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Combinatorially Factorizable Cryptic
Inverse Semigroups

Mario Petrich

Abstract. An inverse semigroup S is combinatorially factorizable if S = TG where T is a combinatorial
(i.e., H is the equality relation) inverse subsemigroup of S and G is a subgroup of S. This concept was
introduced and studied by Mills, especially in the case when S is cryptic (i.e., H is a congruence on S).
Her approach is mainly analytical considering subsemigroups of a cryptic inverse semigroup.

We start with a combinatorial inverse monoid and a factorizable Clifford monoid and from an
action of the former on the latter construct the semigroups in the title. As a special case, we consider
semigroups that are direct products of a combinatorial inverse monoid and a group.

1 Generalities

An inverse semigroup S is factorizable if S = TG where T is a semilattice and G is
a group. There is a modest literature concerning the structure of these semigroups,
see [1]. This concept was generalized to include the case when T is a combinatorial
inverse monoid by Mills [1] under the label of combinatorially factorizable inverse
semigroups. In [1], she successfully analyzed such inverse semigroups as subsemi-
groups of cryptic inverse semigroups and some related cases. In her study appear
two types of semigroups as essential ingredients: combinatorial inverse monoids and
factorizable inverse monoids. The structure of the former is still an enigma, while for
the latter we have the following.

Proposition 1.1 ([1, Proposition 3.1]) A cryptic inverse monoid S is factorizable if
and only if S is a Clifford monoid in which all structure homomorphisms are surjective.

Hence we can say that, within cryptic inverse monoids, factorizable ones are com-
pletely determined. Analyzing subsemigroups of cryptic inverse monoids S that are
susceptible to being of the form TG, where T is a combinatorial inverse monoid
and G is a group, in [1] Mills arrived at a factorizable Clifford submonoid A of S
having its semilattice of idempotents in common with T. In terms of structure, she
arrived at a submonoid of a semidirect product of A and T.

We denote by E(S) the set of all idempotents of any semigroup S. Taking a hint
from the cited paper, and starting with a combinatorial inverse monoid T and a fac-
torizable Clifford monoid A with group of units G, we construct a subsemigroup of
a semidirect product of A and T which is a monoid of the form S = TG. To start
with, we need not have E(T) = E(A), but if this is not the case, we still must have
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E(T) ∼= E(A). In such a case, we can replace either T or A by an isomorphic copy to
satisfy this condition, and thus we will assume that E(T) = E(A), which will simplify
the notation. This leads to Theorem 2.2 from which we derive Theorem 6.2 giving
conditions for the direct product T × G.

For terminology and notation we follow [2], with the exception of E(S) for any
semigroup S. We also write E(S) for the semigroup of endomorphisms of S written
as operators on the left. If S is a monoid, we denote by U (S) its groups of units, and
its identity usually by 1.

We first clarify the difference between the semigroup and the monoid case.

Proposition 1.2 Let S = TG where T is an inverse semigroup and G is a group. If 1
is the identity of either S or T, then 1 is the identity of S, T, and G.

Proof Denote by e the identity of G.
Let 1 be the identity of S. Then 1 = tg for some t ∈ T and g ∈ G. Hence

e = 1e = tge = tg = 1. It follows that e = tg, whence g−1 = te = t1 = t and thus

1 = tgtg = tgg−1g = tg = tt−1 ∈ T.

Now let 1 be the identity of T. First e = tg for some t ∈ T and g ∈ G whence
e = 1e. Also 1 = t ′g′ for some t ′ ∈ T and g′ ∈ G so that 1e = 1 and thus e = 1. For
any s = tg, we get s = 1s = se = s1, and 1 is then identity of S.

We will need the following result.

Proposition 1.3 Let S be an inverse semigroup and H =
⋃

e∈E(S) He. Then the
following conditions on S are equivalent.

(i) S is cryptic.
(ii) H is contained in the centralizer of E(S).
(iii) H is closed under multiplication.

Proof See [4, Theorem 4].

If S = TG where T is a semilattice and G is a group, neither S nor T need be
monoids. Just let S = T be a 3-element nonmonoid semilattice and G = {1}. Then
S = TG but neither S nor T is a monoid.

2 The Main Result

The following is our basic device.

Construction Let A be a factorizable Clifford monoid and T be a combinatorial
inverse monoid such that

(A) E(A) = E(T) (= E).

Let T act on A by endomorphisms on the left satisfying:

(B) t e = tet−1 (t ∈ T, e ∈ E);
(C) ea = ea (e ∈ E, a ∈ A);
(D) if a ∈ A, t ∈ T, and aa−1 = tt−1, then a = aa−1 · t g for some g ∈ U (A).
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Set
S = {(a, t) ∈ A× T | aa−1 = tt−1}

with multiplication
(a, t)(b, u) = (a · t b, tu).

The first property of this construction is as follows.

Lemma 2.1 S is a subsemigroup of the semidirect product of A and T determined by
the given action.

Proof Let (a, t), (b, u) ∈ S. Then aa−1 = tt−1, bb−1 = uu−1, and since tuu−1t−1 ∈
E(A), by Proposition 1.3, we get

(a · t b)(a · t b)−1 = (a · t b)(t b)−1a−1 = a · t b · t (b−1)a−1

= a · t (bb−1)a−1 = atbb−1t−1a−1 = atuu−1t−1u−1

= aa−1tuu−1t−1 = tt−1tuu−1t−1 = (tu)(tu)−1.

Hence S is closed under the above multiplication. Since the semidirect product is
associative, S is a semigroup.

The action of T on A is equivalent to the existence of a homomorphism ζ : T →
E(A). Hence we denote the above semigroup S by

[A, ζ,T].

We are now ready for the main result of the paper.

Theorem 2.2 The semigroup S = [A, ζ,T] is a cryptic inverse monoid satisfying
S = T′G = GT′ where T′ ∼= T and G ∼= U (A). Conversely, every combinatorially
factorizable cryptic inverse monoid is isomorphic to one so constructed.

3 Proof of Theorem 2.2: Direct Part

This will follow from the next four lemmas, in which we include further information
about [A, ζ,T] to clarify its structure. In them, S = [A, ζ,T], where we freely use
conditions (A)–(D). The first lemma concerns general properties of this construc-
tion.

Lemma 3.1 Denote by 1 the identity of T. Then S is an inverse monoid with identity
(1, 1) and

(3.1) E(S) = {(e, e) | e ∈ E} ∼= E.

For s = (a, t) ∈ S, we have

(3.2) s−1 = (t−1

a−1, t−1), ss−1 = (tt−1, tt−1), s−1s = (t−1t, t−1t).

Proof Simple verification will show that (1, 1) is the identity of S and that if e ∈ E,
then (e, e) ∈ E(S). Conversely, let (a, t) ∈ E(S). Then

(a, t) = (a, t)2 = (a · t a, t2)
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so that t = t2 = tt−1 and thus

a = a · t a = ata = att−1a = aaa−1a = a2 = aa−1 = tt−1 = t ∈ E,

proving the equality in (3.1). For e, f ∈ E, we have

(e, e)( f , f ) = (e · e f , e f ) = (e f , e f )

which implies the isomorphism in (3.1).
For s = (a, t) ∈ S, we have

(t−1

a−1)(t−1

a−1)−1 = (t−1

a−1)(t−1

a) = t−1

(a−1a) = t−1a−1at = t−1tt−1t = t−1t

and thus (t−1

a−1, t−1) ∈ S. Straightforward verification will show that

(3.3) s(t−1

a−1)s = s, (t−1

a−1)s(t−1

a−1) = t−1

a−1.

It follows that S is a regular semigroup. By (3.1), E(S) is a semilattice so that S is an
inverse semigroup. We have mentioned above that S is a monoid. Now (3.3) implies
the first formula in (3.2); the second and the third formulas in (3.2) are verified by
direct multiplication.

The second lemma handles the relationship of A and S.

Lemma 3.2 The mapping

ϕ : a 7−→ (a, aa−1), a ∈ A,

embeds A into S and maps E onto E(S). With A′ = Aϕ, we have A′ =
⋃

e∈E H(e,e).

Proof The first assertion is readily verified; the second follows from Lemma 3.1.
Let s = (a, t) ∈ A′. Then t = aa−1 = tt−1 = t−1t and by Lemma 3.1, we get

ss−1 = s−1s = (a, aa−1) and thus s ∈ H(aa−1,aa−1). Conversely, let s = (a, t) ∈ H(e,e),
where e ∈ E. Then ss−1 = s−1s = (e, e) and so, by Lemma 3.1, we get tt−1 =
t−1t = e. Hence t = e since T is combinatorial and thus t = aa−1. Therefore
s ∈ A′.

The third lemma relates maximal subgroups.

Lemma 3.3 The group of units of S equals

(3.4) G = {(a, 1) | a ∈ U (A)}.
For every e ∈ E, we have H(e,e) = (e, e)G.

Proof For e ∈ E and s = (a, t) ∈ S, by Lemma 3.1, we obtain

sHe⇐⇒ ss−1 = s−1s = (e, e)⇐⇒ tt−1 = t−1t = e⇐⇒ t = e

since T is combinatorial, and thus

(3.5) H(e,e) = {(a, e) ∈ S | aa−1 = e}.
If e = 1, we get (3.4) which by (3.5) implies H(e,e) = (e, e)G.

The fourth lemma treats the relationship of T and S. Recall that a subsemigroup T
of an inverse semigroup S is a transversal of H if each H-class of S contains exactly
one element of T.
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Lemma 3.4 The mapping

ψ : t 7−→ (tt−1, t), t ∈ T,

embeds T into S. For (a, t), (b, u) ∈ S, we have

(3.6) (a, t)H(b, u)⇐⇒ t = u.

Moreover, T′ = Tψ is a transversal of H, H is a congruence on S, and S/H ∼= T.

Proof The first assertion requires simple verification. Let s = (a, t), q = (b, u) ∈ S.
Using Lemma 3.1, we get

sHq⇔ ss−1 = qq−1, s−1s = q−1q⇔ tt−1 = uu−1, t−1t = q−1q⇔ t = u

since T is combinatorial. This proves (3.6) and implies that H is a congruence on S.
Further, (tt−1, t) ∈ T′ and thus (a, t)H(tt−1, t). Hence every H-class of S contains at
least one element of T′; by (3.6), it contains at most one element of T′. Therefore T′

is a transversal of H. It follows that T ∼= T′ ∼= S/H.

We can now complete the proof of the direct part of Theorem 2.2. By Lemma 3.1,
S is an inverse monoid and by Lemma 3.4, S is cryptic. Let (a, t) ∈ S. By hypothesis,
there exists g ∈ U (A) satisfying a = aa−1 · t g. Hence

(tt−1, t)(g, 1) = (tt−1 · t g, t) = (aa−1 · t g, t) = (a, t),

where (tt−1, t) ∈ T′ and (g, 1) ∈ G, which shows that S ⊆ T′G, and equality follows.

4 Proof of Theorem 2.2: Converse Part

Let S be a cryptic inverse monoid such that S = TG where T is a combinatorial
inverse monoid and G is a group. Denote by 1 the identity of S. By Proposition 1.2,
the element 1 is the identity of both T and G. If e ∈ E(S), then e = tg for some t ∈ T
and g ∈ G so that e = (tg)(tg)−1 = tgg−1t−1 = tt−1 and thus e ∈ T. Let

E = E(S) = E(T).

We break the argument into seven lemmas, starting with the group units of S.

Lemma 4.1 G = U (S).

Proof By Proposition 1.2, the element 1 is the identity of G. If g ∈ G, then gg−1 =
g−1g = 1 so that g ∈ U (S), and thus G ⊆ U (S). Conversely, let a ∈ U (S). Then
aa−1 = a−1a = 1, and also a = tg for some t ∈ T and g ∈ G. Then

1 = aa−1 = tgg−1t−1 = tt−1,

and using Proposition 1.3, we get

1 = a−1a = g−1t−1tg = t−1t,

whence 1Ht and thus 1 = t since T is combinatorial. Therefore a = g ∈ G whence
U (S) ⊆ G and equality prevails.

Next we characterize idempotent H-classes of S.
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Lemma 4.2 For every e ∈ E, we have He = eG.

Proof Let a ∈ He. Then a = tg for some t ∈ T and g ∈ G. Then

e = aa−1 = tg(tg)−1 = tgg−1t−1 = tt−1,

and using Proposition 1.3, we obtain

e = a−1a = (tg)−1tg = g−1t−1tg = t−1t

and thus eHt . Since T is combinatorial, we get e = t . Hence a = eg ∈ eG and thus
He ⊆ eG. Conversely, let a = eg where g ∈ G. Then eg ∈ eS,

eg = a = ae ∈ Se, e = e1 = egg−1 ∈ egS, e = 1e = g−1ge = g−1eg ∈ Seg,

and thus a = egHe. Therefore eG ⊆ He and equality prevails.

Next we introduce a Clifford semigroup.

Lemma 4.3 Let A =
⋃

e∈E He. Then A is a factorizable Clifford monoid contained in
the centralizer of E, with G = U (A) and E(A) = E.

Proof By Proposition 1.3, A is a Clifford semigroup contained in the centralizer
of E; it is a monoid by Proposition 1.2; by Lemma 4.1, G = U (S) = U (A); by
Lemma 4.2, A is factorizable. Obviously E(A) = E(S) so that E(A) = E.

In view of Lemma 4.3, for a ∈ A and e ∈ E, we have ae = ea since A is a Clifford
semigroup and we do not have to invoke Proposition 1.3.

The next result is [1, Proposition 1.3(ii)] which is stated there without proof. We
will use it in the continuation of the proof of the converse of Theorem 2.2.

Lemma 4.4 S = GT.

Proof Let g ∈ G and t ∈ T. We consider the element s = tg. Hence s = tgt−1t
since g commutes with idempotents. Next,

tgt−1(tgt−1)−1 = tgt−1tg−1t−1 = tgg−1t−1 = tt−1,

(tgt−1)−1tgt−1 = tg−1t−1tgt−1 = tg−1gt−1 = t−1t,

which shows that tgt−1Htt−1 and thus tgt−1 ∈ A. By Lemma 4.3, A is a factorizable
Clifford monoid. Hence there exist e ∈ E(A) and h ∈ U (A) = G such that tgt−1 =
eh. It follows that s = (tgt−1)t = eht = h(et) where et ∈ T. Therefore S ⊆ GT and
thus S = GT.

The next lemma concerns the monoid T.

Lemma 4.5 For every t ∈ T, define

ζt : a 7−→ tat−1, a ∈ A,

and then define
ζ : t 7−→ ζt , t ∈ T.

Then ζ : T → E(A) is a homomorphism.
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Proof Let t ∈ T and a ∈ A. Then

(tat−1)(tat−1)−1 = tat−1ta−1t−1 = taa−1t−1,

(tat−1)−1(tat−1) = ta−1t−1tat−1 = ta−1at−1,

and tat−1 commutes with its inverse which implies that tat−1 is an idempotent
H-class, and thus tat−1 ∈ A. It follows that ζt : A → A. For a, b ∈ A and t ∈ T, we
obtain

(ζt a)(ζt b) = (tat−1)(tbt−1) = tabt−1 = ζt (ab)

and ζt ∈ E(A). For t, u ∈ T and a ∈ A, we get

ζtζua = ζt (uau−1) = t(uau−1)t−1 = (tu)a(tu)−1 = ζtua,

whence ζtζu = ζtu and ζ : T → E(A) is a homomorphism.

Next we arrive at [A, ζ,T].

Lemma 4.6 Conditions (A)–(D) in the Construction at the beginning of Section 2
are fulfilled.

Proof Condition (A) is satisfied in view of the preamble to the proof of the converse
of Lemma 4.3. Lemma 4.5 implies the validity of conditions (B) and (C).

Let a ∈ A and t ∈ T be such that aa−1 = tt−1. By Lemma 4.3, A is factorizable so
that a = he for some h ∈ G and e ∈ E. By hypothesis, ht = ug for some u ∈ T and
g ∈ G. Hence

ht(ht)−1 = htt−1h−1 = hh−1tt−1 = tt−1,

(ht)−1ht = t−1h−1ht = t−1t,

and thus htHt . Similarly ugHu so that ht = ug implies that tHu. But then tHu
within T which is combinatorial and thus t = u. Hence ht = tg. Also a = he implies

att−1 = heaa−1 = haa−1e = ha−1(ae) = ha−1a = haa−1 = htt−1.

Consequently,

aa−1 · t g = tt−1(tgt−1) = tgt−1 = htt−1 = att−1 = aa−1a = a,

which proves condition (D).

This lemma implies that [A, ζ,T] is defined. We have finally arrived at the desired
isomorphism.

Lemma 4.7 The mapping

χ : gt 7−→ (gtt−1, t), g ∈ G, t ∈ T,

is an isomorphism of S onto [A, ζ,T].

Proof We show first that χ is single valued. Let g, h ∈ G and t, u ∈ T satisfy gt =
hu. As in the preceding proof, we get tHgt = huHu and thus t = u. It follows that
gtt−1 = huu−1 and t = u, and thus χ is single valued. Since gtt−1(gtt−1)−1 = tt−1,
χ maps S into [A, ζ,T].
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Without the hypothesis gt = hu, we obtain

(gt)χ(hu)χ = (gtt−1, t)(huu−1, u) = (gtt−1 · t (huu−1), tu)

= (gthuu−1t−1, tu) = (gthu(tu)−1, tu).

(4.1)

By Lemma 4.4, th = kv for some k ∈ G and v ∈ T. As above we get tHv and hence
t = v since T is combinatorial. Now

(4.2) (gthu)χ = (gktu)χ =
(

gktu(tu)−1, tu
)

and gthu = gktu implies the equality of (4.1) and (4.2). Therefore χ is a homomor-
phism.

If (gtt−1, t) = (huu−1, u), then t = u and gt = hu, which shows thatχ is injective.
Let (a, t) ∈ [A, ζ,T] so that aa−1 = tt−1. By Lemma 4.3, A is factorizable and

thus a = ge for some g ∈ G and e ∈ E. Hence e = g−1a and thus

gtt−1 = gaa−1 = g2(g−1a)a−1 = g2ea−1 = g(ge)ea−1 = (ge)(ge)a−1 = a2a−1 = a.

It follows that (gt)χ = (a, t). By Lemma 4.4, we have S = GT, and thus χ is also
surjective.

We can now complete the proof of the converse part of Theorem 2.2. By
Lemma 4.4, GT = TG, and thus χ is an isomorphism of S onto [A, ζ,T]. The
equality GT = TG also implies the equality GT′ = T′G in the direct part of the
theorem.

5 Comments

We could have used some of the results in [1] to design a shorter proof of Theo-
rem 2.2, but a direct proof is by far clearer.

Corollary 5.1 A combinatorially factorizable cryptic inverse monoid is embeddable
into a semidirect product of a factorizable Clifford monoid and a combinatorial inverse
monoid.

Let S be a cryptic inverse monoid with S = TG where T is a combinatorial in-
verse monoid and G is a group. We have seen in Lemma 3.4 that S/H ∼= T and in
Lemma 4.1 that G ∼= U (S). It then follows that, in the obvious notation, TG ∼= T′G′

implies that T ∼= T′ and G ∼= G′.
In the construction of [A, ζ,T] a basic role is played by the homomorphism

ζ : T → E(A). We can represent A as [Y ; Gα, χα,β]. Homomorphisms between two
such semigroups were constructed in [2, Proposition II.2.8] and can be specialized to
represent endomorphisms.

With the above notation, in the lattice of inverse submonoids of S containing the
identity of S, we have T ∨G = S and T ∩G = {1}, that is, T and G are complements
of each other. Can one say more?
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6 Direct Products

We now approach the second problem of this note. Given a combinatorial inverse
monoid T and a group G, so far we have provided a construction of all cryptic inverse
monoids S = T′G′ where T′ ∼= T and G′ ∼= G. Now we consider the direct product
of T and G. This is a special case of T′G′ evoked above, since clearly (t, 1)(1, g) =
(t, g) and thus for T′ = T × {1} and G′ = {1} × G, we have T′G′ = T × G. We
can take advantage of the observation that T × G ∼= [A, ζ,T], where ζ must satisfy
conditions stronger than (A)–(D).

We start with a lemma that may not be new.

Lemma 6.1 Let E be a semilattice and G be a group. Let ξ ∈ E(E), η ∈ E(G), and
define ϕ by

ϕ : (e, g) 7−→ (ξe, ηg), e ∈ E, g ∈ G.

Then ϕ ∈ E(E × G). Conversely, every endomorphism of E × G can be so represented.

Proof The direct part is obvious. Conversely, let ϕ ∈ E(E × G) and define func-
tions ξ and η by

ϕ(e, g) =
(
ξ(e, g), η(e, g)

)
, e ∈ E, g ∈ G.

Clearly ξ is a homomorphism of E × G into E and η is a homomorphism of E × G
into G. Then

ξ(e, g) = ξ
(

(e, g)(e, 1)
)
= ξ(e, g)ξ(e, 1),

ξ(e, 1) = ξ
(

(e, g)(e, g−1)
)
= ξ(e, g)ξ(e, g−1)

where the first line implies that ξ(e, g) ≤ ξ(e, 1), and the second implies that ξ(e, g) ≥
ξ(e, 1) so that ξ(e, g) = ξ(e, 1). It follows that ξ(e, g) is independent of g. Next, for
e ≤ f , we get

η(e, g) = η
(

( f , g)(e, 1)
)
= η( f , g)η(e, 1) = η( f , g)

whence it follows that η(e, g) is independent of e. We can write ξe = ξ(e, g) and
ηg = η(e, g) thereby obtaining ξ ∈ E(E) and η ∈ E(G). Therefore ϕ is of the form
in the statement of the lemma.

Theorem 6.2 Let S = [A, ζ,T] and assume

(E) A ∼= E × G where E = E(T) and G = U (A),
(F) t g = g, (g ∈ U (A), t ∈ T).

Then S is a direct product of T and G. Conversely, the direct product of T and G is
isomorphic to a semigroup so constructed.

Proof Direct. We may set A = E × G. In view of Lemma 6.1, we can write the
action of T on A in the form t (e, g) = (t e, t g) where now T acts on both E and G.
For (a, t) ∈ [A, ζ,T], the requirement is aa−1 = tt−1. Letting a = (e, g), this
requirement becomes (e, g)(e, g)−1 = (e, 1) = (tt−1, tt−1) and we get e = tt−1.
Condition (F) implies that t (e, g) = (t e, g). The mapping

ϕ :
(

(tt−1, g), t
)
7−→ (g, t)
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is thus an isomorphism of [A, ζ,T] onto G× T.
Converse. We may set S = T × G. Then S ∼= T′ × G′ where T′ = {1} × T

and G′ = G × {1} so that T′ ∼= T and G′ ∼= G. By Theorem 2.2, we may set
S = [A, ζ,T]. Clearly A ∼= E × G so condition (E) holds, and since the product in
T × G is by components, condition (F) holds as well.

We could have used [1, Theorem 5.1], but the above proof is shorter and more
transparent. Theorem 6.2 exhibits the difference between the product TG and the
direct product T × G. We can specialize this result to the case of a direct product of
a semilattice and a group, or can proceed as follows.

Let A = [Y ; Gα, χα,β] be a factorizable Clifford monoid. Hence Y is a monoid,
say with identity ε. Condition [1, Theorem 5.1(iii)] is equivalent to saying that each
χε,α is injective. Proposition 1.1 asserts that all χα,β are surjective. Hence all χε,α are
isomorphisms. For α ≥ β, we have χε,αχα,β = χε,β . Since both χε,α and χε,β are
isomorphisms, so is χα,β . We need the following.

Lemma 6.3 Let S = [Y ; Gα, χα,β] where every Gα is a group. Then every χα,β is an
isomorphism if and only if S ∼= Y × G for some group G.

Proof See [3, Lemma 4.4].

Evidently the group G in Lemma 6.3 is isomorphic to Gα for any α ∈ Y . We can
now make the desired conclusion.

Proposition 6.4 A semigroup S is a direct product of a semilattice monoid and a
group if and only if S is a Clifford monoid in which all structure homomorphisms are
bijective.

A comparison of Propositions 1.1 and 6.4 clearly exhibits the difference between
TG and T × G for a semilattice monoid T and a group G.
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https://doi.org/10.4153/CMB-2014-025-1 Published online by Cambridge University Press

http://dx.doi.org/10.1007/PL00006005
http://dx.doi.org/10.1007/s10474-009-8151-9
https://doi.org/10.4153/CMB-2014-025-1

