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Abstract
Visual simultaneous localisation and mapping (vSLAM) has shown considerable promise in positioning and nav-
igating across a variety of indoor and outdoor settings, significantly enhancing the mobility of robots employed
in industrial and everyday services. Nonetheless, the prevalent reliance of vSLAM technology on the assumption
of static environments has led to suboptimal performance in practical implementations, particularly in unstruc-
tured and dynamically noisy environments such as substations. Despite advancements in mitigating the influence of
dynamic objects through the integration of geometric and semantic information, existing approaches have struggled
to strike an equilibrium between performance and real-time responsiveness. This study introduces a lightweight,
multi-modal semantic framework predicated on vSLAM, designed to enable intelligent robots to adeptly navigate
the dynamic environments characteristic of substations. The framework notably enhances vSLAM performance by
mitigating the impact of dynamic objects through a synergistic combination of object detection and instance seg-
mentation techniques. Initially, an enhanced lightweight instance segmentation network is deployed to ensure both
the real-time responsiveness and accuracy of the algorithm. Subsequently, the algorithm’s performance is further
refined by amalgamating the outcomes of detection and segmentation processes. With a commitment to maximis-
ing performance, the framework also ensures the algorithm’s real-time capability. Assessments conducted on public
datasets and through empirical experiments have demonstrated that the proposed method markedly improves both
the accuracy and real-time performance of vSLAM in dynamic environments.

1. Introduction
Simultaneous localisation and mapping (SLAM) has seen widespread application across numerous
domains, including intelligent substations [1] and exoskeleton robots [2, 3], to facilitate safe and sta-
ble navigation for mobile and manipulative robots undertaking varied tasks. The unstructured nature of
substations necessitates that the SLAM technology employed by robots exhibits robust generalisation
capabilities to accommodate fluctuations in the environment [4]. Robots designed for intelligent substa-
tions are instrumental in executing a myriad of tasks, leveraging functionalities such as map construction
[5], autonomous positioning, path planning [6], and the identification and retrieval of equipment.

Laser-based SLAM predominantly relies on lasers to reconstruct environments for positioning and
mapping purposes. Nonetheless, 2D laser systems offer insufficient data, while 3D laser systems are
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prohibitively expensive. In contrast, visual sensors employed in Visual SLAM (vSLAM) have wit-
nessed significant advancements owing to their cost-effectiveness and the rich semantic information
they provide. However, the efficacy of most vSLAM systems is predicated on the assumption of static
environments [7], which restricts their overall robustness.

The concept of keyframe-based vSLAM has rapidly evolved, attributed to its minimal computational
demand and high precision [8]. This approach focuses on pose optimisation and map creation through the
establishment of feature points and keyframes. ORB-SLAM3 [9] exemplifies this, achieving enhanced
speed and accuracy in computation by linking keyframes with active maps. In static settings, the cor-
relation between feature points typically exhibits strong geometric consistency. Conversely, in dynamic
environments, the clarity of these geometric correlations can diminish. Techniques such as local bun-
dle adjustment (BA) and loop closure detection are employed to reduce the adverse effects of dynamic
objects on cross-frame pose estimation. Despite these advancements, the challenge posed by dynamic
objects remains, affecting the stability of sophisticated vSLAM systems. The utility of neural networks
in improving robotic perception is increasingly recognised as a solution to the challenges presented by
dynamic environments [10].

In recent years, the integration of deep learning with simultaneous localisation and mapping has
witnessed rapid advancements. Detect-SLAM [11] employs object detection to enhance robustness
in dynamic environments, albeit at the cost of reducing the number of available static feature points.
Previous literature [12] has demonstrated that instance segmentation can effectively eliminate dynamic
feature points, yet this approach significantly compromises real-time performance. Further studies
[13–16] have explored the amalgamation of deep learning and clustering techniques to efficaciously
remove feature points, although the definition of clustering hyperparameters presents challenges and
necessitates reliance on more precise depth maps. Moreover, the integration of multi-view geometry
with deep learning, as discussed in refs. [17, 18], overlooks the semantic information pertinent to feature
points.

This work introduces novel approaches for the detection of dynamic feature points and the fusion of
multiple modules. Initially, an enhanced lightweight neural network is employed to identify dynamic
objects through detection frames and segmentation results, subsequently using these results alongside
the positional relationships of feature points to generate a mask for dynamic feature points. Tailored
improvements, predicated on the characteristics of vSLAM, are implemented within the network to facil-
itate increased speed and accuracy. Furthermore, a dynamic threshold method is introduced to ascertain
the maximal number of features that can be feasibly removed, offering superior adaptability to envi-
ronmental variations in comparison to the deterministic threshold and movement capability approaches
referenced in ref. [11]. Lastly, within the multi-module fusion process, the object detection framework is
integrated into the backend local map to validate and adaptively determine the operation of the instance
segmentation modules. This method, in contrast to the deterministic operating modes discussed in refs.
[13, 14], effectively consolidates individual modules, curtailing overall running time and bolstering
stability.

The main contributions of this paper include:

• The development of a lightweight neural network tailored for multimodal semantic vSLAM, fea-
turing a rapid and efficient backbone network structure alongside decoupled headers for enhanced
parameter sharing.

• The proposition of a novel framework that adeptly merges deep learning with vSLAM, wherein
the concurrent detection and segmentation technique substantially improves both the speed and
accuracy of dynamic feature point detection within vSLAM.

• The introduction of a lightweight semantic vSLAM framework capable of automatic environ-
mental adaptation, with experiments on datasets and in real-world scenarios demonstrating its
superiority over existing vSLAM methodologies in terms of speed and accuracy.
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2. Related work
In scenarios characteristic of substations, the requirement for humans and machines to collaborate
necessitates an environment that is frequently dynamic rather than static. Robots are thus required to
possess the capability to comprehend complex scenarios and task processes [19, 20]. This necessitates
the deployment of vSLAM technologies capable of managing feature points on dynamic objects while
simultaneously balancing performance with efficiency.

Multi-view geometric verification methods utilise reprojection errors between successive frames to
identify dynamic objects. Zhang et al. [21] employ the residuals of relative positions derived from dense
optical flow between consecutive frames for dynamic object segmentation. Dai et al. [22] leverage the
relative positional invariance of map points to distinguish moving objects across successive frames. The
principal advantage of geometric methods lies in their capacity to deduce the mobility of objects within
the environment through the analysis of image relations across different frames, without the need for
extensive prior information. However, these methods do not adequately consider the overall semantic
relationships between feature points.

Object detection methods differentiate between dynamic and static feature points through the extent
of the detection bounding box. MOD-SLAM [23] integrates an object detection module that utilises
the results from detection boxes to eliminate dynamic features. Bao et al. [24] introduced a method
that initially applies detection results obtained from the detection module, subsequently determining
whether to proceed with semantic segmentation based on the quantity of static feature points. Such
targeted detection algorithms enhance the robustness of vSLAM in dynamic environments with mini-
mal impact on real-time performance. Nonetheless, the discrepancy between the size of the detection
frame and the actual contours of objects constrains the effectiveness of object detection within vSLAM
systems.

Semantic segmentation-based approaches remove dynamic feature points based on segmentation
results. DynaSLAM [25] combines Mask R-CNN [26] with multi-view geometry to exclude dynamic
feature points, albeit at the expense of significantly affecting the real-time performance of vSLAM.
DS-SLAM [17] suggests executing geometry checks and Segnet [27] in parallel threads to accurately
identify dynamic object masks, though improvements in speed are not markedly evident. Ji et al. [14]
proposed a combined approach of semantic segmentation and clustering, wherein dynamic object masks
are acquired through segmentation of keyframes using Segnet and clustering on the depth graph with
Kmeans [28], achieving notable speed and segmentation accuracy. However, this approach is contin-
gent upon the sensor’s ability to accurately gauge depth, and its effectiveness is notably influenced by
the settings of hyperparameters.

3. System description
Experimental validation was conducted using the developed substation robotic equipment, as depicted in
Fig. 1. This apparatus encompasses a mobile chassis, a hydraulic lifting platform, a robotic arm, several
RGB-D cameras, and a central processing unit equipped with an Intel i9-10900X CPU and an NVIDIA
Quadro RTX 6000 GPU. The hardware components and their respective functionalities are outlined as
follows:

• The mobile chassis affords the substation robot mobility and directional steering capabilities.
Equipped with four-wheel steering, the chassis is designed to minimise the turning radius,
thereby enhancing manoeuvrability in confined spaces. Furthermore, its dual-drive architecture
at the front and rear facilitates navigation over complex terrains.

• The hydraulic lifting platform primarily serves to extend the vertical operational range of the
robotic arm, allowing it to reach varying heights across different scenarios. This design fea-
ture effectively addresses the constraints associated with working within a singular vertical
space.
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Figure 1. An overview of the smart substation robot platform.

• The robotic arm, featuring seven degrees of freedom, enables precise grasping and manipulation
within intricate environments. Additionally, it is outfitted with a terminal rotation motor at its
front end, facilitating tasks such as tightening and disassembling components.

• Multiple RGB-D cameras are strategically positioned on various parts of the substation robot to
cater to the demands of diverse tasks. The camera located on the robot’s head offers a compre-
hensive view and depth perception for the robotic arm’s operational area. The camera attached to
the extremity of the arm delivers finer resolution images and depth detail for precise manipula-
tion tasks. Meanwhile, the camera mounted on the mobile chassis provides consistent height and
positional imagery for accurate positioning and navigation, ensuring the stability of the external
parameter matrix between the chassis and its environment.

• The central processor, boasting significant computational power, orchestrates the substation
robot’s perception, control, planning, and locomotion. It assimilates and processes data from
the robotic arm, the RGB-D cameras, and the chassis, integrating this information to furnish
real-time feedback and control over the robot’s operations.

4. Method
The methodology proposed herein amalgamates object detection and instance segmentation techniques
to eliminate dynamic objects from scenes. Leveraging the profound capability of neural networks to deci-
pher semantic information, this approach efficiently removes a majority of the dynamic feature points.
The integration of object detection and instance segmentation methodologies is designed to address
the limitations inherent in each individual module. As illustrated in Fig. 2, feature extraction is con-
ducted via the backbone network, with object detection and instance segmentation modules appended
to each frame to identify dynamic entities. Within the vSLAM tracking thread, the results from instance
segmentation are employed to enhance the precision of pose optimisation. Concurrently, in the local
mapping thread, the outcomes of object detection and instance segmentation are amalgamated to refine
the delineation of dynamic objects.
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Figure 2. The overall flow chart of the system. The blue blocks are modules we added in ORB-SLAM3.

4.1. Location
Neural networks have been incorporated within the tracking thread to detect and segment dynamic
objects. In selecting an appropriate network, both the performance and efficiency of the algorithm were
considered, leading to the adoption of YOLOv8 [29] as the primary network. YOLOv8 is capable of con-
ducting both object detection and instance segmentation concurrently, offering improvements in speed
and accuracy over previously suggested methods. However, the exigencies of vSLAM in dynamic set-
tings necessitate even faster neural network performance. The original pretraining weights, optimised
for the eighty categories of the COCO dataset, include several categories irrelevant to dynamic vSLAM
scenarios. Consequently, a subset of 20 pertinent dynamic and static object categories from COCO was
chosen for detection. The YOLOv8s-seg model was selected as the foundational model, with proposed
enhancements aimed at rendering it more lightweight without compromising algorithmic performance.

4.1.1. Network improvements
The performance of the target detection and instance segmentation network is significantly influenced
by its ’Neck’ component. Models constructed using an abundance of depthwise separable convolutional
layers fail to achieve the desired level of accuracy. This paper proposes the incorporation of GSConv
[30] into the ’Neck’ of the YOLOv8s-seg network to diminish model complexity while preserving accu-
racy. Specifically, GSConv is integrated with the VoVGSCSP module, wherein the VoVGSCSP module
supersedes the C2f module in the original YOLOv8 architecture. This modification results in a more
efficient ’Slim-Neck’, thereby enhancing the network’s computational cost-effectiveness. The GSConv
and VoVGSCSP modules are depicted in Fig. 3.

GSConv aims to minimise the loss of semantic information during the process of channel expansion
and feature map reduction. However, its implementation within the backbone network incurs significant
computational overhead. The adjustment of channel numbers and feature map dimensions in the ’Neck’
section, conversely, is more judicious, thus not excessively augmenting inference time consumption.
Given the necessity to fuse feature maps across varying channels, an attention mechanism is requisite.
Hence, informed by the findings of [30], GSConv has been integrated into the ’Neck’ section of the
YOLOv8 architecture, culminating in the formation of the YOLOv8s-seg-Slim-Neck structure. This
adaptation not only curtails computational demands but also augments the network’s efficacy in both
detection and segmentation tasks. Detailed experimental comparisons are provided in the subsequent
experimental section.

YoloV8 utilises a decoupled head design, segregating the predictions of classification and bound-
ing boxes into distinct branches. It has been observed that the decoupled head of YoloV8 harbours a
relatively large parameter count, which, for network deployment, could potentially impair real-time per-
formance. To mitigate this, parameters of certain layers within the decoupled head are shared, and a
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(a) (b)

Figure 3. (a) The composition of the GSConv module. (b) The VoVGSCSP module is composed of
GSConv.

(a) (b)

Figure 4. (a) Original decoupling header in yolov8. (b) A decoupling header for parameter sharing
has been added to yolov8.

convolutional module endowed with a re-parameterization mechanism (RepConv) [31] is introduced to
offset the performance decrement occasioned by the reduction of parameters, as illustrated in Fig. 4.

RepConv represents a convolutional module that reallocates the parameters of its internal convo-
lution through computational fusion. This design is more conducive to hardware compatibility, yet a
straightforward network architecture might diminish the network’s feature extraction capability and the
path of gradient flow. Consequently, during training, RepConv incorporates multiple branches within the
module to enhance the network’s feature extraction capacity. Nevertheless, in the inference phase, these
multiple computational modules are consolidated into a single entity to enhance both the efficiency and
performance of the model.

For instance segmentation, the network’s output header adopts a simplistic structure. Reductions in
convolution layers and channels confer marginal improvements in speed, yet precipitate a considerable
diminution in network precision.

Both the slim-neck structural refinement and the implementation of a parameter-sharing decoupled
head through RepConv facilitate a substantial reduction in parameters, enhancing the inference speed
of YoloV8 without compromising its performance. These enhancements have been amalgamated to for-
mulate the final YOLOv8s-seg-gs-rep network architecture. To further augment network velocity, the
TensorRT inference framework is employed during network deployment, thereby expediting the integra-
tion of the network with vSLAM. The efficacy of these improvement techniques has been empirically
validated within the ablation study section, elucidating the influence of each enhancement on both speed
and accuracy.
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Figure 5. Movement confidence thresholds for different objects.

4.1.2. Posture optimisation
In the context of front-end pose optimisation within vSLAM, the outcomes of instance segmentation are
utilised to obscure dynamic feature points. The processed image, courtesy of the refined YOLOv8s-seg
network, facilitates the acquisition of segmentation results for currently active objects. These results are
subsequently amalgamated into a comprehensive mask map, excluding dynamic feature points from the
pose optimisation process.

The segmentation of dynamic objects necessitates the predefinition of such entities based on artifi-
cial priors. Nonetheless, the inherent mobility of an object is not a definitive attribute; hence, variable
segmented mobility values are ascribed to distinct objects.

The methodology for allocating mobility segments is delineated in Fig. 5. Three intervals are equidis-
tantly distributed between 0 and 1, with the quartile thresholds representing varying probabilities of
movement. For instance, a value of 1 denotes a human, indicative of a high probability of dynamic move-
ment; 0.75 pertains to a sports ball, signifying a moderate probability of motion; and 0.25 is attributed
to a keyboard, suggesting a minimal likelihood of movement, thereby classifying it as a static object
with low confidence.

The presence of dynamic points within an image can significantly consume spatial resources.
Utilising a fixed threshold method or a binary mobility capability assignment could result in the failure
of optimisation efforts. To circumvent this, four methods of mobility capability assignment along-
side dynamic threshold techniques are employed to bolster the algorithm’s robustness. The dynamic
threshold approach operates as follows:

dPoint =
{

static, if m ≤ mth

dynamic, otherwise
, (1)

where dPoint is a flag of whether the feature points are dynamic. m means the mobility of the category to
which the current feature point belongs. mth represents the threshold for judging the dynamics of feature
points, which is 0.25 at the beginning. The formula only calculates the dynamics of feature points within
the segmentation mask, and those not within the segmentation mask are considered static. If the number
of static points does not meet the set minimum number, mth needs to be adaptively increased by 0.1
until it reaches the maximum of 1. If it is not satisfied when mth is 1, dynamic objects may fill the entire
picture, and we would give up this dynamic object optimisation.

When the remaining static points meet the needs of attitude estimation, the camera poses Twc ∈ SE(3)
would be estimated and optimised using BA. The camera poses Twc, which comprises the camera’s
rotation R and position t. The set of static feature points on the current image is pc. The coordinate set of
the points in the three-dimensional world matched by pc is P. The optimisation equation is as follows:

pe = argmin
1

2

n∑
i=1

‖pci − πTwc(Pi)‖2, (2)

where pe is the camera pose iterative optimisation error, π is the inherent parameter of the camera,
which is the reprojection model from the three-dimensional coordinates to the camera coordinate sys-
tem, and n is the number of matching feature points between the three-dimensional space and the
two-dimensional space. A more accurate camera pose Twc can be obtained by continuously iterating
to reduce the reprojection error.
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4.2. Local mapping
Enhancing the efficiency and reducing the complexity of neural networks may compromise their per-
formance. To mitigate this issue within the backend of vSLAM, we employ a technique that combines
detection bounding boxes and strengthens segmentation outcomes. However, this adjustment need not
be applied to every backend keyframe but rather to those keyframes exhibiting significant dynamic char-
acteristics. Consequently, we utilise the outcomes from the front-end detection of dynamic feature point
numbers and employ formula 3 to assess the dynamism of the current frame.

dframe =
{

False, if mcd ≤ 1/N, mth = 0.5

True, otherwise,
(3)

where mcd represents the number of dynamic feature points in the front-end under the threshold mth = 0.5,
N represents the total number of feature points in the current image, and dframe is a flag of whether the
frame is dynamic. Only dynamic keyframes perform joint optimisation of object detection and instance
segmentation.

Given the compact nature of the base network model, instance segmentation may yield inaccurate
results or fail altogether. To address this challenge, we introduce a strategy whereby the detection and
segmentation heads operate in a complementary fashion. Specifically, we juxtapose the outcomes of
object detection bounding boxes with those of instance segmentation. Should the ratio so, representing
the quotient of the instance segmentation area to the object detection bounding box area, fall below a
minimal threshold to, the instance segmentation result for the current object is deemed unsuccessful, and
the bounding box mask is adopted as the definitive mask. This comparative analysis of object detection
and instance segmentation results facilitates the calculation of the overlap area, utilising the indices pro-
vided by the model’s object detection and instance segmentation heads. The mask calculation formula
of the jointly optimised dynamic object is as follows:

objmask =
{

segmask, if so > to

detmask, if so ≤ to,
(4)

where segmask is the mask obtained from instance segmentation, and detmask is the mask obtained from
object detection. to is selected as 0.25.

The outcome post-fusion serves as the definitive mask, enabling the removal of dynamic points dur-
ing the back-projection and optimisation processes. This approach ensures the precise exclusion of
keyframes and dynamic points from the map. Whether in map matching or keyframe matching, the
influence of dynamic objects is markedly diminished. The algorithm proposed herein adeptly balances
speed and performance, demonstrating versatility across varied environments.

5. Experiments and results
5.1. Ablation experiment
In the realm of network lightening, it is imperative to minimise any reduction in model accuracy. Should
a module manage to decrease the number of parameters without compromising, or indeed enhancing,
the model’s accuracy, it would thereby elevate the cost-efficiency of the optimisation process. The
selection of network modules must also take into account the compatibility of the network structure
with the hardware platform. The GSConv module redefines convolution operations, enriching the net-
work with enhanced gradient flow and informational exchange. The RepConv module, during training,
leverages multiple convolution combinations and, throughout inference, employs convolution merging
to optimise the utilisation of convolution modules. Furthermore, RepConv exhibits considerable com-
patibility with hardware. Both modules contribute to rendering the network more efficient and faster.
However, considering the YOLOv8-seg model necessitates attention to both detection and segmen-
tation heads, prompting thorough comparative experimentation. Experiments were conducted on 20
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Table I. Twenty categories selected from COCO.

Person Bicycle Car Motorcycle Bird Cat Dog
Backpack Umbrella Handbag Suitcase Sports ball Bottle Chair
Tv Laptop Mouse Keyboard Cell phone Refrigerator

Table II. Comparison of combined experiments between different modules.

Size Box mAP Seg mAP FLOPs Gradients Params
Model (pixels) (0.5:0.95) (0.5:0.95) (@640 (G)) (M) (M) epoch
yolov8s-seg 640 46.2 39.5 42.7 11.8 11.8 500
yolov8s-seg-rep 640 46.1 39.8 40.8 10.1 12.2 500
yolov8s-seg-gs 640 46.7 40.1 39.4 10.9 10.9 500
yolov8s-seg-gs-rep 640 46.8 40.3 37.4 9.2 10.2 500

specifically chosen categories, as delineated in Table I, to ascertain the efficacy of the proposed module
amalgamation.

A suite of evaluative metrics was employed in comparative analyses between the refined and original
networks. The dataset for comparison was compiled by extracting relevant data from the original COCO
dataset, as per the categories listed in Table I, with the original COCO test set serving as the evaluation
benchmark. The comparative outcomes are presented in Table II.

The evaluation criteria used in Table II are as follows: size_pixels represents the size of the image
input by the network, mAP represents the average accuracy of each detection category under a fixed IOU
threshold, mAP0.5:0.95 represents the average of all mAP with IOU thresholds from 0.5 to 0.95, which can
represent generalisation performance of the network. Box mAP0.5:0.95 represents the generalisation perfor-
mance of the detection box, seg mAP0.5:0.95 represents the generalisation performance of segmentation,
and FLOPs represents the network required floating point operations are in giga. Gradients(M) repre-
sents the number of gradients in millions when the network is backpropagated. Params(M) represents
the total number of parameters owned by the network in millions, and epoch represents the number of
iterations of the data by the training network.

We found that using GSConv in the neck part to form a slim-neck structure and using the RepConv
structure in the parameter sharing decoupling header can achieve higher inference speed and lower
parameter amount. At the same time, the network’s performance is also optimal compared to other
structures.

5.2. Simulation experiment
5.2.1 TUM and EUROC dataset
The EUROC dataset [32] and the TUM RGB-D dataset [33] serve as benchmarks for evaluating the
performance of vSLAM across various scenarios. These datasets facilitate a comprehensive assess-
ment of the method proposed herein. Predicated upon the foundational ORB-SLAM3, the proposed
algorithm demonstrates comparable performance on datasets characterised by lower levels of mobility.
Nevertheless, it substantially surpasses the original ORB-SLAM3 in sequences featuring significant
object movement. The focus of our experiments is on sequences with high dynamics, specifically
fr3/walking_∗, with outcomes juxtaposed against those obtained with the original ORB-SLAM3 and
other contemporary state-of-the-art methodologies.

5.2.2 Evaluation metrics
The evaluation of vSLAM principally involves measuring the discrepancy between the trajectory delin-
eated by the algorithm and the actual trajectory. Absolute trajectory error (ATE) and relative pose error
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Table III. Comparison with ORB-SLAM3 using ATE as evaluation metric
[m]. Highlight the best results in bold.

ORB-SLAM3 Ours

Sequence RMSE Std RMSE Std
fr3/walking_xyz 0.2686 0.1095 0.0179 0.0084
fr3/walking_static 0.0174 0.0103 0.0081 0.0034
fr3/walking_half 0.1759 0.0683 0.0247 0.0124
fr3/walking_rpy 0.1507 0.0681 0.0816 0.0470

(RPE) are commonly employed as evaluative metrics, with their root mean square error typically utilised
to gauge accuracy. ATE quantifies the absolute discrepancy (in metres) between the actual and estimated
positions across all frames, whereas RPE assesses the error in relative pose estimation (in radians). The
standard deviation (std) is employed to quantify the dispersion of values within a dataset, signifying the
mean distance between data points and the dataset’s average. A larger standard deviation indicates a more
dispersed distribution, directly reflecting the global trajectory algorithm’s precision. RPE measures the
variance in positional changes at identical timestamps, encompassing translation error (in metres per
second) and rotation error (in degrees per second). The final error metric is derived by averaging the
outcomes of multiple experiments conducted on the same dataset.

5.2.3 Implementation configuration
The neural network model is seamlessly integrated within the vSLAM framework. Utilising TensorRT,
the neural network is converted into a TRT (fp16) model, with both the pre-processing and post-
processing stages of the network parallelised and executed on the GPU. The entire algorithmic suite
is developed in C++. This approach optimises the network’s speed while maintaining accuracy.

In operational scenarios within substations, enhancing the algorithm’s performance is paramount,
with a particular emphasis on accelerating its execution speed. Hence, in comparison to our prior
work [34], the methodology we propose achieves a two- to three-fold increase in speed, simultaneously
ensuring enhanced precision and greater stability.

The proposed algorithm necessitates the input of an RGB image, functioning effectively provided the
selected hardware is capable of supplying RGB images. For instance, when employing stereo vision, the
left-eye image is utilised as input.

5.3. Experimental comparison
5.3.1 Comparison with ORB-SLAM3
To ascertain the efficacy of the proposed method, we undertook experimental evaluations across various
datasets. Ensuring the reliability of our findings, we performed tests on our apparatus using both the
original ORB-SLAM3 and our proposed method, facilitating a direct comparison of outcomes. For a
more intuitive analysis of the experimental data, we intend to produce a comparative chart of the trajecto-
ries. The sequences fr3/walking_xyz, fr3/walking_static, fr3/walking_half , and fr3/walking_rpy from
the TUM dataset, each exhibiting varying levels of dynamic activity, were selected for this comparative
analysis. The outcomes of this comparison are delineated in Table III and illustrated in Fig. 6.

The experimental outcomes indicate that the proposed methodology yields results comparable
to those of ORB-SLAM3 under static conditions. In scenarios marked by minimal object move-
ment, the outlier optimisation mechanism utilised by ORB-SLAM3 proves effective in discarding
dynamic points, with outcomes closely mirroring those of our proposed approach. However, in envi-
ronments characterised by considerable object movement, ORB-SLAM3’s optimisation methods and
mechanisms encounter difficulties in adequately addressing the influence of dynamic objects. This
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Table IV. The absolute trajectory error (ATE) is used as the standard for comparison. [m].

Sequence RGB-D Detect KMOP RGBD Rts DS-S Dyna Ours
fr3/walking_xyz 0.0874 0.0241 0.0190 0.0140 0.0194 0.0247 0.0150 0.0179
fr3/walking_static 0.0108 - 0.0320 0.0100 0.0111 0.0081 0.0060 0.0081
fr3/walking_half 0.0354 0.0514 0.1760 0.0280 0.0290 0.0303 0.0250 0.0247
fr3/walking_rpy 0.1608 0.2959 0.0490 0.0330 0.0371 0.4442 0.0350 0.0816

(a) (b) (c) (d)

Figure 6. Comparison of trajectory estimation accuracy of the proposed method with ORB-SLAM3.
(a) The EUROC datasets V101 were generated in a static environment. (b), (c) and (d) The TUM
dataset includes fr3/walking_rpy, fr3/walking_xyz and fr3/walking_half , which were collected in a
high-motion environment.

(a) (b) (c) (d)

Figure 7. Interception of experimental results. (a). Results under static scenes. (b), (c) and (d).
Experimental screenshots under different dynamic scenarios.

challenge becomes increasingly evident as the frequency of object movement escalates or in consistently
high-motion scenes, leading to a notable decline in ORB-SLAM3’s performance. Conversely, our
optimised method maintains commendable performance under these conditions. Throughout the exper-
imentation phase, we garnered specific insights, illustrated in Fig. 7, which portrays the precision in
eliminating dynamic objects.

5.3.2 Comparison with other vSLAM
Furthermore, the integration of deep learning into vSLAM is gaining traction, prompting a compar-
ison of our method with several leading-edge vSLAM technologies, including Detect-SLAM [11],
KMOPvSLAM [13], Rts-SLAM [14], RGBD-SLAM [15], DS-SLAM [17], DynaSLAM [25], and
RGB-D SLAM [22]. The comparative analysis focuses on both accuracy and speed. While some
dynamic SLAM systems exhibit rapid processing speeds, their accuracy leaves much to be desired.
Others, such as DynaSLAM [25], demonstrate superior performance in dynamic environments but
are constrained to offline execution, thus precluding real-time operation. The comparative outcomes,
employing ATE as a metric, are presented in Table IV. Additionally, the results for RPE, encompassing
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Table V. Comparison of root mean square error (RMSE) for translational drift in meters per second
(m/s) and RMSE for rotational drift in degrees per second (◦/s).

Translational RPE Rotational RPE

Sequence KMOP DS-S Rts Ours KMOP DS-S Rts Ours
fr3/walking_xyz 0.0260 0.0333 0.0234 0.0217 0.6890 0.8266 0.6368 0.5412
fr3/walking_static 0.0330 0.0102 0.0117 0.0971 0.6270 0.2690 0.2872 0.0234
fr3/walking_half 0.0700 0.0297 0.0423 0.0243 1.5950 0.8142 0.9650 0.7230
fr3/walking_rpy 0.0650 0.1503 0.0471 0.0597 1.1050 3.0042 1.0587 1.3122

Figure 8. Experiments in different real-world scenarios. (a). Experimental environments with fast mov-
ing objects. (b). Realistic route of substation robot movement. (c). Screenshots of the experimental
process. (d). Trajectory maps generated in mobile environments.

both translation and rotation, are summarised in Tables V, underscoring the advanced nature of the
proposed method.

5.4. Real-world experiment
Real-world experiments were carried out using robotic equipment within substations, where substation
robots are primarily deployed to support staff in routine maintenance and inspection tasks, operating
amidst complex scenes populated with dynamic objects.

Initially, the efficacy of the proposed vSLAM method was assessed through the odometry tech-
nique. The integration of multi-sensor odometry fusion methods has gained widespread acceptance for
enhancing mobile robot localisation and navigation due to its straightforward application, acceptable
error margin, and cost-effectiveness [35, 36, 37]. In the context of substations, where privacy concerns
preclude the use of GPS, our experiments relied on the fusion of IMU and encoder-based odometry
as the benchmark for validating the proposed vSLAM method’s effectiveness. Encoders fitted on both
the front and rear steering mechanisms, coupled with IMU data from the bio-camera, ensure precise
odometry. Moreover, the odometry fusion method delineated in prior research [36] was employed.

The field experiment within the substation is depicted in Fig. 8a, where the algorithm’s capacity to
identify dynamic objects and its efficacy in eliminating such objects were tested by an experimenter
swiftly moving in front of the substation robot. Figure 8b illustrates the trajectory of the substation
robot as it advances in the real-world scenario, with the procedural outcomes presented in Fig. 8c. As
demonstrated in Fig. 8d, the generated map remains unimpacted by dynamic entities, underscoring the
superiority of the proposed algorithm in practical applications.

Time efficiency serves as a critical metric for evaluating an algorithm’s performance. To ascertain the
temporal demands of each module within the proposed method, experiments were conducted to record
the operational duration of each component under dynamic and static conditions. Table VI enumerates
the average running times. In dynamic keyframe scenarios, the algorithm necessitates the amalgamation
of detection and segmentation results.
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Table VI. Time consumption of each part [ms]. The RMSE comparison uses the results of
ORB-SLAM3 as the relative benchmark.

Fusion Inference time Average
Methods Segmentation results Tracking per frame RMSE ratio
ORB_SLAM3 0?> 0 31 31.0 1.0
Ours 2.4 0.3/ 0 31 33.7 0.5

Table VII. Comparison of computation time [ms].

Segmentation Segmentation
Methods (Tracking) (Local mapping) Geometry
DS-SLAM 0 76.0 48.5
DynaSLAM 0 885.1 587.6
Rts-SLAM 0 72.8 30.14
Ours 20.4 0 -

Within static keyframes, the algorithm obviates the need for fusion, thereby not incurring additional
time expenditure. This observation underscores that the proposed method operates efficiently with-
out compromising real-time performance. To further substantiate the algorithm’s real-time capabilities,
experiments were executed on the NVidia Jetson AGX Xavier, equipped with a 512-core Volta GPU, an
8-core ARM 64-bit CPU, and 16 GB of RAM. The results of these comparative studies on the temporal
demands of various algorithms are presented in Table VII.

6. Conclusion and discussion
This study introduces a lightweight, multi-modal semantic SLAM framework designed to enhance map-
ping accuracy while diminishing the computational demands of the fusion process. Utilising an instance
segmentation model, the framework adeptly identifies and eliminates dynamic objects within each
frame, thereby ensuring the integrity of map generation. The foundation of this framework is the incor-
poration of state-of-the-art detection models and a segmentation head, predicated on the understanding
that the amalgamation of neural networks with SLAM requires not the utmost segmentation precision
but a balanced approach. Moreover, the adoption of lightweight strategies aims to reduce computational
burdens while maintaining the efficacy of the neural network model employed. This approach further
amalgamates the detection bounding boxes with instance segmentation outcomes, mitigating potential
discrepancies in instance segmentation accuracy. The proposed method has demonstrated enhancements
in both positional accuracy and operational speed across a variety of scenarios, affirming its innovative
contributions.

Nonetheless, the proposed method is not without limitations. Currently, ORB feature points are
delineated manually, bypassing the neural network’s capability to extract and fortify feature points’
robustness. Future endeavours will explore the substitution of the entire front-end process with neural
network operations, leveraging the network’s potential for feature point extraction. Additionally, efforts
will be directed towards integrating the removal of dynamic feature points within the neural network’s
feature point extraction process, utilising initial semantic insights to dispense with dynamic feature
points, thereby cultivating robustness in diverse and intricate environments.
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