Combinatorially Factorizable Cryptic Inverse Semigroups

Mario Petrich

Abstract

An inverse semigroup S is combinatorially factorizable if $S=T G$ where T is a combinatorial (i.e., \mathcal{H} is the equality relation) inverse subsemigroup of S and G is a subgroup of S. This concept was introduced and studied by Mills, especially in the case when S is cryptic (i.e., \mathcal{H} is a congruence on S). Her approach is mainly analytical considering subsemigroups of a cryptic inverse semigroup.

We start with a combinatorial inverse monoid and a factorizable Clifford monoid and from an action of the former on the latter construct the semigroups in the title. As a special case, we consider semigroups that are direct products of a combinatorial inverse monoid and a group.

1 Generalities

An inverse semigroup S is factorizable if $S=T G$ where T is a semilattice and G is a group. There is a modest literature concerning the structure of these semigroups, see [1]. This concept was generalized to include the case when T is a combinatorial inverse monoid by Mills [1] under the label of combinatorially factorizable inverse semigroups. In [1], she successfully analyzed such inverse semigroups as subsemigroups of cryptic inverse semigroups and some related cases. In her study appear two types of semigroups as essential ingredients: combinatorial inverse monoids and factorizable inverse monoids. The structure of the former is still an enigma, while for the latter we have the following.

Proposition 1.1 ([1, Proposition 3.1]) A cryptic inverse monoid S is factorizable if and only if S is a Clifford monoid in which all structure homomorphisms are surjective.

Hence we can say that, within cryptic inverse monoids, factorizable ones are completely determined. Analyzing subsemigroups of cryptic inverse monoids S that are susceptible to being of the form $T G$, where T is a combinatorial inverse monoid and G is a group, in [1] Mills arrived at a factorizable Clifford submonoid A of S having its semilattice of idempotents in common with T. In terms of structure, she arrived at a submonoid of a semidirect product of A and T.

We denote by $E(S)$ the set of all idempotents of any semigroup S. Taking a hint from the cited paper, and starting with a combinatorial inverse monoid T and a factorizable Clifford monoid A with group of units G, we construct a subsemigroup of a semidirect product of A and T which is a monoid of the form $S=T G$. To start with, we need not have $E(T)=E(A)$, but if this is not the case, we still must have

[^0]$E(T) \cong E(A)$. In such a case, we can replace either T or A by an isomorphic copy to satisfy this condition, and thus we will assume that $E(T)=E(A)$, which will simplify the notation. This leads to Theorem 2.2 from which we derive Theorem 6.2 giving conditions for the direct product $T \times G$.

For terminology and notation we follow [2], with the exception of $E(S)$ for any semigroup S. We also write $\mathcal{E}(S)$ for the semigroup of endomorphisms of S written as operators on the left. If S is a monoid, we denote by $U(S)$ its groups of units, and its identity usually by 1 .

We first clarify the difference between the semigroup and the monoid case.
Proposition 1.2 Let $S=T G$ where T is an inverse semigroup and G is a group. If 1 is the identity of either S or T, then 1 is the identity of S, T, and G.

Proof Denote by e the identity of G.
Let 1 be the identity of S. Then $1=t g$ for some $t \in T$ and $g \in G$. Hence $e=1 e=\operatorname{tg} e=\operatorname{tg}=1$. It follows that $e=\operatorname{tg}$, whence $g^{-1}=t e=t 1=t$ and thus

$$
1=\operatorname{tgtg}=t g g^{-1} g=t g=t t^{-1} \in T
$$

Now let 1 be the identity of T. First $e=t g$ for some $t \in T$ and $g \in G$ whence $e=1 e$. Also $1=t^{\prime} g^{\prime}$ for some $t^{\prime} \in T$ and $g^{\prime} \in G$ so that $1 e=1$ and thus $e=1$. For any $s=t g$, we get $s=1 s=s e=s 1$, and 1 is then identity of S.

We will need the following result.
Proposition 1.3 Let S be an inverse semigroup and $H=\bigcup_{e \in E(S)} H_{e}$. Then the following conditions on S are equivalent.
(i) S is cryptic.
(ii) H is contained in the centralizer of $E(S)$.
(iii) H is closed under multiplication.

Proof See [4, Theorem 4].
If $S=T G$ where T is a semilattice and G is a group, neither S nor T need be monoids. Just let $S=T$ be a 3-element nonmonoid semilattice and $G=\{1\}$. Then $S=T G$ but neither S nor T is a monoid.

2 The Main Result

The following is our basic device.
Construction Let A be a factorizable Clifford monoid and T be a combinatorial inverse monoid such that
(A) $E(A)=E(T)(=E)$.

Let T act on A by endomorphisms on the left satisfying:
(B) ${ }^{t} e=t e t^{-1}(t \in T, e \in E)$;
(C) ${ }^{e} a=e a(e \in E, a \in A)$;
(D) if $a \in A, t \in T$, and $a a^{-1}=t t^{-1}$, then $a=a a^{-1} \cdot{ }^{t} g$ for some $g \in U(A)$.

Set

$$
S=\left\{(a, t) \in A \times T \mid a a^{-1}=t t^{-1}\right\}
$$

with multiplication

$$
(a, t)(b, u)=\left(a \cdot{ }^{t} b, t u\right)
$$

The first property of this construction is as follows.
Lemma 2.1 S is a subsemigroup of the semidirect product of A and T determined by the given action.

Proof Let $(a, t),(b, u) \in S$. Then $a a^{-1}=t t^{-1}, b b^{-1}=u u^{-1}$, and since $t u u^{-1} t^{-1} \in$ $E(A)$, by Proposition 1.3, we get

$$
\begin{aligned}
\left(a \cdot{ }^{t} b\right)\left(a \cdot{ }^{t} b\right)^{-1} & =\left(a \cdot{ }^{t} b\right)\left({ }^{t} b\right)^{-1} a^{-1}=a \cdot{ }^{t} b \cdot{ }^{t}\left(b^{-1}\right) a^{-1} \\
& =a \cdot{ }^{t}\left(b b^{-1}\right) a^{-1}=a t b b^{-1} t^{-1} a^{-1}=a t u u^{-1} t^{-1} u^{-1} \\
& =a a^{-1} t u u^{-1} t^{-1}=t t^{-1} t u u^{-1} t^{-1}=(t u)(t u)^{-1} .
\end{aligned}
$$

Hence S is closed under the above multiplication. Since the semidirect product is associative, S is a semigroup.

The action of T on A is equivalent to the existence of a homomorphism $\zeta: T \rightarrow$ $\mathcal{E}(A)$. Hence we denote the above semigroup S by

$$
[A, \zeta, T] .
$$

We are now ready for the main result of the paper.
Theorem 2.2 The semigroup $S=[A, \zeta, T]$ is a cryptic inverse monoid satisfying $S=T^{\prime} G=G T^{\prime}$ where $T^{\prime} \cong T$ and $G \cong U(A)$. Conversely, every combinatorially factorizable cryptic inverse monoid is isomorphic to one so constructed.

3 Proof of Theorem 2.2: Direct Part

This will follow from the next four lemmas, in which we include further information about $[A, \zeta, T]$ to clarify its structure. In them, $S=[A, \zeta, T]$, where we freely use conditions (A)-(D). The first lemma concerns general properties of this construction.

Lemma 3.1 Denote by 1 the identity of T. Then S is an inverse monoid with identity $(1,1)$ and

$$
\begin{equation*}
E(S)=\{(e, e) \mid e \in E\} \cong E \tag{3.1}
\end{equation*}
$$

For $s=(a, t) \in S$, we have

$$
\begin{equation*}
s^{-1}=\left(t^{-1} a^{-1}, t^{-1}\right), \quad s s^{-1}=\left(t t^{-1}, t t^{-1}\right), \quad s^{-1} s=\left(t^{-1} t, t^{-1} t\right) \tag{3.2}
\end{equation*}
$$

Proof Simple verification will show that $(1,1)$ is the identity of S and that if $e \in E$, then $(e, e) \in E(S)$. Conversely, let $(a, t) \in E(S)$. Then

$$
(a, t)=(a, t)^{2}=\left(a \cdot{ }^{t} a, t^{2}\right)
$$

so that $t=t^{2}=t t^{-1}$ and thus

$$
a=a \cdot{ }^{t} a=a t a=a t t^{-1} a=a a a^{-1} a=a^{2}=a a^{-1}=t t^{-1}=t \in E
$$

proving the equality in (3.1). For $e, f \in E$, we have

$$
(e, e)(f, f)=\left(e \cdot{ }^{e} f, e f\right)=(e f, e f)
$$

which implies the isomorphism in (3.1).
For $s=(a, t) \in S$, we have

$$
\left(t^{t^{-1}} a^{-1}\right)\left({t^{-1}}^{-1}\right)^{-1}=\left({ }^{t^{-1}} a^{-1}\right)\left(t^{-^{1}} a\right)=t^{t^{-1}}\left(a^{-1} a\right)=t^{-1} a^{-1} a t=t^{-1} t t^{-1} t=t^{-1} t
$$

and thus $\left(t^{-1} a^{-1}, t^{-1}\right) \in S$. Straightforward verification will show that

$$
\begin{equation*}
s\left(t^{t^{-1}} a^{-1}\right) s=s, \quad\left(t^{t^{-1}} a^{-1}\right) s\left(\left(^{t^{-1}} a^{-1}\right)=t^{t^{-1}} a^{-1}\right. \tag{3.3}
\end{equation*}
$$

It follows that S is a regular semigroup. By (3.1), $E(S)$ is a semilattice so that S is an inverse semigroup. We have mentioned above that S is a monoid. Now (3.3) implies the first formula in (3.2); the second and the third formulas in (3.2) are verified by direct multiplication.

The second lemma handles the relationship of A and S.
Lemma 3.2 The mapping

$$
\varphi: a \longmapsto\left(a, a a^{-1}\right), \quad a \in A
$$

embeds A into S and maps E onto $E(S)$. With $A^{\prime}=A \varphi$, we have $A^{\prime}=\bigcup_{e \in E} H_{(e, e)}$.
Proof The first assertion is readily verified; the second follows from Lemma 3.1.
Let $s=(a, t) \in A^{\prime}$. Then $t=a a^{-1}=t t^{-1}=t^{-1} t$ and by Lemma 3.1, we get $s s^{-1}=s^{-1} s=\left(a, a a^{-1}\right)$ and thus $s \in H_{\left(a a^{-1}, a a^{-1}\right)}$. Conversely, let $s=(a, t) \in H_{(e, e)}$, where $e \in E$. Then $s s^{-1}=s^{-1} s=(e, e)$ and so, by Lemma 3.1, we get $t t^{-1}=$ $t^{-1} t=e$. Hence $t=e$ since T is combinatorial and thus $t=a a^{-1}$. Therefore $s \in A^{\prime}$.

The third lemma relates maximal subgroups.
Lemma 3.3 The group of units of S equals

$$
\begin{equation*}
G=\{(a, 1) \mid a \in U(A)\} \tag{3.4}
\end{equation*}
$$

For every $e \in E$, we have $H_{(e, e)}=(e, e) G$.
Proof For $e \in E$ and $s=(a, t) \in S$, by Lemma 3.1, we obtain

$$
s \mathcal{H} e \Longleftrightarrow s s^{-1}=s^{-1} s=(e, e) \Longleftrightarrow t t^{-1}=t^{-1} t=e \Longleftrightarrow t=e
$$

since T is combinatorial, and thus

$$
\begin{equation*}
H_{(e, e)}=\left\{(a, e) \in S \mid a a^{-1}=e\right\} \tag{3.5}
\end{equation*}
$$

If $e=1$, we get (3.4) which by (3.5) implies $H_{(e, e)}=(e, e) G$.
The fourth lemma treats the relationship of T and S. Recall that a subsemigroup T of an inverse semigroup S is a transversal of \mathcal{H} if each \mathcal{H}-class of S contains exactly one element of T.

Lemma 3.4 The mapping

$$
\psi: t \longmapsto\left(t t^{-1}, t\right), \quad t \in T,
$$

embeds T into S. For $(a, t),(b, u) \in S$, we have

$$
\begin{equation*}
(a, t) \mathcal{H}(b, u) \Longleftrightarrow t=u . \tag{3.6}
\end{equation*}
$$

Moreover, $T^{\prime}=T \psi$ is a transversal of \mathcal{H}, \mathcal{H} is a congruence on S, and $S / \mathcal{H} \cong T$.
Proof The first assertion requires simple verification. Let $s=(a, t), q=(b, u) \in S$. Using Lemma 3.1, we get

$$
s \mathcal{H} q \Leftrightarrow s s^{-1}=q q^{-1}, \quad s^{-1} s=q^{-1} q \Leftrightarrow t t^{-1}=u u^{-1}, \quad t^{-1} t=q^{-1} q \Leftrightarrow t=u
$$

since T is combinatorial. This proves (3.6) and implies that \mathcal{H} is a congruence on S. Further, $\left(t t^{-1}, t\right) \in T^{\prime}$ and thus $(a, t) \mathcal{H}\left(t t^{-1}, t\right)$. Hence every \mathcal{H}-class of S contains at least one element of T^{\prime}; by (3.6), it contains at most one element of T^{\prime}. Therefore T^{\prime} is a transversal of \mathcal{H}. It follows that $T \cong T^{\prime} \cong S / \mathcal{H}$.

We can now complete the proof of the direct part of Theorem 2.2. By Lemma 3.1, S is an inverse monoid and by Lemma 3.4, S is cryptic. Let $(a, t) \in S$. By hypothesis, there exists $g \in U(A)$ satisfying $a=a a^{-1} \cdot{ }^{t} g$. Hence

$$
\left(t t^{-1}, t\right)(g, 1)=\left(t t^{-1} \cdot{ }^{t} g, t\right)=\left(a a^{-1} \cdot{ }^{t} g, t\right)=(a, t)
$$

where $\left(t t^{-1}, t\right) \in T^{\prime}$ and $(g, 1) \in G$, which shows that $S \subseteq T^{\prime} G$, and equality follows.

4 Proof of Theorem 2.2: Converse Part

Let S be a cryptic inverse monoid such that $S=T G$ where T is a combinatorial inverse monoid and G is a group. Denote by 1 the identity of S. By Proposition 1.2, the element 1 is the identity of both T and G. If $e \in E(S)$, then $e=\operatorname{tg}$ for some $t \in T$ and $g \in G$ so that $e=(\operatorname{tg})(\operatorname{tg})^{-1}=\operatorname{tgg}^{-1} t^{-1}=t t^{-1}$ and thus $e \in T$. Let

$$
E=E(S)=E(T) .
$$

We break the argument into seven lemmas, starting with the group units of S.
Lemma 4.1 $G=U(S)$.
Proof By Proposition 1.2, the element 1 is the identity of G. If $g \in G$, then $g g^{-1}=$ $g^{-1} g=1$ so that $g \in U(S)$, and thus $G \subseteq U(S)$. Conversely, let $a \in U(S)$. Then $a a^{-1}=a^{-1} a=1$, and also $a=\operatorname{tg}$ for some $t \in T$ and $g \in G$. Then

$$
1=a a^{-1}=t g g^{-1} t^{-1}=t t^{-1}
$$

and using Proposition 1.3, we get

$$
1=a^{-1} a=g^{-1} t^{-1} t g=t^{-1} t
$$

whence $1 \mathcal{H} t$ and thus $1=t$ since T is combinatorial. Therefore $a=g \in G$ whence $U(S) \subseteq G$ and equality prevails.

Next we characterize idempotent \mathcal{H}-classes of S.

Lemma 4.2 For everye $\in E$, we have $H_{e}=e G$.
Proof Let $a \in H_{e}$. Then $a=t g$ for some $t \in T$ and $g \in G$. Then

$$
e=a a^{-1}=\operatorname{tg}(t g)^{-1}=\operatorname{tgg}^{-1} t^{-1}=t t^{-1}
$$

and using Proposition 1.3, we obtain

$$
e=a^{-1} a=(t g)^{-1} t g=g^{-1} t^{-1} t g=t^{-1} t
$$

and thus $e \mathcal{H} t$. Since T is combinatorial, we get $e=t$. Hence $a=e g \in e G$ and thus $H_{e} \subseteq e G$. Conversely, let $a=e g$ where $g \in G$. Then $e g \in e S$,

$$
e g=a=a e \in S e, \quad e=e 1=e g g^{-1} \in e g S, \quad e=1 e=g^{-1} g e=g^{-1} e g \in S e g
$$

and thus $a=e g \mathcal{H} e$. Therefore $e G \subseteq H_{e}$ and equality prevails.
Next we introduce a Clifford semigroup.
Lemma 4.3 Let $A=\bigcup_{e \in E} H_{e}$. Then A is a factorizable Clifford monoid contained in the centralizer of E, with $G=U(A)$ and $E(A)=E$.

Proof By Proposition 1.3, A is a Clifford semigroup contained in the centralizer of E; it is a monoid by Proposition 1.2; by Lemma 4.1, $G=U(S)=U(A)$; by Lemma 4.2, A is factorizable. Obviously $E(A)=E(S)$ so that $E(A)=E$.

In view of Lemma 4.3, for $a \in A$ and $e \in E$, we have $a e=e a$ since A is a Clifford semigroup and we do not have to invoke Proposition 1.3.

The next result is [1, Proposition 1.3(ii)] which is stated there without proof. We will use it in the continuation of the proof of the converse of Theorem 2.2.

Lemma 4.4 $S=G T$.
Proof Let $g \in G$ and $t \in T$. We consider the element $s=t g$. Hence $s=t g t^{-1} t$ since g commutes with idempotents. Next,

$$
\begin{aligned}
& \operatorname{tg} t^{-1}\left(t g t^{-1}\right)^{-1}=t g t^{-1} t g^{-1} t^{-1}=t g g^{-1} t^{-1}=t t^{-1}, \\
& \left(t g t^{-1}\right)^{-1} t g t^{-1}=\operatorname{tg}^{-1} t^{-1} \operatorname{tg}^{-1}=\operatorname{tg}^{-1} g t^{-1}=t^{-1} t
\end{aligned}
$$

which shows that $\operatorname{tgt}^{-1} \mathcal{H} t t^{-1}$ and thus $\operatorname{tgt}^{-1} \in A$. By Lemma 4.3, A is a factorizable Clifford monoid. Hence there exist $e \in E(A)$ and $h \in U(A)=G$ such that $\operatorname{tg} t^{-1}=$ $e h$. It follows that $s=\left(t g t^{-1}\right) t=e h t=h(e t)$ where $e t \in T$. Therefore $S \subseteq G T$ and thus $S=G T$.

The next lemma concerns the monoid T.
Lemma 4.5 For every $t \in T$, define

$$
\zeta_{t}: a \longmapsto \text { tat }^{-1}, \quad a \in A
$$

and then define

$$
\zeta: t \longmapsto \zeta_{t}, \quad t \in T
$$

Then $\zeta: T \rightarrow \mathcal{E}(A)$ is a homomorphism.

Proof Let $t \in T$ and $a \in A$. Then

$$
\begin{aligned}
& \left(t a t^{-1}\right)\left(t a t^{-1}\right)^{-1}=t a t^{-1} t a^{-1} t^{-1}=t a a^{-1} t^{-1} \\
& \left(t a t^{-1}\right)^{-1}\left(t a t^{-1}\right)=t a^{-1} t^{-1} t a t^{-1}=t a^{-1} a t^{-1}
\end{aligned}
$$

and tat $^{-1}$ commutes with its inverse which implies that $t a t^{-1}$ is an idempotent \mathcal{H}-class, and thus tat ${ }^{-1} \in A$. It follows that $\zeta_{t}: A \rightarrow A$. For $a, b \in A$ and $t \in T$, we obtain

$$
\left(\zeta_{t} a\right)\left(\zeta_{t} b\right)=\left(t a t^{-1}\right)\left(t b t^{-1}\right)=t a b t^{-1}=\zeta_{t}(a b)
$$

and $\zeta_{t} \in \mathcal{E}(A)$. For $t, u \in T$ and $a \in A$, we get

$$
\zeta_{t} \zeta_{u} a=\zeta_{t}\left(u a u^{-1}\right)=t\left(u a u^{-1}\right) t^{-1}=(t u) a(t u)^{-1}=\zeta_{t u} a
$$

whence $\zeta_{t} \zeta_{u}=\zeta_{t u}$ and $\zeta: T \rightarrow \mathcal{E}(A)$ is a homomorphism.
Next we arrive at $[A, \zeta, T]$.
Lemma 4.6 Conditions (A)-(D) in the Construction at the beginning of Section 2 are fulfilled.

Proof Condition (A) is satisfied in view of the preamble to the proof of the converse of Lemma 4.3. Lemma 4.5 implies the validity of conditions (B) and (C).

Let $a \in A$ and $t \in T$ be such that $a a^{-1}=t t^{-1}$. By Lemma 4.3, A is factorizable so that $a=h e$ for some $h \in G$ and $e \in E$. By hypothesis, $h t=u g$ for some $u \in T$ and $g \in G$. Hence

$$
\begin{gathered}
h t(h t)^{-1}=h t t^{-1} h^{-1}=h h^{-1} t t^{-1}=t t^{-1} \\
(h t)^{-1} h t=t^{-1} h^{-1} h t=t^{-1} t
\end{gathered}
$$

and thus $h t \mathcal{H} t$. Similarly $u g \mathcal{H} u$ so that $h t=u g$ implies that $t \mathcal{H} u$. But then $t \mathcal{H} u$ within T which is combinatorial and thus $t=u$. Hence $h t=t g$. Also $a=h e$ implies

$$
a t t^{-1}=h e a a^{-1}=h a a^{-1} e=h a^{-1}(a e)=h a^{-1} a=h a a^{-1}=h t t^{-1}
$$

Consequently,

$$
a a^{-1} \cdot{ }^{t} g=t t^{-1}\left(t g t^{-1}\right)=t g t^{-1}=h t t^{-1}=a t t^{-1}=a a^{-1} a=a
$$

which proves condition (D).
This lemma implies that $[A, \zeta, T]$ is defined. We have finally arrived at the desired isomorphism.

Lemma 4.7 The mapping

$$
\chi: g t \longmapsto\left(g t t^{-1}, t\right), \quad g \in G, t \in T,
$$

is an isomorphism of S onto $[A, \zeta, T]$.
Proof We show first that χ is single valued. Let $g, h \in G$ and $t, u \in T$ satisfy $g t=$ $h u$. As in the preceding proof, we get $t \mathcal{H} g t=h u \mathcal{H} u$ and thus $t=u$. It follows that $g t t^{-1}=h u u^{-1}$ and $t=u$, and thus χ is single valued. Since $g t t^{-1}\left(g t t^{-1}\right)^{-1}=t t^{-1}$, χ maps S into $[A, \zeta, T]$.

Without the hypothesis $g t=h u$, we obtain

$$
\begin{align*}
(g t) \chi(h u) \chi & =\left(g t t^{-1}, t\right)\left(h u u^{-1}, u\right)=\left(g t t^{-1} \cdot t\left(h u u^{-1}\right), t u\right) \tag{4.1}\\
& =\left(g t h u u^{-1} t^{-1}, t u\right)=\left(g t h u(t u)^{-1}, t u\right) .
\end{align*}
$$

By Lemma 4.4, $t h=k v$ for some $k \in G$ and $v \in T$. As above we get $t \mathcal{H} v$ and hence $t=v$ since T is combinatorial. Now

$$
\begin{equation*}
(g t h u) \chi=(g k t u) \chi=\left(g k t u(t u)^{-1}, t u\right) \tag{4.2}
\end{equation*}
$$

and $g t h u=g k t u$ implies the equality of (4.1) and (4.2). Therefore χ is a homomorphism.

If $\left(g t t^{-1}, t\right)=\left(h u u^{-1}, u\right)$, then $t=u$ and $g t=h u$, which shows that χ is injective.
Let $(a, t) \in[A, \zeta, T]$ so that $a a^{-1}=t t^{-1}$. By Lemma 4.3, A is factorizable and thus $a=g e$ for some $g \in G$ and $e \in E$. Hence $e=g^{-1} a$ and thus
$g t t^{-1}=g a a^{-1}=g^{2}\left(g^{-1} a\right) a^{-1}=g^{2} e a^{-1}=g(g e) e a^{-1}=(g e)(g e) a^{-1}=a^{2} a^{-1}=a$.
It follows that $(g t) \chi=(a, t)$. By Lemma 4.4, we have $S=G T$, and thus χ is also surjective.

We can now complete the proof of the converse part of Theorem 2.2. By Lemma 4.4, GT $=T G$, and thus χ is an isomorphism of S onto $[A, \zeta, T]$. The equality $G T=T G$ also implies the equality $G T^{\prime}=T^{\prime} G$ in the direct part of the theorem.

5 Comments

We could have used some of the results in [1] to design a shorter proof of Theorem 2.2, but a direct proof is by far clearer.

Corollary 5.1 A combinatorially factorizable cryptic inverse monoid is embeddable into a semidirect product of a factorizable Clifford monoid and a combinatorial inverse monoid.

Let S be a cryptic inverse monoid with $S=T G$ where T is a combinatorial inverse monoid and G is a group. We have seen in Lemma 3.4 that $S / \mathcal{H} \cong T$ and in Lemma 4.1 that $G \cong U(S)$. It then follows that, in the obvious notation, $T G \cong T^{\prime} G^{\prime}$ implies that $T \cong T^{\prime}$ and $G \cong G^{\prime}$.

In the construction of $[A, \zeta, T]$ a basic role is played by the homomorphism $\zeta: T \rightarrow \mathcal{E}(A)$. We can represent A as $\left[Y ; G_{\alpha}, \chi_{\alpha, \beta}\right]$. Homomorphisms between two such semigroups were constructed in [2, Proposition II.2.8] and can be specialized to represent endomorphisms.

With the above notation, in the lattice of inverse submonoids of S containing the identity of S, we have $T \vee G=S$ and $T \cap G=\{1\}$, that is, T and G are complements of each other. Can one say more?

6 Direct Products

We now approach the second problem of this note. Given a combinatorial inverse monoid T and a group G, so far we have provided a construction of all cryptic inverse monoids $S=T^{\prime} G^{\prime}$ where $T^{\prime} \cong T$ and $G^{\prime} \cong G$. Now we consider the direct product of T and G. This is a special case of $T^{\prime} G^{\prime}$ evoked above, since clearly $(t, 1)(1, g)=$ (t, g) and thus for $T^{\prime}=T \times\{1\}$ and $G^{\prime}=\{1\} \times G$, we have $T^{\prime} G^{\prime}=T \times G$. We can take advantage of the observation that $T \times G \cong[A, \zeta, T]$, where ζ must satisfy conditions stronger than (A)-(D).

We start with a lemma that may not be new.

Lemma 6.1 Let E be a semilattice and G be a group. Let $\xi \in \mathcal{E}(E), \eta \in \mathcal{E}(G)$, and define φ by

$$
\varphi:(e, g) \longmapsto(\xi e, \eta g), \quad e \in E, g \in G .
$$

Then $\varphi \in \mathcal{E}(E \times G)$. Conversely, every endomorphism of $E \times G$ can be so represented.
Proof The direct part is obvious. Conversely, let $\varphi \in \mathcal{E}(E \times G)$ and define functions ξ and η by

$$
\varphi(e, g)=(\xi(e, g), \eta(e, g)), \quad e \in E, g \in G .
$$

Clearly ξ is a homomorphism of $E \times G$ into E and η is a homomorphism of $E \times G$ into G. Then

$$
\begin{gathered}
\xi(e, g)=\xi((e, g)(e, 1))=\xi(e, g) \xi(e, 1), \\
\xi(e, 1)=\xi\left((e, g)\left(e, g^{-1}\right)\right)=\xi(e, g) \xi\left(e, g^{-1}\right)
\end{gathered}
$$

where the first line implies that $\xi(e, g) \leq \xi(e, 1)$, and the second implies that $\xi(e, g) \geq$ $\xi(e, 1)$ so that $\xi(e, g)=\xi(e, 1)$. It follows that $\xi(e, g)$ is independent of g. Next, for $e \leq f$, we get

$$
\eta(e, g)=\eta((f, g)(e, 1))=\eta(f, g) \eta(e, 1)=\eta(f, g)
$$

whence it follows that $\eta(e, g)$ is independent of e. We can write $\xi e=\xi(e, g)$ and $\eta g=\eta(e, g)$ thereby obtaining $\xi \in \mathcal{E}(E)$ and $\eta \in \mathcal{E}(G)$. Therefore φ is of the form in the statement of the lemma.

Theorem 6.2 Let $S=[A, \zeta, T]$ and assume
(E) $A \cong E \times G$ where $E=E(T)$ and $G=U(A)$,
(F) ${ }^{t} g=g,(g \in U(A), t \in T)$.

Then S is a direct product of T and G. Conversely, the direct product of T and G is isomorphic to a semigroup so constructed.

Proof Direct. We may set $A=E \times G$. In view of Lemma 6.1, we can write the action of T on A in the form ${ }^{t}(e, g)=\left({ }^{t} e,{ }^{t} g\right)$ where now T acts on both E and G. For $(a, t) \in[A, \zeta, T]$, the requirement is $a a^{-1}=t t^{-1}$. Letting $a=(e, g)$, this requirement becomes $(e, g)(e, g)^{-1}=(e, 1)=\left(t t^{-1}, t t^{-1}\right)$ and we get $e=t t^{-1}$. Condition (F) implies that ${ }^{t}(e, g)=\left({ }^{t} e, g\right)$. The mapping

$$
\varphi:\left(\left(t t^{-1}, g\right), t\right) \longmapsto(g, t)
$$

is thus an isomorphism of $[A, \zeta, T]$ onto $G \times T$.
Converse. We may set $S=T \times G$. Then $S \cong T^{\prime} \times G^{\prime}$ where $T^{\prime}=\{1\} \times T$ and $G^{\prime}=G \times\{1\}$ so that $T^{\prime} \cong T$ and $G^{\prime} \cong G$. By Theorem 2.2, we may set $S=[A, \zeta, T]$. Clearly $A \cong E \times G$ so condition (E) holds, and since the product in $T \times G$ is by components, condition (F) holds as well.

We could have used [1, Theorem 5.1], but the above proof is shorter and more transparent. Theorem 6.2 exhibits the difference between the product $T G$ and the direct product $T \times G$. We can specialize this result to the case of a direct product of a semilattice and a group, or can proceed as follows.

Let $A=\left[Y ; G_{\alpha}, \chi_{\alpha, \beta}\right]$ be a factorizable Clifford monoid. Hence Y is a monoid, say with identity ε. Condition [1, Theorem 5.1(iii)] is equivalent to saying that each $\chi_{\varepsilon, \alpha}$ is injective. Proposition 1.1 asserts that all $\chi_{\alpha, \beta}$ are surjective. Hence all $\chi_{\varepsilon, \alpha}$ are isomorphisms. For $\alpha \geq \beta$, we have $\chi_{\varepsilon, \alpha} \chi_{\alpha, \beta}=\chi_{\varepsilon, \beta}$. Since both $\chi_{\varepsilon, \alpha}$ and $\chi_{\varepsilon, \beta}$ are isomorphisms, so is $\chi_{\alpha, \beta}$. We need the following.

Lemma 6.3 Let $S=\left[Y ; G_{\alpha}, \chi_{\alpha, \beta}\right]$ where every G_{α} is a group. Then every $\chi_{\alpha, \beta}$ is an isomorphism if and only if $S \cong Y \times G$ for some group G.

Proof See [3, Lemma 4.4].
Evidently the group G in Lemma 6.3 is isomorphic to G_{α} for any $\alpha \in Y$. We can now make the desired conclusion.

Proposition 6.4 A semigroup S is a direct product of a semilattice monoid and a group if and only if S is a Clifford monoid in which all structure homomorphisms are bijective.

A comparison of Propositions 1.1 and 6.4 clearly exhibits the difference between $T G$ and $T \times G$ for a semilattice monoid T and a group G.

Acknowledgement Assistance by Edmond W. H. Lee is deeply appreciated.

References

[1] J. E. Mills, Combinatorially factorizable inverse monoids. Semigroup Forum 59(1999), 220-232. http://dx.doi.org/10.1007/PL00006005
[2] M. Petrich, Inverse semigroups. Wiley, New York, 1984.
[3] \longrightarrow Orthogroups with an associate subgroup. Acta Math. Hungar. 125(2009), 1-15. http://dx.doi.org/10.1007/s10474-009-8151-9
[4] M. K. Sen, H. X. Yang, and Y. Q. Guo, A note on \mathcal{H} relation on an inverse semigroup. J. Pure Math. 14(1997), 1-3.
21420 Bol, Brač, Croatia

[^0]: Received by the editors January 27, 2013; revised April 7, 2014.
 Published electronically June 16, 2014.
 AMS subject classification: $\mathbf{2 0 M 1 8}$.
 Keywords: inverse semigroup, cryptic semigroup.

