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We confine ourselves, for simplicity, to first-order algebraic differential equations
(ADE's), although analogous considerations may be made for higher-order ADE's:

P(x,y(x),y'(x)) = 0. (*)

A motion of (*) is a change of independent variable that takes solutions to solutions, that
is, a suitable map <p of the underlying interval I into itself so that if y is a solution of (*)
then y ° cp is a solution of (*), i.e.

P(x,y(<p(x)),y'(<p(x))<p'(x)) = 0.

In this paper we prove that the motions satisfy their own second order ADE

Q(x,cp(x),<p'(x),<p"(x)) = 0 (#)

and that, in general, (#) cannot be replaced by a first-order ADE. We find this surprising.

THEOREM 1. Consider the equation (*) on an open interval / £R . There exists an
equation (#) that is satisfied by every C2 motion <p of (*) for which there exists a C1 solution
y for which y ° tp is not a constant on any subinterval of I.

It is clear that some restriction on the ADE is needed. Consider, for example the
ADE y' = 0, where the solutions are the constant functions, and any mapping is a motion.

Before proving this, let us briefly review some classical things about resultants (see
[1]).
For

= b0Yr + 51Yr"' + . .. + br,

we define the Y-resultant of A(Y) and B(Y) by the formula
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This has the following property, where for simplicity we assume a0 - 1 = bQ: A(Y) = 0 and
B(Y) = 0 have a common solution if and only if ResY(A(Y), B(Y)) = 0.

Now let us prove Theorem 1. Substituting <p(x) for x in (*), we have

),y'(<p(x))) = O (1)
and

P(x,y(<p(x)),y'(<p(x))<p'(x)) = O (2)

because <p is a motion. Considering the left hand sides of (1) and (2) as polynomials in
y'(<p(x)) we see, on factoring out the highest powers of y'(<p(x)) permissible, that

P(<p(x),y(<p(x)),y'(<p(x)) = O, (1')

P(x,y(<p(x)),y'(cP(x))cp'(x)) = O) (2')

where P(x, y, 0) ^ 0. (This is because of our hypothesis which implies that there exist
solutions of (1) and (2) with y'(cp(x))=£0.)

Taking resultants of these two polynomials in y'(<p(x)), we eliminate y'(cp(x)) to get

S(x,<p(x),<p'(x),y(cp(x))) = O. (3)

Now differentiate this expression to get

T(x, <p(x), <p'(x), <p"(x), y(cp(x), y'(<p(x))) = 0. (4)

This time, use resultants to eliminate y'(<p(x)) between (1) and (4) to get

U(x, <p(x), cp'(x), cp"(x), y(<p(x))) = 0. (5)

Now we may divide (3) and (5) by the highest permissible powers of y(cp(x)) to get

S(x,cp(x),cp'(x),y(cp(x))) = O, (3')

U(x, <p(x), cp'(x), <p"(x), y(cp(x))) = 0, (5')

where S(x, y, z, 0) ^ 0 and where U{x, y, z, w, 0) ^ 0. This is possible since (3) and (5) have
solutions where y(cp(x)) is not identically zero on.any subinterval of /. Again taking a
resultant, we eliminate y(<p(x)) from (3') and (5') to get

Q(x,cp(x),<p'(x),<p"(x)) = 0, (#)

which is the desired result.

THEOREM 2. In the context of the above theorem, one may not generally take <p to
satisfy a first-order algebraic differential equation.

Proof. Let the given ADE be

y' + 2xy = l (*)

whose general solution is

y = e XM e'2 dt + de~x2, d a constant.
Jo
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If cp is a motion of (*) then

c = c(cp) = const.

Take the derivative of this last expression

ex2-v\2x -2cpcp') I"* e'1 dt + e ' ^ W - e*2 = 0

which we write as

, l - 2 x e r r c p
<P =z—z (6)

1 - 2<p err <p
where

f*
err <p = e"""2 e'2 dt.

Jo
Now (6) is a first-order differential equation, but it is not algebraic. Now over a rectangle
R in the (x, z) plane, there is a unique solution to (6) with cp(x0) = z0 for (x0, z0) e R. Thus
for (x0, z0) e R, we would have

/l-zxoerrzo\
Q(Xo'Zo'll-2zoerrJ) = °

if we were to have
Q(x,(p(x),«p'(x)) = 0

for some polynomial Q in three variables. We will show that this is impossible. Let us
rewrite this as

= 0 for

Hold x = x0 fixed in R. Then for an interval I of values of z

l -

Now (7) implies, unless Q(x0, z, w) = 0, that err z is an algebraic function of z over I.
However from [2, pp. 48-49] this is not so. The only way to resolve this contradiction is
that

Q(x0, z, w) = 0 for (x0, z) in R, w e C .

This implies Q(x, y, z) = 0, and thus we have our conclusion that there is no
non-trivial first-order ADE satisfied by all the motions <p.
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