Canad. Math. Bull. Vol. **57** (3), 2014 pp. 621–630 http://dx.doi.org/10.4153/CMB-2014-025-1 © Canadian Mathematical Society 2014

Combinatorially Factorizable Cryptic Inverse Semigroups

Mario Petrich

Abstract. An inverse semigroup *S* is combinatorially factorizable if S = TG where *T* is a combinatorial (*i.e.*, \mathcal{H} is the equality relation) inverse subsemigroup of *S* and *G* is a subgroup of *S*. This concept was introduced and studied by Mills, especially in the case when *S* is cryptic (*i.e.*, \mathcal{H} is a congruence on *S*). Her approach is mainly analytical considering subsemigroups of a cryptic inverse semigroup.

We start with a combinatorial inverse monoid and a factorizable Clifford monoid and from an action of the former on the latter construct the semigroups in the title. As a special case, we consider semigroups that are direct products of a combinatorial inverse monoid and a group.

1 Generalities

An inverse semigroup *S* is *factorizable* if S = TG where *T* is a semilattice and *G* is a group. There is a modest literature concerning the structure of these semigroups, see [1]. This concept was generalized to include the case when *T* is a combinatorial inverse monoid by Mills [1] under the label of *combinatorially factorizable* inverse semigroups. In [1], she successfully analyzed such inverse semigroups as subsemigroups of cryptic inverse semigroups and some related cases. In her study appear two types of semigroups as essential ingredients: combinatorial inverse monoids and factorizable inverse monoids. The structure of the former is still an enigma, while for the latter we have the following.

Proposition 1.1 ([1, Proposition 3.1]) A cryptic inverse monoid S is factorizable if and only if S is a Clifford monoid in which all structure homomorphisms are surjective.

Hence we can say that, within cryptic inverse monoids, factorizable ones are completely determined. Analyzing subsemigroups of cryptic inverse monoids S that are susceptible to being of the form TG, where T is a combinatorial inverse monoid and G is a group, in [1] Mills arrived at a factorizable Clifford submonoid A of Shaving its semilattice of idempotents in common with T. In terms of structure, she arrived at a submonoid of a semidirect product of A and T.

We denote by E(S) the set of all idempotents of any semigroup *S*. Taking a hint from the cited paper, and starting with a combinatorial inverse monoid *T* and a factorizable Clifford monoid *A* with group of units *G*, we construct a subsemigroup of a semidirect product of *A* and *T* which is a monoid of the form S = TG. To start with, we need not have E(T) = E(A), but if this is not the case, we still must have

Received by the editors January 27, 2013; revised April 7, 2014.

Published electronically June 16, 2014.

AMS subject classification: 20M18.

Keywords: inverse semigroup, cryptic semigroup.

 $E(T) \cong E(A)$. In such a case, we can replace either *T* or *A* by an isomorphic copy to satisfy this condition, and thus we will assume that E(T) = E(A), which will simplify the notation. This leads to Theorem 2.2 from which we derive Theorem 6.2 giving conditions for the direct product $T \times G$.

For terminology and notation we follow [2], with the exception of E(S) for any semigroup *S*. We also write $\mathcal{E}(S)$ for the semigroup of endomorphisms of *S* written as operators on the left. If *S* is a monoid, we denote by U(S) its groups of units, and its identity usually by 1.

We first clarify the difference between the semigroup and the monoid case.

Proposition 1.2 Let S = TG where T is an inverse semigroup and G is a group. If 1 is the identity of either S or T, then 1 is the identity of S, T, and G.

Proof Denote by *e* the identity of *G*.

Let 1 be the identity of *S*. Then 1 = tg for some $t \in T$ and $g \in G$. Hence e = 1e = tge = tg = 1. It follows that e = tg, whence $g^{-1} = te = t1 = t$ and thus

$$1 = tgtg = tgg^{-1}g = tg = tt^{-1} \in T.$$

Now let 1 be the identity of *T*. First e = tg for some $t \in T$ and $g \in G$ whence e = 1e. Also 1 = t'g' for some $t' \in T$ and $g' \in G$ so that 1e = 1 and thus e = 1. For any s = tg, we get s = 1s = se = s1, and 1 is then identity of *S*.

We will need the following result.

Proposition 1.3 Let S be an inverse semigroup and $H = \bigcup_{e \in E(S)} H_e$. Then the following conditions on S are equivalent.

- (i) *S* is cryptic.
- (ii) *H* is contained in the centralizer of E(S).
- (iii) *H* is closed under multiplication.

Proof See [4, Theorem 4].

If S = TG where *T* is a semilattice and *G* is a group, neither *S* nor *T* need be monoids. Just let S = T be a 3-element nonmonoid semilattice and $G = \{1\}$. Then S = TG but neither *S* nor *T* is a monoid.

2 The Main Result

The following is our basic device.

Construction Let *A* be a factorizable Clifford monoid and *T* be a combinatorial inverse monoid such that

(A) E(A) = E(T) (= E).

Let *T* act on *A* by endomorphisms on the left satisfying:

- (B) ${}^{t}e = tet^{-1} (t \in T, e \in E);$
- (C) $^{e}a = ea \ (e \in E, a \in A);$
- (D) if $a \in A$, $t \in T$, and $aa^{-1} = tt^{-1}$, then $a = aa^{-1} \cdot {}^tg$ for some $g \in U(A)$.

Combinatorially Factorizable Cryptic Inverse Semigroups

Set

$$S = \{(a, t) \in A \times T \mid aa^{-1} = tt^{-1}\}$$

with multiplication

 $(a,t)(b,u) = (a \cdot {}^t b, tu).$

The first property of this construction is as follows.

Lemma 2.1 S is a subsemigroup of the semidirect product of A and T determined by the given action.

Proof Let $(a, t), (b, u) \in S$. Then $aa^{-1} = tt^{-1}, bb^{-1} = uu^{-1}$, and since $tuu^{-1}t^{-1} \in E(A)$, by Proposition 1.3, we get

$$(a \cdot {}^{t}b)(a \cdot {}^{t}b)^{-1} = (a \cdot {}^{t}b)({}^{t}b)^{-1}a^{-1} = a \cdot {}^{t}b \cdot {}^{t}(b^{-1})a^{-1}$$

= $a \cdot {}^{t}(bb^{-1})a^{-1} = atbb^{-1}t^{-1}a^{-1} = atuu^{-1}t^{-1}u^{-1}$
= $aa^{-1}tuu^{-1}t^{-1} = tt^{-1}tuu^{-1}t^{-1} = (tu)(tu)^{-1}.$

Hence *S* is closed under the above multiplication. Since the semidirect product is associative, *S* is a semigroup.

The action of *T* on *A* is equivalent to the existence of a homomorphism $\zeta: T \to \mathcal{E}(A)$. Hence we denote the above semigroup *S* by

$$[A, \zeta, T].$$

We are now ready for the main result of the paper.

Theorem 2.2 The semigroup $S = [A, \zeta, T]$ is a cryptic inverse monoid satisfying S = T'G = GT' where $T' \cong T$ and $G \cong U(A)$. Conversely, every combinatorially factorizable cryptic inverse monoid is isomorphic to one so constructed.

3 Proof of Theorem 2.2: Direct Part

This will follow from the next four lemmas, in which we include further information about $[A, \zeta, T]$ to clarify its structure. In them, $S = [A, \zeta, T]$, where we freely use conditions (A)–(D). The first lemma concerns general properties of this construction.

Lemma 3.1 Denote by 1 the identity of *T*. Then *S* is an inverse monoid with identity (1, 1) and

(3.1)
$$E(S) = \{(e, e) \mid e \in E\} \cong E.$$

For $s = (a, t) \in S$, we have

(3.2)
$$s^{-1} = (t^{-1}a^{-1}, t^{-1}), \quad ss^{-1} = (tt^{-1}, tt^{-1}), \quad s^{-1}s = (t^{-1}t, t^{-1}t).$$

Proof Simple verification will show that (1, 1) is the identity of *S* and that if $e \in E$, then $(e, e) \in E(S)$. Conversely, let $(a, t) \in E(S)$. Then

$$(a,t) = (a,t)^2 = (a \cdot {}^t a, t^2)$$

M. Petrich

so that $t = t^2 = tt^{-1}$ and thus

$$a = a \cdot {}^{t}a = ata = att^{-1}a = aaa^{-1}a = a^{2} = aa^{-1} = tt^{-1} = t \in E,$$

proving the equality in (3.1). For $e, f \in E$, we have

$$(e,e)(f,f) = (e \cdot {}^ef, ef) = (ef, ef)$$

which implies the isomorphism in (3.1).

For $s = (a, t) \in S$, we have

$$(t^{-1}a^{-1})(t^{-1}a^{-1})^{-1} = (t^{-1}a^{-1})(t^{-1}a) = t^{-1}(a^{-1}a) = t^{-1}a^{-1}at = t^{-1}tt^{-1}t = t^{-1}t$$

and thus $\binom{t^{-1}a^{-1}}{t^{-1}} \in S$. Straightforward verification will show that

(3.3)
$$s(t^{-1}a^{-1})s = s, \quad (t^{-1}a^{-1})s(t^{-1}a^{-1}) = t^{-1}a^{-1}.$$

It follows that *S* is a regular semigroup. By (3.1), E(S) is a semilattice so that *S* is an inverse semigroup. We have mentioned above that *S* is a monoid. Now (3.3) implies the first formula in (3.2); the second and the third formulas in (3.2) are verified by direct multiplication.

The second lemma handles the relationship of A and S.

Lemma 3.2 The mapping

 $\varphi \colon a \longmapsto (a, aa^{-1}), \quad a \in A,$

embeds A into S and maps E onto E(S). With $A' = A\varphi$, we have $A' = \bigcup_{e \in E} H_{(e,e)}$.

Proof The first assertion is readily verified; the second follows from Lemma 3.1.

Let $s = (a, t) \in A'$. Then $t = aa^{-1} = tt^{-1} = t^{-1}t$ and by Lemma 3.1, we get $ss^{-1} = s^{-1}s = (a, aa^{-1})$ and thus $s \in H_{(aa^{-1}, aa^{-1})}$. Conversely, let $s = (a, t) \in H_{(e,e)}$, where $e \in E$. Then $ss^{-1} = s^{-1}s = (e, e)$ and so, by Lemma 3.1, we get $tt^{-1} = t^{-1}t = e$. Hence t = e since T is combinatorial and thus $t = aa^{-1}$. Therefore $s \in A'$.

The third lemma relates maximal subgroups.

Lemma 3.3 The group of units of S equals

(3.4) $G = \{(a, 1) \mid a \in U(A)\}.$

For every $e \in E$, we have $H_{(e,e)} = (e, e)G$.

Proof For $e \in E$ and $s = (a, t) \in S$, by Lemma 3.1, we obtain

$$s\mathcal{H}e \iff ss^{-1} = s^{-1}s = (e, e) \iff tt^{-1} = t^{-1}t = e \iff t = e$$

since T is combinatorial, and thus

(3.5) $H_{(e,e)} = \{(a,e) \in S \mid aa^{-1} = e\}.$

If e = 1, we get (3.4) which by (3.5) implies $H_{(e,e)} = (e, e)G$.

The fourth lemma treats the relationship of *T* and *S*. Recall that a subsemigroup *T* of an inverse semigroup *S* is a *transversal* of \mathcal{H} if each \mathcal{H} -class of *S* contains exactly one element of *T*.

Combinatorially Factorizable Cryptic Inverse Semigroups

Lemma 3.4 The mapping

 $\psi \colon t \longmapsto (tt^{-1}, t), \quad t \in T,$

embeds T into S. For $(a, t), (b, u) \in S$, we have

$$(3.6) (a,t)\mathcal{H}(b,u) \Longleftrightarrow t = u.$$

Moreover, $T' = T\psi$ is a transversal of \mathcal{H} , \mathcal{H} is a congruence on S, and $S/\mathcal{H} \cong T$.

Proof The first assertion requires simple verification. Let $s = (a, t), q = (b, u) \in S$. Using Lemma 3.1, we get

$$s\mathcal{H}q \Leftrightarrow ss^{-1} = qq^{-1}, \quad s^{-1}s = q^{-1}q \Leftrightarrow tt^{-1} = uu^{-1}, \quad t^{-1}t = q^{-1}q \Leftrightarrow t = u$$

since *T* is combinatorial. This proves (3.6) and implies that \mathcal{H} is a congruence on *S*. Further, $(tt^{-1}, t) \in T'$ and thus $(a, t)\mathcal{H}(tt^{-1}, t)$. Hence every \mathcal{H} -class of *S* contains at least one element of *T'*; by (3.6), it contains at most one element of *T'*. Therefore *T'* is a transversal of \mathcal{H} . It follows that $T \cong T' \cong S/\mathcal{H}$.

We can now complete the proof of the direct part of Theorem 2.2. By Lemma 3.1, *S* is an inverse monoid and by Lemma 3.4, *S* is cryptic. Let $(a, t) \in S$. By hypothesis, there exists $g \in U(A)$ satisfying $a = aa^{-1} \cdot {}^tg$. Hence

 $(tt^{-1}, t)(g, 1) = (tt^{-1} \cdot {}^{t}g, t) = (aa^{-1} \cdot {}^{t}g, t) = (a, t),$

where $(tt^{-1}, t) \in T'$ and $(g, 1) \in G$, which shows that $S \subseteq T'G$, and equality follows.

4 Proof of Theorem 2.2: Converse Part

Let *S* be a cryptic inverse monoid such that S = TG where *T* is a combinatorial inverse monoid and *G* is a group. Denote by 1 the identity of *S*. By Proposition 1.2, the element 1 is the identity of both *T* and *G*. If $e \in E(S)$, then e = tg for some $t \in T$ and $g \in G$ so that $e = (tg)(tg)^{-1} = tgg^{-1}t^{-1} = tt^{-1}$ and thus $e \in T$. Let

$$E = E(S) = E(T)$$

We break the argument into seven lemmas, starting with the group units of S.

Lemma 4.1 G = U(S).

Proof By Proposition 1.2, the element 1 is the identity of *G*. If $g \in G$, then $gg^{-1} = g^{-1}g = 1$ so that $g \in U(S)$, and thus $G \subseteq U(S)$. Conversely, let $a \in U(S)$. Then $aa^{-1} = a^{-1}a = 1$, and also a = tg for some $t \in T$ and $g \in G$. Then

$$l = aa^{-1} = tgg^{-1}t^{-1} = tt^{-1},$$

and using Proposition 1.3, we get

$$1 = a^{-1}a = g^{-1}t^{-1}tg = t^{-1}t,$$

whence $1\mathcal{H}t$ and thus 1 = t since *T* is combinatorial. Therefore $a = g \in G$ whence $U(S) \subseteq G$ and equality prevails.

Next we characterize idempotent H-classes of S.

https://doi.org/10.4153/CMB-2014-025-1 Published online by Cambridge University Press

Lemma 4.2 For every $e \in E$, we have $H_e = eG$.

Proof Let $a \in H_e$. Then a = tg for some $t \in T$ and $g \in G$. Then

 $e = aa^{-1} = tg(tg)^{-1} = tgg^{-1}t^{-1} = tt^{-1},$

and using Proposition 1.3, we obtain

$$e = a^{-1}a = (tg)^{-1}tg = g^{-1}t^{-1}tg = t^{-1}t$$

and thus $e\mathcal{H}t$. Since *T* is combinatorial, we get e = t. Hence $a = eg \in eG$ and thus $H_e \subseteq eG$. Conversely, let a = eg where $g \in G$. Then $eg \in eS$,

$$eg = a = ae \in Se$$
, $e = e1 = egg^{-1} \in egS$, $e = 1e = g^{-1}ge = g^{-1}eg \in Seg$,

and thus $a = eg\mathcal{H}e$. Therefore $eG \subseteq H_e$ and equality prevails.

Next we introduce a Clifford semigroup.

Lemma 4.3 Let $A = \bigcup_{e \in E} H_e$. Then A is a factorizable Clifford monoid contained in the centralizer of E, with G = U(A) and E(A) = E.

Proof By Proposition 1.3, *A* is a Clifford semigroup contained in the centralizer of *E*; it is a monoid by Proposition 1.2; by Lemma 4.1, G = U(S) = U(A); by Lemma 4.2, *A* is factorizable. Obviously E(A) = E(S) so that E(A) = E.

In view of Lemma 4.3, for $a \in A$ and $e \in E$, we have ae = ea since A is a Clifford semigroup and we do not have to invoke Proposition 1.3.

The next result is [1, Proposition 1.3(ii)] which is stated there without proof. We will use it in the continuation of the proof of the converse of Theorem 2.2.

Lemma 4.4 S = GT.

Proof Let $g \in G$ and $t \in T$. We consider the element s = tg. Hence $s = tgt^{-1}t$ since *g* commutes with idempotents. Next,

$$tgt^{-1}(tgt^{-1})^{-1} = tgt^{-1}tg^{-1}t^{-1} = tgg^{-1}t^{-1} = tt^{-1},$$

$$(tgt^{-1})^{-1}tgt^{-1} = tg^{-1}t^{-1}tgt^{-1} = tg^{-1}gt^{-1} = t^{-1}t,$$

which shows that $tgt^{-1} \mathcal{H}tt^{-1}$ and thus $tgt^{-1} \in A$. By Lemma 4.3, A is a factorizable Clifford monoid. Hence there exist $e \in E(A)$ and $h \in U(A) = G$ such that $tgt^{-1} = eh$. It follows that $s = (tgt^{-1})t = eht = h(et)$ where $et \in T$. Therefore $S \subseteq GT$ and thus S = GT.

The next lemma concerns the monoid T.

Lemma 4.5 *For every* $t \in T$, *define*

$$\zeta_t: a \longmapsto tat^{-1}, \quad a \in A.$$

and then define

$$\zeta: t \longmapsto \zeta_t, \quad t \in T.$$

Then ζ : $T \to \mathcal{E}(A)$ *is a homomorphism.*

Combinatorially Factorizable Cryptic Inverse Semigroups

Proof Let $t \in T$ and $a \in A$. Then

 $(tat^{-1})(tat^{-1})^{-1} = tat^{-1}ta^{-1}t^{-1} = taa^{-1}t^{-1},$ $(tat^{-1})^{-1}(tat^{-1}) = ta^{-1}t^{-1}tat^{-1} = ta^{-1}at^{-1},$

and tat^{-1} commutes with its inverse which implies that tat^{-1} is an idempotent \mathcal{H} -class, and thus $tat^{-1} \in A$. It follows that $\zeta_t \colon A \to A$. For $a, b \in A$ and $t \in T$, we obtain

$$(\zeta_t a)(\zeta_t b) = (tat^{-1})(tbt^{-1}) = tabt^{-1} = \zeta_t(ab)$$

and $\zeta_t \in \mathcal{E}(A)$. For $t, u \in T$ and $a \in A$, we get

$$\zeta_t \zeta_u a = \zeta_t (uau^{-1}) = t(uau^{-1})t^{-1} = (tu)a(tu)^{-1} = \zeta_{tu}a,$$

whence $\zeta_t \zeta_u = \zeta_{tu}$ and $\zeta \colon T \to \mathcal{E}(A)$ is a homomorphism.

Next we arrive at $[A, \zeta, T]$.

Lemma **4.6** *Conditions* (A)–(D) *in the Construction at the beginning of Section* 2 *are fulfilled.*

Proof Condition (A) is satisfied in view of the preamble to the proof of the converse of Lemma 4.3. Lemma 4.5 implies the validity of conditions (B) and (C).

Let $a \in A$ and $t \in T$ be such that $aa^{-1} = tt^{-1}$. By Lemma 4.3, A is factorizable so that a = he for some $h \in G$ and $e \in E$. By hypothesis, ht = ug for some $u \in T$ and $g \in G$. Hence

$$ht(ht)^{-1} = htt^{-1}h^{-1} = hh^{-1}tt^{-1} = tt^{-1},$$

$$(ht)^{-1}ht = t^{-1}h^{-1}ht = t^{-1}t,$$

and thus htHt. Similarly ugHu so that ht = ug implies that tHu. But then tHu within *T* which is combinatorial and thus t = u. Hence ht = tg. Also a = he implies

$$att^{-1} = heaa^{-1} = haa^{-1}e = ha^{-1}(ae) = ha^{-1}a = haa^{-1} = htt^{-1}.$$

Consequently,

$$aa^{-1} \cdot {}^{t}g = tt^{-1}(tgt^{-1}) = tgt^{-1} = htt^{-1} = att^{-1} = aa^{-1}a = a,$$

which proves condition (D).

This lemma implies that $[A, \zeta, T]$ is defined. We have finally arrived at the desired isomorphism.

Lemma 4.7 The mapping

$$\chi: gt \longmapsto (gtt^{-1}, t), \quad g \in G, t \in T,$$

is an isomorphism of S onto $[A, \zeta, T]$ *.*

Proof We show first that χ is single valued. Let $g, h \in G$ and $t, u \in T$ satisfy gt = hu. As in the preceding proof, we get $t \mathcal{H}gt = hu\mathcal{H}u$ and thus t = u. It follows that $gtt^{-1} = huu^{-1}$ and t = u, and thus χ is single valued. Since $gtt^{-1}(gtt^{-1})^{-1} = tt^{-1}$, χ maps S into $[A, \zeta, T]$.

627

Without the hypothesis gt = hu, we obtain

(4.1)
$$(gt)\chi(hu)\chi = (gtt^{-1}, t)(huu^{-1}, u) = (gtt^{-1} \cdot t(huu^{-1}), tu)$$
$$= (gthuu^{-1}t^{-1}, tu) = (gthu(tu)^{-1}, tu).$$

By Lemma 4.4, th = kv for some $k \in G$ and $v \in T$. As above we get tHv and hence t = v since *T* is combinatorial. Now

(4.2)
$$(gthu)\chi = (gktu)\chi = (gktu(tu)^{-1}, tu)$$

and gthu = gktu implies the equality of (4.1) and (4.2). Therefore χ is a homomorphism.

If $(gtt^{-1}, t) = (huu^{-1}, u)$, then t = u and gt = hu, which shows that χ is injective. Let $(a, t) \in [A, \zeta, T]$ so that $aa^{-1} = tt^{-1}$. By Lemma 4.3, A is factorizable and thus a = ge for some $g \in G$ and $e \in E$. Hence $e = g^{-1}a$ and thus

$$gtt^{-1} = gaa^{-1} = g^2(g^{-1}a)a^{-1} = g^2ea^{-1} = g(ge)ea^{-1} = (ge)(ge)a^{-1} = a^2a^{-1} = a.$$

It follows that $(gt)\chi = (a, t)$. By Lemma 4.4, we have S = GT, and thus χ is also surjective.

We can now complete the proof of the converse part of Theorem 2.2. By Lemma 4.4, GT = TG, and thus χ is an isomorphism of S onto $[A, \zeta, T]$. The equality GT = TG also implies the equality GT' = T'G in the direct part of the theorem.

5 Comments

We could have used some of the results in [1] to design a shorter proof of Theorem 2.2, but a direct proof is by far clearer.

Corollary 5.1 A combinatorially factorizable cryptic inverse monoid is embeddable into a semidirect product of a factorizable Clifford monoid and a combinatorial inverse monoid.

Let *S* be a cryptic inverse monoid with S = TG where *T* is a combinatorial inverse monoid and *G* is a group. We have seen in Lemma 3.4 that $S/\mathcal{H} \cong T$ and in Lemma 4.1 that $G \cong U(S)$. It then follows that, in the obvious notation, $TG \cong T'G'$ implies that $T \cong T'$ and $G \cong G'$.

In the construction of $[A, \zeta, T]$ a basic role is played by the homomorphism $\zeta: T \to \mathcal{E}(A)$. We can represent *A* as $[Y; G_{\alpha}, \chi_{\alpha,\beta}]$. Homomorphisms between two such semigroups were constructed in [2, Proposition II.2.8] and can be specialized to represent endomorphisms.

With the above notation, in the lattice of inverse submonoids of *S* containing the identity of *S*, we have $T \lor G = S$ and $T \cap G = \{1\}$, that is, *T* and *G* are complements of each other. Can one say more?

6 Direct Products

We now approach the second problem of this note. Given a combinatorial inverse monoid *T* and a group *G*, so far we have provided a construction of all cryptic inverse monoids S = T'G' where $T' \cong T$ and $G' \cong G$. Now we consider the direct product of *T* and *G*. This is a special case of T'G' evoked above, since clearly (t, 1)(1, g) =(t, g) and thus for $T' = T \times \{1\}$ and $G' = \{1\} \times G$, we have $T'G' = T \times G$. We can take advantage of the observation that $T \times G \cong [A, \zeta, T]$, where ζ must satisfy conditions stronger than (A)–(D).

We start with a lemma that may not be new.

Lemma 6.1 Let *E* be a semilattice and *G* be a group. Let $\xi \in \mathcal{E}(E)$, $\eta \in \mathcal{E}(G)$, and define φ by

$$\varphi \colon (e,g) \longmapsto (\xi e, \eta g), \quad e \in E, g \in G$$

Then $\varphi \in \mathcal{E}(E \times G)$ *. Conversely, every endomorphism of* $E \times G$ *can be so represented.*

Proof The direct part is obvious. Conversely, let $\varphi \in \mathcal{E}(E \times G)$ and define functions ξ and η by

$$\varphi(e,g) = (\xi(e,g), \eta(e,g)), \quad e \in E, g \in G.$$

Clearly ξ is a homomorphism of $E \times G$ into E and η is a homomorphism of $E \times G$ into G. Then

$$\xi(e,g) = \xi((e,g)(e,1)) = \xi(e,g)\xi(e,1),$$

$$\xi(e,1) = \xi((e,g)(e,g^{-1})) = \xi(e,g)\xi(e,g^{-1})$$

where the first line implies that $\xi(e, g) \leq \xi(e, 1)$, and the second implies that $\xi(e, g) \geq \xi(e, 1)$ so that $\xi(e, g) = \xi(e, 1)$. It follows that $\xi(e, g)$ is independent of g. Next, for $e \leq f$, we get

$$\eta(e,g) = \eta((f,g)(e,1)) = \eta(f,g)\eta(e,1) = \eta(f,g)$$

whence it follows that $\eta(e,g)$ is independent of *e*. We can write $\xi e = \xi(e,g)$ and $\eta g = \eta(e,g)$ thereby obtaining $\xi \in \mathcal{E}(E)$ and $\eta \in \mathcal{E}(G)$. Therefore φ is of the form in the statement of the lemma.

Theorem 6.2 Let $S = [A, \zeta, T]$ and assume

(E) $A \cong E \times G$ where E = E(T) and G = U(A), (F) ${}^{t}g = g$, $(g \in U(A), t \in T)$.

Then S is a direct product of T and G. Conversely, the direct product of T and G is isomorphic to a semigroup so constructed.

Proof Direct. We may set $A = E \times G$. In view of Lemma 6.1, we can write the action of T on A in the form ${}^{t}(e,g) = ({}^{t}e,{}^{t}g)$ where now T acts on both E and G. For $(a,t) \in [A, \zeta, T]$, the requirement is $aa^{-1} = tt^{-1}$. Letting a = (e,g), this requirement becomes $(e,g)(e,g)^{-1} = (e,1) = (tt^{-1},tt^{-1})$ and we get $e = tt^{-1}$. Condition (F) implies that ${}^{t}(e,g) = ({}^{t}e,g)$. The mapping

$$\varphi \colon \left((tt^{-1}, g), t \right) \longmapsto (g, t)$$

is thus an isomorphism of $[A, \zeta, T]$ onto $G \times T$.

Converse. We may set $S = T \times G$. Then $S \cong T' \times G'$ where $T' = \{1\} \times T$ and $G' = G \times \{1\}$ so that $T' \cong T$ and $G' \cong G$. By Theorem 2.2, we may set $S = [A, \zeta, T]$. Clearly $A \cong E \times G$ so condition (E) holds, and since the product in $T \times G$ is by components, condition (F) holds as well.

We could have used [1, Theorem 5.1], but the above proof is shorter and more transparent. Theorem 6.2 exhibits the difference between the product TG and the direct product $T \times G$. We can specialize this result to the case of a direct product of a semilattice and a group, or can proceed as follows.

Let $A = [Y; G_{\alpha}, \chi_{\alpha,\beta}]$ be a factorizable Clifford monoid. Hence Y is a monoid, say with identity ε . Condition [1, Theorem 5.1(iii)] is equivalent to saying that each $\chi_{\varepsilon,\alpha}$ is injective. Proposition 1.1 asserts that all $\chi_{\alpha,\beta}$ are surjective. Hence all $\chi_{\varepsilon,\alpha}$ are isomorphisms. For $\alpha \ge \beta$, we have $\chi_{\varepsilon,\alpha}\chi_{\alpha,\beta} = \chi_{\varepsilon,\beta}$. Since both $\chi_{\varepsilon,\alpha}$ and $\chi_{\varepsilon,\beta}$ are isomorphisms, so is $\chi_{\alpha,\beta}$. We need the following.

Lemma 6.3 Let $S = [Y; G_{\alpha}, \chi_{\alpha,\beta}]$ where every G_{α} is a group. Then every $\chi_{\alpha,\beta}$ is an isomorphism if and only if $S \cong Y \times G$ for some group G.

Proof See [3, Lemma 4.4].

Evidently the group *G* in Lemma 6.3 is isomorphic to G_{α} for any $\alpha \in Y$. We can now make the desired conclusion.

Proposition 6.4 A semigroup S is a direct product of a semilattice monoid and a group if and only if S is a Clifford monoid in which all structure homomorphisms are bijective.

A comparison of Propositions 1.1 and 6.4 clearly exhibits the difference between *TG* and $T \times G$ for a semilattice monoid *T* and a group *G*.

Acknowledgement Assistance by Edmond W. H. Lee is deeply appreciated.

References

- [1] J. E. Mills, *Combinatorially factorizable inverse monoids*. Semigroup Forum **59**(1999), 220–232. http://dx.doi.org/10.1007/PL00006005
- [2] M. Petrich, Inverse semigroups. Wiley, New York, 1984.
- [3] _____, Orthogroups with an associate subgroup. Acta Math. Hungar. 125(2009), 1–15. http://dx.doi.org/10.1007/s10474-009-8151-9
- [4] M. K. Sen, H. X. Yang, and Y. Q. Guo, A note on H relation on an inverse semigroup. J. Pure Math. 14(1997), 1–3.

21420 Bol, Brač, Croatia