 |ℜ〉. Here, we may assume that 𝐵 ⊆ 𝐴 and 𝑧 ∈ 𝐴\𝐵,
so that the subgroup of G generated by {[𝑏]𝐺 : 𝑏 ∈ 𝐵} is equal to the embedded copy H of 𝐻1 in G.

Bearing in mind the notation introduced just before the statement of this theorem, consider the special
inverse monoid 𝑀 = 𝑀ℜ,𝑊 , where 𝑊 = 𝐵 ∪ 𝐵−1 ∪ {𝑧} (so all words from W here have length 1). By
Proposition 5.5 (1), we have that the monoid of right units of M is isomorphic to the submonoid R of
the free product 𝑃 = 𝐺 ∗ 𝐹𝐺 (𝑡) generated by

{[𝑡]𝑃} ∪ {[𝑎]𝑃 , [𝑎]
−1
𝑃 : 𝑎 ∈ 𝐴} ∪ [𝑡]𝑃𝑇𝑊 [𝑡]−1

𝑃 ,

where 𝑇𝑊 is the submonoid of G generated by {[𝑧]𝐺} ∪ {[𝑏]𝐺 , [𝑏]
−1
𝐺 : 𝑏 ∈ 𝐵} (in other words, by

[𝑧]𝐺 and H).
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Furthermore, item (2) of Proposition 5.5 implies that the group of units of M is isomorphic to the
subgroup U of P generated by

{[𝑎]𝑃 : 𝑎 ∈ 𝐴} ∪ {[𝑡𝑏𝑡−1]𝑃 : 𝑏 ∈ 𝐵},

with U being the free product of G and the subgroup [𝑡]𝑃𝐻 [𝑡]−1
𝑃 of P. This is a consequence of the

fact that the word 𝑡𝑏𝑡−1 represents a unit of M for all 𝑏 ∈ 𝐵, whereas 𝑡𝑧𝑡−1 does not (even though it
does represent a right unit), as we shall now justify. Indeed, from the displayed equations immediately
before the statement of Proposition 5.5, the fact that 𝐵 ∪ 𝐵−1 ⊆ 𝑊 implies that [(𝑡𝑏𝑡−1) (𝑡𝑏−1𝑡−1)]𝑀 =
[(𝑡𝑏−1𝑡−1) (𝑡𝑏𝑡−1)]𝑀 = 1 holds, showing [𝑡𝑏𝑡−1]𝑀 and also [𝑡𝑏−1𝑡−1]𝑀 is a unit of M. However, seeking
a contradiction, assume that 𝑡𝑧𝑡−1 represents a unit of M. Then [𝑡𝑧𝑡−1]𝑃 is a unit of R, implying that
[𝑡𝑧−1𝑡−1]𝑃 ∈ 𝑅. Bearing in mind the generating set of R provided above, it follows that there are words
𝑤0, 𝑤1, . . . , 𝑤𝑛 ∈ 𝐴

∗
for some 𝑛 ≥ 2 and 𝜀𝑖 ∈ {1,−1}, 1 ≤ 𝑖 ≤ 𝑛, such that

[𝑡𝑧−1𝑡−1]𝑃 = [𝑤0𝑡
𝜀1𝑤1𝑡

𝜀2𝑤2 . . . 𝑤𝑚−1𝑡
𝜀𝑚𝑤𝑚]𝑃

holds, where no two consecutive 𝜀𝑖 , 𝜀𝑖+1 are equal to −1, we have [𝑤𝑖]𝐺 ≠ 1 whenever 𝜀𝑖 ≠ 𝜀𝑖+1, and
we have 𝑤𝑖 ∈ 𝑊∗ whenever 𝜀𝑖 = 1 and 𝜀𝑖+1 = −1. By the Normal Form Theorem for free products
applied to P, this is possible only if 𝑛 = 2, 𝜀1 = 1, 𝜀2 = −1, [𝑤0]𝐺 = [𝑤2]𝐺 = 1 and

[𝑧−1]𝐺 = [𝑤1]𝐺 ,

which from the conditions above implies 𝑤1 ∈ 𝑊∗. However, both elements of G involved in the latter
equality actually belong to the subgroup 𝐺1 of G generated by [𝑧]𝐺 and H, an isomorphic copy of 𝐺0.
Therefore, we arrive at [𝑧−1]𝐺0 = [𝑤1]𝐺0 , but this is impossible by Britton’s Lemma (see also [19,
Theorem IV.2.1]) applied to the HNN extension 𝐺0, as the word 𝑤1 may contain only occurrences of
the letter z but not of its inverse 𝑧−1. This is a contradiction, whence [𝑡𝑧𝑡−1]𝑀 is not a unit of M.

Now consider the Schützenberger group of the ℋ-class of the element [𝑡𝑧𝑡−1]𝑃 in the (group-
embeddable) monoid R, an isomorphic copy of the RU-monoid of M. By Proposition 4.1 (4), this group
is isomorphic to

𝑈 ∩ [𝑡𝑧−1𝑡−1]𝑃𝑈 [𝑡𝑧𝑡−1]𝑃 .

By using the Normal Form Theorem for free products again, we conclude that a typical word representing
an element from U is of the form

𝑢1𝑡𝑣1𝑡
−1𝑢2𝑡𝑣2𝑡

−1 . . . 𝑢𝑚𝑡𝑣𝑚𝑡
−1𝑢𝑚+1,

where the words 𝑢1, . . . , 𝑢𝑚+1 ∈ 𝐴
∗
, 𝑣1 . . . , 𝑣𝑚 ∈ 𝐵

∗ are nonempty except possibly 𝑢1 and 𝑢𝑚. Hence,
the elements of [𝑡𝑧−1𝑡−1]𝑃𝑈 [𝑡𝑧𝑡−1]𝑃 are represented by words of the form

𝑡𝑧−1𝑡−1𝑢1𝑡𝑣1𝑡
−1𝑢2𝑡𝑣2𝑡

−1 . . . 𝑢𝑚𝑡𝑣𝑚𝑡
−1𝑢𝑚+1𝑡𝑧𝑡

−1,

subject to the same conditions as above (note that if, for example, 𝑢1 is empty, then the prefix
𝑡𝑧−1𝑡−1𝑢1𝑡𝑣1𝑡

−1 of the previous word reduces to 𝑡𝑧−1𝑣1𝑡
−1). So, upon employing the Normal Form

Theorem for the third time, we conclude that an element of U also belongs to the conjugate subgroup
[𝑡𝑧−1𝑡−1]𝑃𝑈 [𝑡𝑧𝑡−1]𝑃 of P if and only if 𝑢1, 𝑢𝑚+1 are empty and there exist words 𝑢2, 𝑢

′
2, . . . , 𝑢𝑚, 𝑢

′
𝑚 ∈ 𝐴

∗

and 𝑣1, 𝑣
′
1, . . . , 𝑣𝑚, 𝑣

′
𝑚 ∈ 𝐵

∗ such that

[𝑡𝑣1𝑡
−1𝑢2𝑡𝑣2𝑡

−1 . . . 𝑢𝑚𝑡𝑣𝑚𝑡
−1]𝑃 = [𝑡𝑧−1𝑣′1𝑡

−1𝑢′2𝑡𝑣
′
2𝑡

−1 . . . 𝑢′𝑚𝑡𝑣
′
𝑚𝑧𝑡

−1]𝑃 .

If 𝑚 ≥ 2, the latter condition is equivalent to the equalities [𝑢𝑖]𝐺 = [𝑢′𝑖]𝐺 for all 2 ≤ 𝑖 ≤ 𝑚,
[𝑣𝑖]𝐺 = [𝑣′𝑖]𝐺 for all 2 ≤ 𝑖 ≤ 𝑚 − 1, [𝑣1]𝐺 = [𝑧−1𝑣′1]𝐺 and [𝑣𝑚]𝐺 = [𝑣′𝑚𝑧]𝐺 holding simultaneously.
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This implies [𝑧]𝐺 = [𝑣′1𝑣
−1
1 ]𝐺 = [(𝑣′𝑚)

−1𝑣𝑚]𝐺 ∈ 𝐻, a contradiction. Hence, 𝑚 = 1. In such a case, the
previous condition reduces to

[𝑡𝑣1𝑡
−1]𝑃 = [𝑡𝑧−1𝑣′1𝑧𝑡

−1]𝑃 ,

which, however, holds for any words 𝑣1, 𝑣
′
1 ∈ 𝐵

∗ such that [𝑣1]𝐺 = [𝑧−1𝑣′1𝑧]𝐺 . From this, we immediately
conclude that

𝑈 ∩ [𝑡𝑧−1𝑡−1]𝑃𝑈 [𝑡𝑧𝑡−1]𝑃 � 𝐻 ∩ [𝑧−1]𝐺𝐻 [𝑧]𝐺 � 𝐾1.

Thus, we have that the considered Schützenberger group of M is isomorphic to K, completing the
proof. �

Competing interest. The authors have no competing interest to declare.

Funding statement. The research of the first named author is supported by the Personal Grant F-121 ‘Problems of combinatorial
semigroup and group theory’ of the Serbian Academy of Sciences and Arts. The research of the second named author was
supported by the EPSRC Fellowship Grant EP/V032003/1 ‘Algorithmic, topological and geometric aspects of infinite groups,
monoids and inverse semigroups’.

References

[1] S. I. Adjan, ‘Defining relations and algorithmic problems for groups and semigroups’ (in Russian), Tr. Mat. Inst. Steklov 85
(1966), 123 pp.

[2] S. I. Adyan and G. U. Oganesyan, ‘On the word and divisibility problems for semigroups with one relation’ (in Russian),
Mat. Zametki 41 (1987), 412–421.

[3] V. Y. Belyaev, ‘Imbeddability of recursively defined inverse semigroups in finite presented semigroups’ (in Russian), Sibirsk.
Mat. Zh. 25 (1984), 50–54.

[4] A. J. Cain, ‘Presentations of subsemigroups of groups’, Ph.D. thesis, 2005, University of St Andrews.
[5] A. J. Cain, E. F. Robertson and N. Ruškuc, ‘Cancellative and Malcev presentations for finite Rees index subsemigroups and

extensions’, J. Aust. Math. Soc. 84 (2008), 39–61.
[6] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups , Vol. I & II (Mathematical Surveys) no. 7 (American

Mathematical Society, Providence, RI, 1961 & 1967).
[7] I. Dolinka and R. D. Gray, ‘New results on the prefix membership problem for one-relator groups’, Trans. Amer. Math. Soc.

374 (2021), 4309–4358.
[8] R. D. Gray, ‘Undecidability of the word problem for one-relator inverse monoids via right-angled Artin subgroups of one-

relator groups’, Invent. Math. 219 (2020), 987–1008.
[9] R. D. Gray and M. Kambites, ‘Group H-classes of finitely presented special inverse monoids’, Preprint, 2022,

arXiv:2212.04204.
[10] R. D. Gray and N. Ruškuc, ‘Units of special one-relator inverse monoids’, Preprint, 2021, arXiv:2103.02995.
[11] V. S. Guba, ‘On a relation between the word problem and the word divisibility problem for semigroups with one defining

relation’ (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 61(6) (1997), 27–58.
[12] G. Higman, ‘Subgroups of finitely presented groups’, Proc. Roy. Soc. London Ser. A 262 (1961), 455–475.
[13] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, second edn.

(Addison-Wesley, Boston, 2001).
[14] J. M. Howie, Fundamentals of Semigroup Theory (London Math. Soc. Monographs) vol. 12 (Clarendon Press, Oxford, 1995).
[15] S. V. Ivanov, S. W. Margolis and J. C. Meakin, ‘On one-relator inverse monoids and one-relator groups’, J. Pure Appl.

Algebra 159 (2001), 83–111.
[16] A. Juhász, ‘Solution of the membership problem of the prefix monoid in certain one-relator groups’, Semigroup Forum 89

(2014), 479–490.
[17] G. Lallement, ‘On monoids presented by a single relation’, J. Algebra 32 (1974), 370–388.
[18] M. V. Lawson, Inverse Semigroups: The Theory of Partial Symmetries (World Scientific, Singapore, 1998).
[19] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory (Springer-Verlag, Berlin, 1977).
[20] W. Magnus, ‘Uber diskontinuierliche Gruppen mit einer definierenden Relation. (Der Freiheitssatz)’, J. Reine Angew. Math.

163 (1930), 141–165.
[21] W. Magnus, ‘Das Identitätsproblem für Gruppen mit einer definierenden Relation’, Math. Ann. 106 (1932), 295–307.
[22] G. S. Makanin, ‘On the identity problem in finitely defined semigroups’ (in Russian), Dokl. Akad. Nauk SSSR 171 (1966),

285–287.
[23] A. Malheiro, ‘Complete rewriting systems for codified submonoids’, Internat. J. Algebra Comput. 15 (2005), 207–216.

https://doi.org/10.1017/fms.2023.99 Published online by Cambridge University Press

https://arxiv.org/abs/2212.04204
https://arxiv.org/abs/2103.02995
https://doi.org/10.1017/fms.2023.99


Forum of Mathematics, Sigma 19

[24] A. I. Mal’cev, Algorithms and Recursive Functions (in Russian) (Nauka, Moskva, 1965). [English translation: Wolters-
Noordhoff, Groningen, 1970.]
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