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ON THE PROBABILITY OF RUMOUR SURVIVAL AMONG SCEPTICS
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Abstract

We study a sceptical rumour model on the non-negative integer line. The model starts
with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then
each sceptic transmits the rumour, independently, to the individuals within a random
distance on its right after s/he receives the rumour from at least two different sources.
We say that the process survives if the size of the set of vertices which heard the rumour
in this fashion is infinite. We calculate the probability of survival exactly, and obtain
some bounds for the tail distribution of the final range of the rumour among sceptics.
We also prove that the rumour dies out among non-sceptics and sceptics, under the same
condition.
Keywords: Rumour process; renewal process; double coverage.
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1. Introduction

The probabilistic analysis of information propagation has received vast attention in the last
few decades. In the behavioural study of communication systems, one of the problems of inter-
est is the propagation problem where one component has some information which it wants to
pass on to the other components of the system. Gilbert [13] was the first to introduce a model
consisting of a signal transmission through a relay of transmitters to its recipient. Maki and
Thompson [19] later introduced a variation to this model, and Sudbury [24] studied this variant
of the information-transmission model introduced in [19]. The most readily available models
are inspired by classical epidemic models, such as SIR, SIS, and SI. They are simple models of
an epidemic of an infectious disease or spreading of information in a large population. In these
models, the population consists of three types of individuals, referred to as ignorants, spread-
ers, and stiflers. Basic models and some of their generalizations can be found, for instance, in
[2], [5], [6], [7], [8], [14], [17], [18], [19], [20], and [21].

This paper aims to study a long-range rumour propagation model where the individuals are
located at the sites of N∗ =N

⋃{0}. There are two initial spreaders located at sites 0 and 1,
and sceptical ignorants at all other sites of N∗. Let R0, R1, . . . be a sequence of independent
and identically distributed (i.i.d.) N∗-valued random variables. For arbitrary integers a, b ∈N

∗,
we let [a, b] denote the set of all integers between a and b. The spreaders located at sites
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On the probability of rumour survival among sceptics 1097

0 and 1 start a rumour and propagate it to all individuals in the interval [0, R0] and [1, 1 + R1]
respectively. For i = 2, 3, . . ., a sceptical individual located at i ∈ [1, min{R0, 1 + R1}] receives
the rumour from two different sources 0, 1 and then accepts and transmits it further among
individuals in [i, i + Ri]. The rumour spreads in this manner, that is, a sceptic j ∈N

∗ spreads
the rumour to the individuals located in the interval [j, j + Rj] when s/he receives the rumour
from at least two different sources. This extension may be valuable for the investigation of
information propagation in social networks where the acceptance of a rumour requires it to be
received from different sources, or for the study of the intensity of spreading of an epidemic
disease within a society, when people need to be exposed to more than one infected individual
to contract that disease. The results are valid for sceptics who need to receive the information
from k or more different sources to accept and transmit it. However, for the sake of simplicity,
we restrict ourselves to k = 2.

The rumour propagation model was initially introduced by Junior et al. [15], who called it
the firework process. Their model starts with one spreader at site 0 and ignorants at all of the
other sites of N, where each spreader transmits the rumour, independently, to the individuals
within a random distance on its right. Junior et al. [15] obtained sufficient conditions for the
rumour to survive with positive probability. It should be noted that related results were first
obtained by Athreya et al. [1] in the context of space covering processes. For more recent
work on this model, see [3], [10], [16], and [23]. In 2014, Gallo et al. [10] found necessary and
sufficient conditions for survival of the rumour. Their method benefits from a direct comparison
between the rumour processes and a discrete-time renewal process. Using this connection, they
found an exact expression for the probability of survival, and also obtained information about
the distribution of the range of the rumour when it dies out, using the results of [12] and [11].

Rumour propagation among sceptics was first introduced by Sajadi and Roy [23]. They
introduced sceptics: the individuals who need to receive the rumour from at least two different
sources to accept and transmit it. They considered an alternative formulation of the homoge-
neous firework process by devoting a sequence X0, X1, . . . of i.i.d. Bernoulli {0, 1}-random
variables to the states of N, which determines two types of individuals: believers (Xi = 1)
and unbelievers (Xi = 0). They also defined a collection of i.i.d. N-valued random variables,
independent of the first sequence, which works as the radius of rumour propagation for the
individuals located at the states of N. They showed that the rumour model survives among
the sceptics and non-sceptic believers, under the same condition. An equivalent version of this
model in stochastic geometry is the study of Nd-coverage by random sets when each vertex of
N

d should be covered by at least two distinct random sets. The problem of sceptical rumour
propagation has recently been studied in the Markovian setup for {X0, X1, . . .} by Esmaeeli
and Sajadi [9], who also prove that the rumour will survive among sceptics under the same
conditions as for non-sceptics.

Our model for the investigation of sceptical rumour spread is different from those of [9] and
[23], and is an extension of the classical model in [10] such that the information transfers more
slowly in our model. Similarly to the previous versions of information transmission, the prob-
ability of survival is the first issue. We attain an exact formula for the probability of survival of
the sceptical rumour process, which gives us a necessary and sufficient condition of survival.
We also obtain some upper bounds for the tail distribution of the final range of the sceptical
rumour. The main idea of the proof is similar to that of [10] and derived from a connection
between the rumour process and a discrete-time renewal process. However, our novelties are
related to the extension of the rumour process to the sceptical one and its mathematical mod-
elling, and especially to the construction of a convenient discrete-time renewal process, which
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1098 N. ESMAEELI AND F. A. SAJADI

is difficult to define due to the complexity of our model. We also prove that the condition for
the rumour process to survive among the sceptics is equivalent to the available condition of
surviving among the non-sceptics, which is in line with the results in [9] and [23].

The remainder of the paper is organized as follows. In Section 2 we state the formal setup
of our model and the main results. In Section 3 we present two lemmas that will help us to
prove our main results.

2. The model and statement of results

Define R = (Ri)i≥0 to be a sequence of N∗-valued i.i.d. random variables and

αk := P(R0 ≤ k), k ≥ 0,

where 0 < α0 < 1. We suppose that one individual is located at each site of N∗, who can spread
the information within a random distance to its right. The main goal is to understand whether
the probability of having an infinite set of individuals who know the rumour is positive. In
other words we are interested in knowing the probability of rumour survival. In order to pre-
pare for the forthcoming analysis, we recapitulate a simple model from [10], along with the
corresponding results and the notation, as this will turn out to be very useful.

For any n ≥ 0, let An denote the set of individuals who are informed at stage n. Initially, 0 is
the only spreader and then A0 = {0}. Gallo et al. [10] defined the sequence (An)n≥1 recursively
via

An := {i ∈N | ∃j ∈ An−1 : i ∈ [j, j + Rj]} \ An−1.

Put another way, in their model a newly informed person at the current stage was an ignorant
at the previous stage and was located within the transmission radius of his/her left spreader.
When an ignorant is informed then s/he becomes a spreader forever. Let A := ⋃

i≥0 Ai and
M := |A|. Then A denotes the set of final spreaders and M is the final number of spreaders. The
event A := {M = ∞} means that the rumour survives. Gallo et al. [10] showed the following.

Theorem 1. We obtain

P(A) = 1

μ
,

where

μ = 1 +
∑
k≥1

k−1∏
i=0

αi.

As a result of the above theorem, it is known that the rumour survives with positive
probability if and only if ∑

k≥1

k−1∏
i=0

αi < ∞.

Gallo et al. [10] also found some bounds for the tail distribution of the final range of the rumour
(see Propositions 1 and 2 in [10]. It is worth mentioning that μ is the mean of a geometric
distribution for the event that hinders rumour survival.

In our model we suppose that sceptical individuals are the ones who accept and transmit the
rumour only if they receive it from at least two different sources.
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FIGURE 1. The white, grey, and black circles stand for the sceptical ignorants, sceptical spreaders from
earlier stages, and current sceptical spreaders respectively.

Initially, only {0, 1} are spreaders and thus B0 = {0, 1}. Then the sequence (Bn)n≥1 is defined
recursively via

Bn :=
{

i ≥ 2 | ∃j1 �= j2 ∈
n−1⋃
i=0

Bi : i ∈ [j1, j1 + Rj1 ] ∩ [j2, j2 + Rj2 ]

}
\

n−1⋃
i=1

Bi.

We define B := ⋃
n≥0 Bn. Then B is the set of sceptical spreaders at the end of the spreading

procedure (see Figure 1).
Let D := |B| be the final number of the sceptical spreaders. Note that D ≥ 2. Now, by defin-

ing the event Ā := {D = ∞}, we have the following theorem, which gives the exact probability
of rumour survival among sceptics.

Theorem 2. We have

P(Ā) = 1

μ̄
,

where

μ̄ = 2 +
∑
k≥2

k∏
i=2

ᾱi

and

ᾱi =
i∑

j=1

i∏
t=1,t �=j

αt−1 − (i − 1)
i∏

t=1

αt−1. (1)
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Similarly, μ̄ could be seen as the mean of a geometric distribution for the event that prevents
the survival of the rumour among sceptics. Further, we are able to obtain the same bounds in
[10] to the tail distribution of the final range of the rumour among the sceptics.

Proposition 1. The random variable D has finite expectation if
∏

k≥0 αk > 0, and has expo-
nential tail distribution when αk increases exponentially fast to 1, i.e. 1 − αk ∼ γ e−βk, γ > 0,
β > 0.

Proposition 2. We have the following explicit bounds for the tail distributions.

(i) If 1 − αk ≤ Crrk, k ≥ 2, for some r ∈ (0, 1) and a constant Cr ∈ (0, log (1/r)), then

P(D ≥ k) ≤ 1

Cr

(
eCr r

)k.

(ii) If 1 − αk ∼ (log k)βk−γ , β ∈R, γ > 1, then there exists C > 0 such that, for large k, we
have

P(D ≥ k) ≤ C(log k)βk−γ .

(iii) If 1 − αk = r/k, k ≥ 2, where r ∈ (0, 1), there exists C > 0 such that, for large k, we have

P(D ≥ k) ≤ C
(ln k)3+r

(k)2−(1+r)2 .

(iv) If αk ∼ ((k + 1)/(k + 2))γ , γ ∈ (1/2, 1), then there exists C = C(γ ) > 0 such that, for
large k, we have

P(D ≥ k) ≤ C

k1−γ
.

Remark 1. From Theorem 1 we know that the behaviour of A is tied to that of μ, which
depends on the infinite product of αk. In addition,

∏
k≥0 αk converges if and only if

∑
k≥0

(1 − αk) converges. Therefore the above ranges for αk are considered in Proposition 2.
Moreover, they are the well-known convergence rates studied in [4], [10], [11], and [12].

We can also deduce that the rumour dies out among the non-sceptics if and only if it dies
out among the sceptics. In other words, we have the following theorem.

Theorem 3. We obtain
P(Ā) = 0 ⇐⇒ P(A) = 0.

Remark 2. Sajadi and Roy [23] have presented an alternative but equivalent formulation to
our model. In fact they consider the i.i.d. Bernoulli(p) random variables X1, X2, . . . as follows:

Xi =
{

1 with probability p,

0 with probability 1 − p,

together with a collection of i.i.d. N-valued random variables {ρi : i ≥ 1}, independent of the
collection {Xi : i ≥ 1}. For their model, an individual at i transmits the rumour to all individuals
in the region [i, i + ρi] if Xi = 1, and there are two individuals at j and k with j �= k, Xj = Xk = 1
and 1 ≤ j, k < i such that i ∈ [j, j + ρj] ∩ [k, k + ρk]. Our model may be seen to be equivalent
to this formulation by taking p = P(R0 > 0) and ρ to have the same distribution as that of
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R0|(R0 > 0), where ρ is a generic random variable with the same distribution as ρi. Therefore
Theorem 3 says that under our setup for the propagation model and also under the setup in
[23], we have the same result for the probability that the rumour survives among the sceptics.

Since the rumour process is an SI epidemic model, our setup may also be considered as an
epidemic model where individuals located at the sites of N∗ are members of a numerous society
who may be in mutual contact. Suppose that an infection appears in this society. The sceptical
rumour process means that an individual of this society will be infected if s/he is exposed to
at least two sick people. The infection then spreads more slowly in our model. In this case,
the survival means that the infection spreads to all members of this society, and Theorem 2
gives us an exact formula for the probability of survival. Propositions 1 and 2 specify how
the tail distribution of the final range of the epidemic behaves in the worst scenario. Finally,
Theorem 3 states that the low transitive power of this infection cannot necessarily prevent
spread of the infection to all members, and this epidemic happens under the same condition
that the SI epidemic occurs.

3. Proofs

Similarly to [10], our results will be based on a remarkable relationship between the rumour
process and a specific discrete-time renewal process. Then we briefly introduce a discrete
renewal process.

Let (q̄k)k≥1 be a probability distribution on N∪ {∞} defined by

q̄1 = 0,

q̄k = (1 − ᾱk)
k−1∏
j=2

ᾱj, k ≥ 2,

where ᾱj is defined in (1) for j ≥ 2 and q̄∞ = 1 −∑
k≥1 q̄k.

Let (Tn)n≥1 be an i.i.d. sequence of random variables taking values in N∪ {∞} with
common distribution (q̄k)k≥1. We set Y0 = 1, Y1 = 0, and for n ≥ 2,

Yn =
{

1 if for some i, T1 + · · · + Ti = n,

0 otherwise.

Each occurrence of 1 in (Yn)n≥2 is called a renewal and Y = (Yn)n≥0 is a discrete renewal
process. Moreover, Tn is the distance between the (n − 1)th and nth occurrences of 1 in Y , and
(q̄k)k≥1 is called the inter-arrival distribution of Y . The process Y is recurrent if and only if

P(T1 = ∞) = 1 −
∑
k≥1

q̄k = 1 −
(

(1 − ᾱ2) +
∑
k≥3

(1 − ᾱk)
k−1∏
i=2

ᾱi

)

= ᾱ2 +
∑
k≥3

(
k∏

i=2

ᾱi −
k−1∏
i=2

ᾱi

)

=
∑
k≥2

(
k∏

i=2

ᾱi −
k−1∏
i=2

ᾱi

)

=
∏
i≥2

ᾱi = 0,
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and it is positive recurrent if and only if μ̄ < ∞, where μ̄ is the mean of (q̄k)k≥1. Let un :=
P(Yn = 1), n ≥ 0 be the corresponding discrete renewal sequence. It can be shown that un →
1/μ̄ [22].

We also construct our model via a sequence U = (Ui)i∈Z of i.i.d. random variables uniformly
distributed on [0, 1). For i ≥ 0, define the random variable

Ri =
∑
k≥0

k1{Ui∈[αk−1,αk)}, where α−1 := 0.

The random radius Ri is the distance at which the individual at site i transmits the information
at its right.

Recall that M and D are the final numbers of the spreaders and sceptical spreaders respec-
tively. The proof of Theorem 2 is based on the following lemma, which gives us the tail
distribution of D and the fact that for a discrete renewal process we have un → 1/μ̄, where
μ̄ is the mean value of the process [22]. Proposition 1 follows from Proposition 1 in [10] and
the fact that P(D ≥ k) ≤ P(M ≥ k). There is no simple explicit formula for un, n ≥ 2, and only
some results are available about the information concerning the rate at which un → 1/μ̄. All of
these investigated cases have been collected in Proposition 4 in [10] and classified based on the
various regimes of αn. Because of the relation between the distributions of D and M, we apply
Proposition 4 in [10] to find some explicit upper bounds for the tail distribution of D based on
various regimes of αn in Proposition 2.

Lemma 1. For any n ≥ 2, we have P(D > n) = un.

Proof. Note that D is the number of the first person who has not received the rumour from
at least two people located on her/his left. Thus, if we consider every D’s left-neighbourhood
with length at least two, then there are less than two people in this neighbourhood who transmit
the rumour to her/him. It means that the radius of their transmission is less than their distance
to D. Therefore, using the definition of Ri, we can write D as follows:

D = min

{
i ≥ 2, for all j ∈ {2, . . . , i} ;

j⋃
m=1

j⋂
r=1,r �=m

{Ri−r < r} �= ∅
}

= min

{
i ≥ 2, for all j ∈ {2, . . . , i} ;

j⋃
m=1

j⋂
r=1,r �=m

{Ui−r < αr−1} �= ∅
}

.

Define the following ‘house of cards’ process (H̄m)m∈Z. This process is a Markov chain on
the set of natural numbers, which is useful in the construction of couplings for processes with
long-range memory and dynamical systems [4], and can go up with one unit or go down to zero.
Given a sequence of independent and uniformly distributed random variables U = (Un)n∈Z on
[0, 1), we can view the process H̄m generated via the following recursion.

For any m ∈Z, set H̄m
m = 0, H̄m

m+1 = 1 and

H̄m
m+n = (

H̄m
m+n−1 + 1

)
1Em,n , n ≥ 2,

where

Em,n :=
{

n⋃
j=1

n⋂
r=1,r �=j

{
Um−r < αH̄m

m+r−1

} �= ∅
}

.
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Note that the index m in H̄m indicates where each H̄ starts, and H̄m
m+n denotes receiving

the information by person m from the people who are located on her/his left and in her/his n-
neighbourhood. If there exists n ∈ {2, . . . , m} such that H̄m

m+n = 0, then it means the rumour is
spread to m from at least two people on her/his left and if, for every n ∈ {2, . . . , m}, H̄m

m+n �= 0,
then m has not received or accepted the rumour and will not be a spreader. Therefore we have
H̄m

m = 0, H̄m
m+1 = 1 �= 0 and H̄m

m+2 �= 0 whenever

2⋃
j=1

2⋂
r=1,r �=j

{Um−r < αr−1} �= ∅.

Similarly, H̄m
m+k−1 �= 0 whenever

k−1⋃
j=1

k−1⋂
r=1,r �=j

{Um−r < αr−1} �= ∅.

However, H̄m
m+k = 0 whenever

k⋃
j=1

k⋂
r=1,r �=j

{Um−r < αr−1} = ∅.

The event that H̄m
m+k = 0 for the first time after starting from 0 (i.e. H̄m

m = 0) is equivalent to
the event that {

H̄m
m+1 �= 0

}∩ {H̄m
m+2 �= 0

}∩ · · · ∩ {H̄m
m+k−1 �= 0

}∩ {H̄m
m+k = 0

}
.

Since H̄m is a Markov chain, it renews at each visit to 0. According to its definition, the distance
between two successive visits to 0 is at least 2. In other words, since H̄m

m+1 is equal to 1, we
have

q̄1 = P
(
H̄m

m+1 = 0 | H̄m
m = 0

)= 0,

and for k ≥ 2, H̄m has the distribution

q̄k = P
(
H̄m

m+1 �= 0, H̄m
m+2 �= 0, . . . , H̄m

m+k−1 �= 0, H̄m
m+k = 0 | H̄m

m = 0
)

= P
(
H̄m

m+1 �= 0 | H̄m
m = 0

)
P
(
H̄m

m+2 �= 0 | H̄m
m = 0, H̄m

m+1 �= 0
) · · ·

P
(
H̄m

m+k−1 �= 0 | H̄m
m = 0, H̄m

m+1 �= 0, . . . , H̄m
m+k−2 �= 0

)
P
(
H̄m

m+k = 0 | H̄m
m = 0, H̄m

m+1 �= 0, . . . , H̄2
m+k−1 �= 0

)
= (1 − ᾱk)

k−1∏
i=2

ᾱi,

when for i ≥ 2,

ᾱi = P

(
i⋃

j=1

Ej

)
, (2)
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where

Ej =
i⋂

t=1,t �=j

{Ui−t < αt−1}.

Note that (q̄k)k≥1 is the inter-arrival distribution of (H̄(m))m∈Z, and
∏k−1

i=2 ᾱi means that
the chain climbs up from 1 to k − 1 and (1 − ᾱk) means that it falls down to 0. Therefore
(H̄(m))m∈Z is recurrent if and only if P(T1 = ∞) =∏

i≥2 ᾱi = 0. Consequently, for any m ∈Z

and k ≥ 0, we have uk = P(H̄m
m+k = 0). Observe that this Markov process is monotone as well

as coalescent at 0. By monotonicity, we mean that

H̄m
n ≥ H̄k

n for all m < k ≤ n,

which implies in particular that H̄m
n = 0 ⇒ H̄k

n = 0 for all m < k ≤ n. Also, being coalescent at
0 means that

H̄m
n = 0 ⇒ H̄m

t = H̄k
t for all m < k ≤ n ≤ t.

Using all of these properties, we obtain the following sequence of equivalences for n ≥ 2:

D > n ⇔ ∀i ∈ {2, . . . , n}, ∃j ∈ {2, . . . , i} ;
j⋃

m=1

j⋂
r=1,r �=m

{Ri−r < r} = ∅

⇔ ∀i ∈ {2, . . . , n}, ∃j ∈ {2, . . . , i} ;
j⋃

m=1

j⋂
r=1,r �=m

{Ui−r < αr−1} = ∅

⇔ ∀i ∈ {2, . . . , n}, ∃j ∈ {2, . . . , i} ; H̄i
i+j = 0

⇔ ∀i ∈ {2, . . . , n}; H̄i
i+i = 0

⇔ ∀i ∈ {2, . . . , n}; H̄−i
0 = 0

⇔ H̄−n
0 = 0,

where the first two equivalences follow from the definition of D, the third one follows from the
definition of the family of Markov processes (H̄m)m∈Z, the fourth line holds according to the
coalescence property of (H̄m)m∈Z, the fifth equivalence is true because of the Markov property,
and the final equivalence holds because of the monotonicity property. Therefore we obtain that

P(D > n) = P
(
H̄−n

0 = 0
)= P

(
H̄0

n = 0
)
.

Thus we have P(D > n) = un. �

Now we are ready to calculate ᾱi, i ≥ 2 and then μ̄, which is the mean of distribution q̄k,
k ≥ 2. From (2) we have

ᾱi = P

(
i⋃

j=1

Ej

)
, Ej =

i⋂
t=1,t �=j

{Ui−t < αt−1}.
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By using the inclusion–exclusion principle, we get

ᾱi = P

(
i⋃

k=1

Ek

)

=
i∑

k=1

(−1)k−1
∑

I⊂{1,...,i},|I|=k

P

(⋂
j∈I

Ej

)

=
∑

I⊂{1,...,i},|I|=1

P

(⋂
j∈I

Ej

)
+

i∑
k=2

(−1)k−1
∑

I⊂{1,...,i},|I|=k

P

(⋂
j∈I

Ej

)

=
i∑

k=1

P(Ek) +
i∑

k=2

(−1)k−1
∑

I⊂{1,...,i},|I|=k

P

(⋂
j∈I

Ej

)
. (3)

Now, from the definition of Ej, for each k ≥ 2 and I ⊂ {1, . . . , i}, |I| = k, we have

P

(⋂
j∈I

Ej

)
= P

(
i⋂

t=1

{Ui−t < αt−1}
)

=
i∏

t=1

P({Ui−t < αt−1}).

Therefore we get from (3)

ᾱi =
i∑

k=1

i∏
t=1,t �=k

P({Ui−t < αt−1}) +
i∑

k=2

(−1)k−1
(

i
k

) i∏
t=1

P({Ui−t < αt−1})

=
i∑

k=1

i∏
t=1,t �=k

αt−1 +
i∏

t=1

αt−1

i∑
k=2

(−1)k−1
(

i
k

)

=
i∑

k=1

i∏
t=1,t �=k

αt−1 − (i − 1)
i∏

t=1

αt−1. (4)

The last equality holds since

i∑
k=1

(−1)k−1
(

i
k

)
= 1 − (1 − 1)k = 1.

Furthermore, we are able to obtain another formula for ᾱi as follows. From (4) we have ᾱ2 =
α0 + α1 − α0α1, and for i ≥ 3,

ᾱi =
i∑

k=1

i∏
t=1,t �=k

αt−1 − (i − 1)
i∏

t=1

αt−1

=
(

i∏
t=1,t �=1

αt−1 +
i∏

t=1,t �=2

αt−1 −
i∏

t=1

αt−1

)
+
(

i∑
k=3

i∏
t=1,t �=k

αt−1 − (i − 2)
i∏

t=1

αt−1

)

=
(

i∏
t=1,t �=1,2

αt−1

)
(α1 + α0 − α0α1) + α0α1

(
i∑

k=3

i∏
t=3,t �=k

αt−1 − (i − 2)
i∏

t=3

αt−1

)

= ᾱ2

i∏
t=1,t �=1,2

αt−1 + α0α1

(
i∑

k=3

i∏
t=3,t �=k

αt−1(1 − αk−1)

)
. (5)
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According to the definition of q̄k in our model, we have

μ̄ =
∑
k≥2

kq̄k =
∑
k≥2

k

[
(1 − ᾱk)

k−1∏
i=2

ᾱi

]

= 2(1 − (ᾱ0 + ᾱ1 − ᾱ0ᾱ1)) +
∑
k≥3

k

[
(1 − ᾱk)

k−1∏
i=2

ᾱi

]

= 2 − 2(ᾱ0 + ᾱ1 − ᾱ0ᾱ1) +
∑
k≥3

[
k

k−1∏
i=2

ᾱi − k
k∏

i=2

ᾱi

]

= 2 +
∑
k≥2

[
(k + 1)

k∏
i=2

ᾱi − k
k∏

i=2

ᾱi

]

= 2 +
∑
k≥2

k∏
i=2

ᾱi.

The proof of Theorem 3 is deduced from the following lemma, together with Theorems
1 and 2.

Lemma 2. We obtain μ̄ < ∞ if and only if μ < ∞.

Proof. According to the definitions of M and D, we have P(D ≥ k) ≤ P(M ≥ k), k ≥ 2.
Because of continuity in probability, we get P(Ā) ≤ P(A). Therefore μ ≤ μ̄ from Theorems
1 and 2. To show the converse, let μ < ∞; then

∏j
i=0 αi ↓ 0, so we get αi < 1 for all i ≥ 0.

We use a contrary argument to show this. Suppose there exists k∗ ≥ 1 such that αk∗ = 1; then
αi = 1 for all i ≥ k∗ since {αi}i≥0 is increasing according to its definition. Therefore, for all
j ≥ k∗,

j∏
i=0

αi =
k∗−1∏
i=0

αi > 0,

which is a contradiction. In the remainder of the proof we need to find another representation
for ᾱi. In fact, we prove by induction on i that

ᾱi = αi−1ᾱi−1 + (1 − αi−1)
i−1∏
t=1

αt−1, i ≥ 3. (6)

The case of i = 3 is deduced from (5). We assume that (6) holds for some value of i greater
than 3 and show that it holds for i + 1. From (5), we have

ᾱi+1 = ᾱ2

i+1∏
t=1,t �=1,2

αt−1 + α0α1

(
i+1∑
j=3

i+1∏
t=3,t �=j

αt−1(1 − αj−1)

)

= ᾱ2

i+1∏
t=1,t �=1,2

αt−1 + α0α1

(
i∑

j=3

i+1∏
t=3,t �=j

αt−1(1 − αj−1) + α0α1

(
i∏

t=3

αt−1(1 − αi)

))
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= αi

(
ᾱ2

i∏
t=1,t �=1,2

αt−1 + α0α1

(
i∑

j=3

i∏
t=3,t �=j

αt−1(1 − αj−1)

))
+

i∏
t=1

αt−1(1 − αi)

= αiᾱi + (1 − αi)
i∏

t=1

αt−1.

The last equality holds because of the induction hypothesis (6). Therefore ᾱi is a convex com-
bination of ᾱi−1 and

∏i−1
t=1 αt−1 for all i ≥ 3. Moreover, we have ᾱ2 = α1(1 − α0) + α0 from

(4), that is, ᾱ2 is a convex combination of α1 and 1. Now, since αi < 1 for all i ≥ 0, then ᾱ2 < 1
and {ᾱi}i≥2 is strictly decreasing from (6). Furthermore, ᾱi ≥ 0 for all i ≥ 2. Thus there exists
c ∈ [0, 1) such that ᾱi ↓ c.

On the other hand, we have αi ↑ 1 by definition, so there exists k∗ ≥ 2 such that for all i ≥ k∗,
ᾱi ≤ αi. Therefore we have for all k ≥ k∗

k∏
i=k∗

ᾱi ≤
k∏

i=k∗
αi. (7)

Now we are ready to complete our proof. Since μ < ∞, we have

∑
k≥k∗

k−1∏
i=0

αi < ∞.

Then we get

∑
k≥k∗

k−1∏
i=0

αi =
∑
k≥k∗

(
k∗−1∏
i=0

αi

)(
k−1∏
i=k∗

αi

)
=
(

k∗−1∏
i=0

αi

)∑
k≥k∗

k−1∏
i=k∗

αi.

Hence we get ∑
k≥k∗

k−1∏
i=k∗

αi < ∞,

that is, ∏
k≥k∗

(
1 −

k−1∏
i=k∗

αi

)
> 0.

Finally, we have from (7)

∏
k≥k∗

(
1 −

k∏
i=k∗

ᾱi

)
≥
∏
k≥k∗

(
1 −

k∏
i=k∗

αi

)
≥
∏
k≥k∗

(
1 −

k−1∏
i=k∗

αi

)
> 0.

Therefore μ̄ < ∞, since

∏
k≥k∗

(
1 −

k∏
i=2

ᾱi

)
≥
∏
k≥k∗

(
1 −

k∏
i=k∗

ᾱi

)
> 0.

�
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Corollary 1. We have limi→∞ ᾱi = 0 when{
i−1∑
j=1

i−1∏
t=1,t �=j

αt−1

}
i≥3

is decreasing.

Proof. From (6), we observe that ᾱi is located on the line connecting ᾱi−1 to
∏i−1

t=1 αt−1 for
i ≥ 3. We denote the length of this line by Si, and we have from (4)

Si = ᾱi−1 −
i−1∏
t=1

αt−1 =
i−1∑
j=1

i−1∏
t=1,t �=j

αt−1 − (i − 2)
i−1∏
t=1

αt−1 −
i−1∏
t=1

αt−1

=
i−1∑
j=1

i−1∏
t=1,t �=j

αt−1 − (i − 1)
i−1∏
t=1

αt−1

=
i−1∑
j=1

(
i−1∏

t=1,t �=j

αt−1 −
i−1∏
t=1

αt−1

)

=
i−1∑
j=1

i−1∏
t=1,t �=j

αt−1(1 − αj−1).

Now let

aj := 1 − αj−1 and tj,i :=
i−1∏

t=1,t �=j

αt−1,

and then

Si =
i−1∑
j=1

tj,iaj.

According to the assumption, we get αi < 1 for all i ≥ 0. We use a contrary argument to show
this. Suppose there exists n ≥ 1 such that αi = 1 for all i ≥ n. Then, for all m > n,

m−1∑
j=1

m−1∏
t=1,t �=j

αt−1 =
n−1∑
j=1

n−1∏
t=1,t �=j

αt−1 +
m−1∑
j=n

n−1∏
t=1,t �=j

αt−1

=
n−1∑
j=1

n−1∏
t=1,t �=j

αt−1 + (m − n)
n−1∏

t=1,t �=j

αt−1

>

n−1∑
j=1

n−1∏
t=1,t �=j

αt−1,

which is a contradiction since {
i−1∑
j=1

i−1∏
t=1,t �=j

αt−1

}
i≥3

is decreasing.
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Now we have limj→∞ αj = 1 and αi < 1 for all i ≥ 0. Then limj→∞ aj = 0, and for fixed j,
limi→∞ tj,i = 0. On the other hand,

i−1∑
j=1

i−1∏
t=1,t �=j

αt−1 ≤ α0 + α1 < 2, i ≥ 3.

Finally, from Toeplitz’s theorem we get limi→∞ Si = 0 and then limi→∞ ᾱi = 0. �

Remark 3. In our model we suppose that 0 < α0 < 1. This condition enables us to consider
the possibility of no rumour transmission besides the rumour transmission by each individual,
which is a natural assumption. If α0 = 1, then αi = 1, i ≥ 1, as {αi}i≥0 is an increasing sequence
according to its definition. In this case μ = ∞ from its definition and ᾱj = 1, j ≥ 2 from (4),
and then μ̄ = ∞.

4. Examples

Example 1. Consider the random variable R with the following probability mass function:

P(R = k) = (1 − γ )kγ, 0 < γ < 1, k ≥ 0.

Then we get P(R > k) = (1 − γ )k+1 and

E(R) =
∑
k≥0

P(R > k) = 1 − γ

γ
< ∞,

or equivalently, ∏
k≥0

P(R ≤ k) =
∏
k≥0

αk > 0.

From Proposition 1 in [10], the final number of spreaders, i.e. M, has finite expectation. Note
that E(M) =∑

n≥0 P(M > n) and P(M > n) = un+1. Therefore un+1 → 0. On the other hand,
from [22], un → 1/μ. Then μ = ∞ and P(A) = 1/μ = 0. By Theorem 3 we have P(Ā) = 0,
and hence the rumour will not survive among the sceptics.

Example 2. Consider the random variable R with the following probability mass function:

P(R = k) = 2

(k + 2)(k + 3)
, k ≥ 0.

We have αk = 1 − 2/(k + 3), and

E[R] =
∑
k≥0

P(R > k) = ∞,

or equivalently ∏
k≥0

P(R ≤ k) =
∏
k≥0

αk = 0.

But

μ = 1 +
∑
k≥1

k−1∏
i=0

αi = 1 +
∑
i≥1

2

(i + 1)(i + 2)
= 2 < ∞.

Therefore, by Lemma 2, we have μ̄ < ∞ and hence P(Ā) = 1/μ̄ > 0. In other words the
number of informed sceptical individuals is infinity with positive probability.
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