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Abstract
There have been some suggestions in linguistics and cognitive science that humans process
continuous speech by routinely chunking it up into smaller units. The nature of the process is
open to debate, which is complicated by the apparent existence of two entirely different
chunking processes, both of which seem to be warranted by the limitations of working
memory. To overcome them, humans seem to both combine items into larger units for
future retrieval (usage-based chunking), and partition incoming streams into temporal
groups (perceptual chunking). To determine linguistic properties and cognitive constraints
of perceptual chunking, most previous research has employed short-constructed stimuli
modeled on written language. In contrast, we presented linguistically naïve listeners with
excerpts of natural speech from corpora and collected their intuitive perceptions of chunk
boundaries. We then usedmixed-effects logistic regressionmodels to find out to what extent
pauses, prosody, syntax, chunk duration, and surprisal predict chunk boundary perception.
The results showed that all cues were important, suggesting cue degeneracy, but with
substantial variation across listeners and speech excerpts. Chunk duration had a strong
effect, supporting the cognitive constraint hypothesis. The direction of the surprisal effect
supported the distinction between perceptual and usage-based chunking.

Keywords: chunking; speech perception; neural oscillations; prosody; syntax; surprisal; individual variation;
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1. Introduction
The term chunking has a long history originating fromMiller’s (1956) famous paper
“The Magical Number Seven, Plus or Minus Two”. It most strongly associates with
recoding sequential information intomeaningful chunks to overcome the limitations
of short-termmemory. The example of an individual, SF, who was able to remember
sequences of 79 digits by recoding them into running times and dates is well known
(Ericsson et al., 1980). This principle seems to apply to language exceptionally well
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since in essence, it comprises a large inventory of chunks at different levels of
organization from phonology to discourse (Christiansen & Chater, 2016; Ellis,
2017; Goldberg, 2003). As a result, there is a strong belief among language scientists
that we process speech by chunking it up intomulti-word units of some kind, ranging
from lexically specified combinations to more abstract constructions. However,
multi-word units are language chunks that we have learned from previous language
experience, just as running times and dates SF used. What is often overlooked is that
in memorizing a telephone number, it also helps to simply group the digits into
strings of three or four even without further recoding to running times or the like
(Hitch et al., 1996; Ryan, 1969;Wickelgren, 1964). Thus, it appears that there are two
different chunking processes operating at the same time: on the one hand, we draw on
the inventory of chunks available to us (usage-based chunking) and on the other, we
segment incoming stream into temporal groups (perceptual chunking).While usage-
based chunks are units of meaning and memory (Ellis, 2017), perceptual chunks are
units of real-time processing (Sinclair & Mauranen, 2006).

Following Terrace (2001), Gilbert et al. (2015) draw a similar distinction between
domain-general input chunking determined by the capacity of short-term memory
and output chunking involving learned units stored in long-term memory. They
point out that there is ample evidence from other domains that humans and animals
produce and perceive continuous sequences in temporal groups marked by final
lengthening. However, in contrast to sequences of digits and nonsense syllables,
language has structure that has evolved as a result of cognitive, linguistic, and social
constraints. Being a cognitive mechanism, perceptual chunking must have left a trace
too: there are likely to be linguistic properties that signal perceptual chunk bound-
aries. What are they?

Given that in linguistics chunking is mostly viewed as recoding (e.g. Christiansen
& Chater, 2016), perceptual chunking has mostly been studied in neuroscience. In
fact, perceptual chunk boundaries seem to associate with a distinct event-related
potential (ERP), the closure positive shift (CPS). Originally it was observed in relation
to prosodic boundaries (Bögels et al., 2011; Steinhauer et al., 1999 for a review).
However, it later became apparent that prosodic cues are neither a necessary nor a
sufficient condition for a CPS to occur. For example, 3-year-olds did not show a CPS
in response to prosodic cues unless there was a pause too (Männel et al., 2013). In
adults, the CPS was observed in relation to commas during silent reading and simply
after long constituents (Drury et al., 2016; Hwang & Steinhauer, 2011). Syntax
interacted with prosody and modulated the amplitude of the CPS (Itzhak et al.,
2010; Kerkhofs et al., 2007). Also, syntactically predictable phrase boundaries elicited
a CPS in the absence of prosodic cues (Itzhak et al., 2010). Finally, when participants
read identical three-clause sentences at different presentation rates, a CPS was
observed at 2.7 s irrespective of the number of clauses that fit that time window,
suggesting that perceptual chunking may be time-driven (Roll et al., 2012).

Time is also crucial in oscillation-based models of speech segmentation. Recent
research shows that periodic neural oscillations at different frequency bands may be
involved in “packaging incoming information into units of the appropriate temporal
granularity” (Giraud & Poeppel, 2012, p. 511). By aligning with the speech dynamics
at different timescales, oscillatory activity can set the temporal window for decoding
andmaking predictions. It is fairly established that oscillations in the theta frequency
band (4–8 Hz) entrain to or synchronize with, according to different accounts, the
syllabic rhythm of speech, which is remarkably stable within and across languages
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(Ding et al., 2017; Varnet et al., 2017). This phase synchronization to syllabic rate is
also a prerequisite for intelligibility (Doelling et al., 2014; Ghitza & Greenberg, 2009).
Similarly, when chunks of digits are presented at a fast rate outside the delta-band
defined as 0.5–2 Hz, both oscillatory tracking and task performance are impaired
(Rimmele et al., 2021). Thus, both the time window of delta oscillations and the
memory constraint of 2–3 s, which roughly correspond to each other, suggest the
existence of an optimal chunk duration. However, the relevant segmentation unit at
this timescale is unclear.

One obvious candidate for a relevant segmentation unit is an intonation unit that
seems to form a consistent rhythm at approximately 1 Hz across languages (Auer,
1999; Inbar et al., 2020; Stehwien & Meyer, 2021). However, several studies have
observed oscillatory tracking of syntactic structure while controlling for prosody.
Ding et al. (2016) found tracking of phrases at 2 Hz and clauses at 1 Hz in
synthetically generated isochronous stimuli such as dry fur rubs skin where each
word consisted of one syllable, each phrase of two words, and each clause of two
phrases. Kaufeld et al. (2020) used more naturalistic stimuli such as [Timid heroes]
[pluck flowers] and the [brown birds] [gather branches] and found tracking at the
phrasal (0.8–1.1 Hz) and lexical (1.9–2.8 Hz) timescales (cf. Keitel et al., 2018).
Finally, Henke andMeyer (2021) found that delta oscillations themselves can enforce
segmentation at 2.7 s. They also suggest that the CPS discussed above is the time-
domain equivalent of a delta-band phase reset (Meyer et al., 2017, 2020).

Thus, it appears that perceptual chunking may be driven by acoustic–prosodic
cues, syntactic structure, or simply the optimal chunk duration reflecting thememory
constraint of 2–3 s and/or the frequency of delta-band oscillations. Disentangling
different linguistic cues and cognitive constraints is difficult especially since the short,
constructed stimuli commonly used in previous research do not allow to examine
more than one or two cues at a time. In addition, experiment results based on
constructed sentences may not generalize to processing natural speech. For example,
in contrast to writing, speech includes a large proportion of non-clausal material
(NCM) and often defies a strict separation of syntax from prosody. In this study, we
attempt to overcome these problems by working with natural language data. We
extracted short excerpts of speech from linguistic corpora and played them to
linguistically naïve listeners. While listening to the extracts, they intuitively marked
chunk boundaries in the accompanying transcripts through a custom-built tablet
application. In earlier research, we validated the method and showed that silent
pauses inserted at intuitively marked chunk boundaries elicit a CPS while when
inserted within a chunk they elicit a biphasic emitted potential suggesting interrupted
processing (Anurova et al., 2022; Vetchinnikova et al., 2022). In this paper, we
explored to what extent naïve listeners are affected by a range of different linguistic
cues and cognitive constraints in chunk boundary perception. Specifically, we ask:
(1) Which linguistic properties have an effect on chunk boundary perception and to
what extent their effects vary across listeners and different speech samples? (2) To
what extent does chunk duration constrain chunking? (3) Is there evidence for the
dissociation between usage-based chunking and perceptual chunking?

Given the findings of previous research, we selected the following variables:
syntax, prosody, pause, chunk duration, and bigram surprisal of the words before
and after a chunk boundary. In Section 2, we discuss the main linguistic properties
associated with chunking: syntax, prosody, and statistical regularities. In Section 3,
we provide information about the participants, materials, and data collection pro-
cedures, explain how each of the variables was operationalized, and outline the
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statistical analysis. The results are presented in Section 4 and discussed in Section 5.
Section 6 gives our conclusions.

2. Linguistic properties associatedwith chunking: clauses, prosodic units, or
multi-word units?
2.1. Syntax

Which hierarchical level of syntactic constituent structure is relevant for perceptual
chunking?Most grammars adopt the clause/sentence as themaximal unit of analysis.
The clause is considered “the core unit of grammar” (Carter & McCarthy, 2006,
p. 486) and is posited as the carrier of a message, “a quantum of information”
(Halliday & Matthiessen, 2004, p. 58). Besides generative grammars, all major
reference grammars for English (Biber et al., 1999; Carter & McCarthy, 2006;
Huddleston & Pullum, 2002; Quirk et al., 1985) and influential functional grammars
(Dik, 1997;Halliday&Matthiessen, 2004) similarly use the notion of a clause. Yet, the
notion is inherited from the analysis of written language, since authentic spoken
language data was not available to grammarians in large quantities until compara-
tively recently. It is nowwidely acknowledged that speech, in contrast to writing, does
not consist of sentences (Biber et al., 1999; Carter & McCarthy, 1995; Leech, 2000).

Biber et al. (1999), a fully corpus-based reference grammar that includes a
description of spoken English, point out that grammatical structure seems to be less
important in speech compared to writing (cf. Halliday, 2009; Leech, 2000). They
argue that while it is possible to analyze a stretch of spoken language in terms of
embedding and coordination as in (1), this does not seem to be necessary, since the
same stretch can be divided into a linear sequence of clause-like units, represented by
vertical lines in (2): a mechanism they call the add-on strategy.

(1) [The trouble is [[if you’re the only one in the house] he follows you] [and
you’re looking for him] [so you can’t find him.]]]

(2) The trouble is | if you’re the only one in the house | he follows you | and you’re
looking for him | so you can’t find him.
adapted from Biber et al. (1999, p. 1068)

Despite this observation, Biber et al. (1999, pp. 1069–1070) adopt a larger unit of
analysis, what they call a C-unit, defined as themaximal syntactically independent unit.
C-units can be clausal and non-clausal. Clausal units include themain clause (MC) and
all dependent clauses embedded within it. In other words, the entire utterance in
(1) and (2) is one C-unit. Non-clausal units are segments that cannot be treated as part
of any clausal units: according to their analysis, these account for 38.6% of C-units in
conversational data.

In our syntactic annotation, we start from the assumption that we do not know
which syntactic information listeners use for chunking natural speech and attempt to
capture as much information about syntactic structure as possible.We draw on Biber
et al.’s analysis but do not discard embedding.

2.2. Prosody

Many emphasize that the boundaries of prosodic and syntactic units tend to coincide.
However, the nature and the extent of the correspondence remain a bone of
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contention (Cole, 2015; Frazier et al., 2004; Wagner & Watson, 2010; Watson &
Gibson, 2004). In the literature, broad agreement prevails that prosodic boundaries
are sensitive to a variety of factors, including syntactic. Research into prosody-syntax
relationships has moved from predominantly theory-based structural modeling
toward a more empirical foundation and growing attention to the complex inter-
connectedness of linguistic systems, processing factors, and contextuality. Early
prosodic research drew heavily on generative traditions, emphasizing underlying
structure in the phonological component analogically to syntax, even when describ-
ing a grammar of intonation without explicitly invoking syntax (Pierrehumbert,
1980). By contrast, some descriptions (such as Truckenbrodt’s, 1999) assumed a tight
interdependency between syntactic and prosodic phrasing, postulating a constraint
(WRAP-XP) that demands each syntactic phrase to be contained in a phonological
phrase. Selkirk (1978), in turn, held that prosodic structure is separate from syntax
and not isomorphic to it, but nevertheless argued for an interrelationship that enables
mapping prosodic structure onto generative syntax. Moreover, she stressed the
connectedness of prosody and meaning, articulated in her Sense Unit Condition
(Selkirk, 1984), which stipulates that constituents of an intonational phrase must
form a sense unit together. Later experiments involving naturalness judgments on
generalized versions of Truckenbrodt’s Wrap and Selkirk’s Sense Unit Condition
(Frazier et al., 2004) found support only for the latter.

Ferreira (1993, 2007) incorporated semantic constraints into predictions of seg-
mental properties, which resonates with Selkirk’s (1984) notions. She also suggested a
trading relationship between pause duration and pre-pausal lengthening (Ferreira,
1993). Beyond such local interactions between different system components, pros-
odic elements are also implicated beyond sentence boundaries. Gee and Grosjean
(1984) investigated pausing in narratives and concluded that pausing is sensitive not
only to sentence-level prosody but also to narrative structure.

Overall, prosody research has been moving from theory-based arguments and
descriptions toward varied experimental designs and contexts. Hypotheses pinned
on decontextualized, read-aloud written sentences have given way to naturalness
judgments (e.g. Frazier et al., 2004) and relatively natural contexts such as
cooperative game tasks (Schafer et al., 2000) where speakers’ prosodic phrasings
show more variability. As Schafer et al. note, readers and conversationalists have
dramatically different pragmatic goals. Moreover, Wagner and Watson (2010)
observe that since there is more than one way of constructing complex meanings
and presenting the same syntax prosodically, speakers’ choices may ultimately lie in
processing factors.

Moving toward more naturalistic data has made researchers increasingly aware
that syntax and prosody are inevitably immersed in context. Choices are less
invariant than has been assumed, as illustrated by Frazier et al.’s (2004) observation
that listeners are concerned with relative, not absolute break size in local contexts.
Human languages thus seem to have flexible systems allowing appreciable optionality
in prosodic phrasing of syntactic units such as sentences (Schafer et al., 2000). Cole
(2015) goes further, suggesting that prosody research should embrace contexts of
various kinds. She strongly advocates methods eliciting interactive speech from
speakers engaged in genuine communication with meaningful discourse goals. This
is also highly relevant for developing spoken dialogue systems for human-machine
interaction in computational linguistics (e.g. Edlund & Heldner, 2005; Swerts &
Hirschberg, 1998, 2008).
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Altogether, prosody is flexible and complex, as is syntax, affected by processing
and embedded in context, and clearly, it is both desirable and possible to tackle them
in spontaneous speech.

2.3. Surprisal

It is known that comprehenders are sensitive to statistical regularities in the input and
use them to discern structure. Saffran et al. (1996), a classic study in statistical
learning, showed that even 8-month-old infants can use transitional probabilities
between syllables to break continuous input into word-like units. McCauley and
Christiansen (2014, 2019) developed a computational model, the chunk-based
learner (CBL), to show that the same mechanisms can account for chunking input
into larger, multi-word units.

Statistical learning studies have traditionally focused on transitional probabil-
ities between sequential elements of the input, which are higher within recurring
units and lower across them, causing dips in transitional probability associated
with unit boundaries. Forward and backward transitional probabilities are pos-
sible alternatives: the former are more in line with the view of language compre-
hension as a predictive process, and the latter work better for cases such as the dog
where the is much more likely to precede dog than dog to follow the, since the can
be followed by any noun. Studies of natural language comprehension often adopt
surprisal as a measure of linguistic prediction which calculates how predictable
a word is given its context, such as the previous word (Levy, 2008; Shain et al.,
2020). To illustrate, sort is almost always followed by of, so of will be expected
by the listener and its surprisal will be low. Predictable words are processed
faster (Smith & Levy, 2013) and have a smaller N400 amplitude (Frank et al.,
2015).

In this study, we hypothesize that if perceptual chunks are learned multi-word
units, the word before a boundary should be more predictable, while the word after
a boundary should be less predictable. To examine the effect of statistical infor-
mation on chunk boundary perception, we will include bigram surprisal for the
word preceding a boundary (closing surprisal) and the word following it (opening
surprisal ).

3. Methods
All materials, data, and code are openly available in the Open Science Framework
repository at https://osf.io/7bta5/.

3.1. Participants

We recruited 51 volunteer students from different disciplines of the University of
Helsinki excluding language sciences. Theywere fluent nonnative speakers of English
with a variety of first language backgrounds, aged 20–39 (36 females, 44 right-
handed). None reported dyslexia. All volunteers submitted informed consent before
the experiment and received a movie ticket for their participation. One participant’s
data were discarded from the final dataset due to clear inactivity during the main
experiment task (marked only 12 boundaries in total).
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3.2. Materials

As discussed in the introduction, naturally occurring speech is very different from
writing. One of the main aims of the experiment was to study chunking in authentic
speech. For this reason, the speech stimuli were extracted from three corpora of
natural, native, and nonnative English speech recorded in university environments:
theMichigan Corpus of Academic Spoken English (MICASE), the Corpus of English
as a Lingua Franca in Academic Settings (ELFA) and the Vienna-Oxford Inter-
national Corpus of English (VOICE). Typical speech events represented in the
corpora include lectures, seminars, conference presentations, and discussions. Using
automatic and manual means, we identified 97 10-to-45-s-long excerpts (M = 55
words, SD= 14, min= 29, max= 100, and total= 5237 words) which were fluent and
intelligible without wider context. We avoided unintelligible or unfinished words,
laughter, long pauses, overlapping speech, speaker changes, frequent hesitations, or
repetitions and controlled for specialized and low-frequency vocabulary: some of
these criteria are stipulated by a parallel brain imaging experiment we report in
Anurova et al. (2022). Since the audio quality of the original extracts was uneven, we
recruited a speaker who read out the extracts mimicking the prosodic patterns of the
original audio clips as close as possible. The recordings were made in an acoustically
shielded studio at the phonetics laboratory of the University of Helsinki.

3.3. Procedure

In the experiment, each participant received a tablet and headphones and was asked
to follow the instructions on the screen. The workflow contained a consent form, a
background questionnaire, the chunking task itself, an Elicited Imitation task as a
quick language proficiency test (Culbertson et al., 2020), and a feedback form.
Personal information was not collected.

The chunking task was performed via a custom web-based tablet application
ChunkitApp (Vetchinnikova et al., 2017, 2022; cf. Cole et al., 2017; https://www.
chunkitapp.online/). Participants listened to the audio clips and simultaneously
marked chunk boundaries in the transcripts displayed on the screen (see Appendix
for full instructions). The notion of a chunk was not explained, encouraging parti-
cipants to work intuitively. All orthographic words in the transcripts were separated
with a tilde symbol (~) which one could tap to insert or remove a boundary (see
Fig. 1). Each audio clip was played once only.While an aural-only presentationwould
approximate natural speech comprehension better, it is difficult to implement this
technically since listeners may react slightly earlier, in anticipation of the coming
boundary, or slightly later, as a post hoc realization of the past boundary obscuring
the exact locations of chunk boundaries.

Each audio clip was followed by a self-evaluation (75%) or a true/false compre-
hension question (25%) to keep the attention of the participants on the task and to
probe comprehension. The whole experiment session took up to 2 h including a
coffee break. The participants could take additional breaks at any time.

3.4. Predictor variables

For convenience, in what follows we will use the term word for any string of letters
separated by spaces in the transcripts of the stimulus extracts since each space could
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be marked as a chunk boundary in the experiment. In other words, each word can be
potentially followed by a chunk boundary.

3.4.1. Syntactic boundary strength
To make syntactic annotation maximally informative, we applied a traditional
hierarchical analysis of the constituent structure and focused on identifying clauses
as the most likely syntactic analog of a chunk. Since the aim of the study was to
disentangle different cues and find out howmuch they contribute to chunk boundary
perception, we limited the syntactic annotation to structural information, ignoring
semantic, pragmatic, or prosodic information as far as possible, by for instance
working from transcripts without consulting the audio recordings.

We defined a clause as a constituent structured around a verb phrase, including
both finite and nonfinite clauses. Dependent clauses were allowed to be embedded
within the MCs. All clauses were identified and tagged (see Example 3). Material
that fell outside the constituent structure of a clause was annotated as non-clausal.
Examples of NCM include hesitations (er, erm, uh), repetitions, rephrases, prag-
matic markers (all in all, of course, basically, sort of), and unembedded dependent
clauses. In contrast, units such as I mean, I thought, as we all know were analyzed
as clausal even though pragmatically they are likely to function as discourse
markers.

Example 3 shows the annotation of an extract. Clauses are marked with square
brackets, NCM with round brackets. Since the analysis is hierarchical and multiple
embedding is allowed, boundaries where more than one clause start or finish are
marked with multiple square brackets as in line 3, where a non-finite infinitive clause
(NF-to) is embedded within anMC, and line 6, where an NF-to is embedded within a
relative clause (DC-R) which is itself embedded in an MC.

Fig. 1. User interface, ChunkitApp.
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(3)
Line Extract Tags Value
1 (about the methods) NCM 0.5
2 [one choice would be 0.5
3 [to study this issue only theoretically]] NF-to MC 2.5
4 [but at the moment I prefer another choice 0.5
5 [which would be 0.5
6 [to include to this study an empirical part]]] NF-to DC-R MC 3

Following this annotation, syntactic boundary strength can be operationalized in
several different ways: (a) as a categorical variable with four levels distinguishing
between non-clausal/non-clausal, clausal/non-clausal, non-clausal/clausal, and
clausal/clausal boundaries, (b) as a categorical/continuous variable based on the
number of clausal boundaries (square brackets) resulting in seven categories (0–6),
and (c) a categorical/continuous variable based on the weighted number of clausal
boundaries to distinguish between opening and closing brackets and resulting in ten
categories (0–5.5, with no boundaries with exactly 4 or 5 clausal boundaries). The last
operationalization assumes that in chunk boundary perception the end of a clause is
more important than the start of a new one and assigns 0.5 for each opening bracket
and 1 for each closing bracket. Thus, for example, the clausal boundary at the end of
line 3 in Example 3 is assigned the value 2.5 since there are two closing brackets and
one opening bracket.

To test these assumptions and select the maximally informative operationali-
zation, we compared the operationalizations and their relationship with bound-
ary marking using chi-square tests. Table 1 gives the results of the chi-squared
tests.

Syntactic boundary strength operationalized as the weighted number of clausal
boundaries returned the largest effect size suggesting that both the number of ending/
starting clauses after a given word and the distinction between ending and starting
clauses contribute to the effect. The weighted number of clausal boundaries was
selected as the maximally informative operationalization of syntactic boundary
strength.

3.4.2. Prosodic boundary strength
Prosodic boundary strength was estimated with theWavelet Prosody Toolkit (Suni,
2017; Suni et al., 2017), a computer program that calculates predicted prosodic
boundary strength and prominence estimates for speech signals in an unsupervised
fashion. The program aligns the speech signal with the transcript, extracts prosodic
signals of the fundamental frequency, energy, and word duration (excluding pauses

Table 1. Results of the chi-squared tests relating boundary markings to different operationalizations of
syntactic boundary strength

Syntactic boundary strength χ2 Two-tailed p Cramer’s V Bootstrapped 95% CI df

Four-way classification 81237 <0.001 0.562 [0.557; 0.568] 3
No. of clauses 78514 <0.001 0.553 [0.547; 0.558] 6
Weighted no. of clauses 83118 <0.001 0.569 [0.564; 0.575] 9
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and breaths), and combines them. Then it applies the continuous wavelet transform
(CWT) to decompose the composite signal into scales that roughly correspond to
the levels of prosodic hierarchy: syllables, words, and phrases. The method assumes
that both word prominences and prosodic boundaries arise from the same sources
of the signal. Thus, the peaks formed by the signal at different scales indicate
prominences while the troughs indicate boundaries. Hierarchically organized peaks
across the scales are joined into a line of maximum amplitude expressing prom-
inence strength and troughs into a line of minimum amplitude expressing bound-
ary strength. The program produces continuous values of prominence and
boundary strength for each word. In our data, prosodic boundary strength varies
between 0 and 2.436.

The method was evaluated on the manually ToBI annotated Boston Radio News
corpus (Ostendorf et al., 2005) and showed 84.6% accuracy for prominence detection
and 85.7% accuracy for boundary detection outperforming other unsupervised
methods (Suni et al., 2017). Thus, the method closely approximates human process-
ing of speech prosody but being unsupervised and purely signal based, avoids the
problems associated with human annotators, such as subjectivity, variability, and
possible influence of other linguistic cues.

3.4.3. Pause duration
Orthographic and phonetic alignment of the transcripts to their audio files was
completed automatically with WebMAUS (Schiel, 1999) and then manually cor-
rected in Boersma &Weenink (2022). Pause duration is the time between the end of
any given word and the start of the next word.

3.4.4. Chunk duration
The temporal constraint hypothesis rooted in the limitations of working memory
capacity and/or the periodicity of neural oscillations predicts that chunks should be
limited as well as fairly regular in their duration. In other words, increasing duration
should associate with a higher likelihood of chunk boundary perception.

The procedure of calculating chunk duration for each word in the extracts starts
with the identification of chunk onsets. In Vetchinnikova et al. (2022), we proposed
that chunks can be identified via crowdsourcing chunk boundary perception data
and finding those places where inter-rater agreement on chunk boundary is
statistically significant. To test inter-rater agreement rates for statistical signifi-
cance, we used permutation tests. Individual boundary markings (that is zeros and
ones for each individual) were permuted one million times (with replacement) to
obtain the null distribution for each boundary. Two-tailed p-values were calculated
by comparing each observed boundary frequency with one million permuted ones
and finding how many times the observed or a more extreme boundary frequency
occurs in the permutations. To avoid zero p-values in cases where the observed or a
more extreme boundary frequency did not occur in the permutations, we defined p
as the upper bound pu = (bþ 1)/(mþ 1) where b is the number of times permuted
boundary frequency is equal or more extreme than the observed and m is the
number of permutations (Phipson & Smyth, 2010; Puoliväli et al., 2020). The p-
values were corrected for false discovery rate (FDR) at α = 0.05 (Benjamini &
Hochberg, 1995; Puoliväli et al., 2020). Boundaries with boundary frequencies
lower than expected by chance (≤ 0) were considered statistically significant
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non-boundaries and boundaries with boundary frequencies higher than expected
by chance (≥10) were statistically significant boundaries. Thus, in this dataset
chunks are defined as strings of words between boundaries marked by 10 and more
listeners.

The resulting chunks proved to be fairly regular in their duration (M = 2.55 s,
SD = 1.2 s) which already partly answers the research question. However, the
average duration does not show the extent of individual variability in the effect of
duration on chunk boundary perception since it is based on aggregate boundary
markings. Possible variability across extracts is also not taken into account. Thus,
using identified chunk boundaries, we calculated chunk duration for each word in
order to include it in the model predicting boundary markings at the individual
level.

For any given word, chunk duration is calculated from the onset of a chunk to the
onset of the next word. For example, in the chunk we have a high prey population
(Table 2), the duration for the word prey is 1.04 s, which is calculated from the onset
of the wordwe until the onset of the word population.The running time is reset at the
onset of the word and since a statistically significant number of listeners (32, p <
0.05) mark a boundary after the word population.

Since listener agreement on chunk boundaries is used in the identification of
chunk onsets, the operationalization of chunk duration may be to a certain extent
confounded with agreement. We will address this possibility in Section 4.2.

3.4.5. Surprisal
To estimate surprisal for each word in our stimuli, we compiled a separate reference
corpus of academic speech since all existing general reference corpora are either too
biased toward written language (the Corpus of Contemporary American English
[COCA] or the British National Corpus [BNC]) or sampled from a range of registers
and language varieties incomparable with ours (e.g. the spoken component of the
BNC2014). Our purpose-built reference corpus contains the three corpora the
experiment stimuli were selected from: MICASE, ELFA, and VOICE. To increase
size, we also added the British Academic Spoken English (BASE) corpus, which was
designed as a companion toMICASE and therefore fully comparable, and a corpus of
TED talks subtitles (Reimers & Gurevych, 2020; Tiedemann, 2012), which was
deemed close enough to academic lectures. The resulting corpus has 12.5 million
words and contains 670 text files (Table 3).

For each bigram AB, surprisal of B was calculated as�log2(conditional probabil-
ity of B), where the conditional probability of B was estimated as corpus frequency of
AB divided by corpus frequency of A. Bigram surprisal was calculated for each word
in the dataset. We examined the effect of word surprisal on the probability that a

Table 2. Example of annotation for chunk duration

Word we have a high prey population and the predators then eat a lot

Boundary
frequency 0 0 0 1 1 32 0 0 0 0 1 0 29

Duration 0.09 0.28 0.35 0.74 1.04 2.27 0.08 0.17 0.72 1.15 1.63 1.70 2.39
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chunk boundary would follow it (closing surprisal, AB~) or precede it (opening
surprisal, A ~ B).

3.5. Statistical analysis

All analyses were conducted in R version 4.2.2 (R Core Team, 2022). Our predictor
variables were pause duration, prosody or prosodic boundary strength, syntax or
syntactic boundary strength (operationalized as a weighted number of clausal
boundaries), chunk duration, closing surprisal, and opening surprisal. All variables
except closing surprisal and opening surprisal are positively skewed with a large
number of zero values (Fig. 2). This is unsurprising since we can expect only one
chunk boundary per 5–10 words and it is reasonable to assume that the predictor
variables are distributed in a similar way. The response variable is binary: each
participant could either mark a boundary (1) or leave it unmarked (0). The data
points are non-independent and required the inclusion of random intercepts and
slopes by listener and by extract. We expected collinearity between the variables:
strong chunk boundaries are likely to occur at the end of a clause and be marked by

Table 3. A reference corpus of academic speech compiled to estimate surprisal

Sub-corpus No. of words No. of files

ELFA 1,013,666 167
MICASE 1,666,539 152
VOICE 2.0 991,336 151
BASE 1,635,606 199
TED2020 v1 7,202,498 4076
Total 12,509,645 4745
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Fig. 2. Scatter plot matrix for all independent variables indicates collinearity.
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both prosody and a longer pause. The scatter plot matrix in Fig. 2 shows that pause,
prosody, and syntax are indeed positively intercorrelated.

Pause and prosody show the strongest relationship (r = 0.77). The relationship
between syntax and prosody is less pronounced (r = 0.51), giving support to those
linguistic theories which question full alignment between the two properties. Chunk
duration is moderately correlated with all three linguistic variables expected to
predict chunk boundary perception (r = 0.3–0.4). Closing surprisal and opening
surprisal do not correlate with any variables but have a small negative association
with each other (r=�0.3). The scatterplot shows that the bulk of the points falls into
the lower left quadrant, with the upper right quadrant virtually empty, suggesting that
while it is common for words with surprisal below the mean to follow each other,
words with surprisal above the mean almost never do. Cases, where a word with low
surprisal is followed by a word with high surprisal (lower right quadrant), are
probably represented by combinations of function words with content words
(Table 4, examples 7–12). Cases, where a word with high surprisal is followed by a
word with low surprisal (upper left quadrant), include both combinations of content
words with function words and multi-word units where the first word is a rare
word while the following word is predictable based on the first word (Table 4,
examples 1–6).

Due to collinearity between independent variables, we examined the effect of each
predictor on chunk boundary perception in isolation to see howmuch variance each
predictor can explain alone. For this, we used the lme4 package version 1.1–29 (Bates
et al., 2015) to fit a series of mixed logistic regression models, each of which estimates
the probability of boundary marking according to the following syntax:

response� predictorþ 1þpredictorjlistenerð Þþ 1þpredictorjextractð Þ

Individuals can vary in how often they mark a boundary as well as in the extent to
which they rely on particular predictors to perceive a boundary. The extracts in our
database were sourced from speech events in English corpora around the globe
(Section 3.2). Even though re-recorded with one speaker, the original speakers were
all different and can be expected to vary in the syntactic and prosodic timing and
structuring of their speech. Our earlier study shows that extracts indeed vary in the

Table 4. Examples of word combinations with high-low and low-high surprisal pattern

Word Surprisal Word Surprisal

1 preservation-minded 18.28 conservation 0.00
2 shuts 17.88 down 0.72
3 sleepless 17.57 nights 0.12
4 veterinary 17.57 college 3.25
5 visiting 17.37 scholars 5.10
6 computationally 16.40 intensive 3.70
7 the 1.80 heads 14.10
8 the 0.58 whole 7.68
9 in 0.33 explaining 14.43
10 of 0.06 identity 12.02
11 of 0.06 made 14.04
12 to 0.03 understand 7.39
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degree of listener agreement on chunk boundaries (Vetchinnikova et al., 2022), but
they can also vary in the relative importance of different cues.

All variables were z-scored. For ease of interpretation, the effects plots use the
original scale of the variables since zero is a meaningful value in all of them (e.g., no
pause or no clausal boundary), while the mean is less informative due to the skewed
distributions. The results tables were generated with the package sjPlot (Lüdecke,
2022) which returns marginal and conditional R-squared statistics, based on Naka-
gawa et al. (2017). To test the significance of the effect of each variable, we conducted
likelihood ratio tests comparing eachmodel to a null model of identical structure and
control parameters, but the predictor of interest removed. To examine the extent of
variation in the effects of different cues across listeners and across speech samples, we
plotted random slopes and examined their distributions. We also examined slope/
slope correlationmatrices, to see whether different listenersmay prefer different cues.
Clearly, different speech samples may also foreground different cues. Since the
analysis revealed five outlier listeners who did not seem to react to any of the cues
(see Figs. 3 and 4), their random slope estimates were not included in the slope/slope

0.0 0.4 0.8 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random slopes by listener

Pause duration

P
ro

ba
bi

lit
y 

of
 c

hu
nk

 b
ou

nd
ar

y

0.0 1.0 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prosodic boundary strength

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Syntactic boundary strength

0.0 0.4 0.8 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Random slopes by extract

Pause duration

P
ro

ba
bi

lit
y 

of
 c

hu
nk

 b
ou

nd
ar

y

0.0 1.0 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prosodic boundary strength

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Syntactic boundary strength

Fig. 3. Effects plots with by-listener and by-extract random slopes for pause, prosody and syntax.
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correlation matrices to avoid their disproportionately large effect on correlation
coefficients. This decision is further discussed in Section 5.

Based on the analysis of the single-predictor models, we also conducted some
exploratory follow-up analysis described in Section 4.2.

4. Results
4.1. Single-predictor models

All single-predictor models show a significant effect of the predictor of interest
(Table 5). As expected, pause, prosody, and syntax each have a positive effect,
indicating that longer pauses and stronger prosodic and syntactic boundaries are
more likely to be perceived as chunk boundaries. Chunk duration also has a positive
effect, supporting the hypothesis that listeners are more likely to mark a boundary as
chunks become longer. The effects of closing and opening surprisal are very small but
interestingly the directions of the effects are opposite to statistical learning predic-
tions: chunk boundaries associate with higher closing surprisal and lower opening
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surprisal. In other words, the word before a boundary is less predictable while the
word after a boundary is more predictable, in contradiction to the hypothesis that
perceptual chunks are learned multi-word units.

In addition, random effects are important for all variables, as R2 marginal is in all
cases lower than R2 conditional, which takes both fixed and random effects into
account. All four major predictors can explain 50–60% of the variance alone.
Prosodic boundary strength seems to be the strongest predictor accounting for the
largest proportion of the total variance (60.9%), followed by pause duration (57.6%).
Syntactic boundary strength and chunk duration account for about 50% each.
However, these values are likely to be inflated since in separate models each predictor
can absorb all the variability, especially as they are correlated.

Table 5 also shows the mean variances in the effects across listeners and extracts.
In the following, Figs. 3 and 4 plot the effect of each variable on the predicted
probability of perceived chunk boundary with by-listener and by-extract random
slopes and intercepts. Fig. 5 shows random slope distributions and Fig. 6 shows slope/
slope correlation matrices.

As shown in Figs. 3 and 4, the magnitude of each effect clearly varies both across
extracts and across listeners, suggesting that listenersmay be relying on different cues
to different degrees, and that the reliability of cues in predicting chunk boundaries
may differ by extract. Also, the listener sample clearly includes a few outliers who do
not seem to react to any of the cues to the same extent as others, as their slopes are
much flatter or even negative: these are the same people across the four major
predictors. It is difficult to name the reasons for this divergent performance since
these listeners answered the comprehension questions well enough and did not have
the lowest scores on the proficiency test. However, theymarked the largest number of
boundaries which nobody else marked (one-off boundaries).

The effect of chunk duration stands out in Fig. 4 as it has much larger variability
across extracts than across listeners. While listeners are consistently affected by
chunk duration, extracts vary in the magnitude of the effect, which possibly reflects

Table 5. Results of single-predictor models

Model Pause Prosody Syntax Duration
Closing
surprisal

Opening
surprisal

Fixed effects (log-odds)
Intercept �3.36 �4.05 �3.05 �2.96 �2.54 �2.46
95% CI �3.62;

�3.10
�4.33;
�3.76

�3.29;
�2.82

�3.18;
�2.75

�2.69;
�2.39

�2.60;�2.31

Slope 1.71 1.88 1.44 1.43 0.46 �0.26
95% CI 1.52; 1.91 1.72; 2.04 1.29; 1.59 1.27; 1.59 0.37; 0.54 �0.32;�0.19
Random effects
Extract intercept variance 0.18 0.28 0.2 0.26 0.07 0.04
Listener intercept variance 0.8 0.91 0.59 0.46 0.25 0.24
Extract slope variance 0.16 0.14 0.14 0.48 0.17 0.09
Listener slope variance 0.4 0.26 0.21 0.06 0 0.01
Extract intercept/slope r �0.29 �0.86 �0.09 0.12 �0.56 0.11
Listener intercept/slope r 0.16 �0.53 �0.01 �0.62 �0.14 0.5
ICC 0.32 0.33 0.26 0.28 0.13 0.1
Marginal R2 0.378 0.420 0.317 0.310 0.053 0.018
Conditional R2 0.576 0.609 0.494 0.502 0.175 0.120
Likelihood ratio test 103.67*** 131.67*** 112.91*** 156.57*** 75.75*** 46.09***

***p< 0.001.
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different degrees of rhythmicity: if chunks are similar in duration, it should be easy to
predict chunk boundaries simply based on timing. With regard to closing and
opening surprisal, Fig. 4 shows how small the effects are, especially in comparison
to other predictors.

The violin plots in Fig. 5 further highlight the variability of the effect of chunk
duration across extracts. They also show that the effects of opening and closing
surprisal are the only ones that vary in a direction across extracts, but not across
listeners: while listeners are consistent in how they interpret surprisal, surprisal itself
is not consistent in how it relates to chunk boundaries in different speech materials.

Scatter plots in Fig. 6 show that across the four major predictors, there is a strong
correlation only between the by-listener effects of prosody and pause (r = 0.75),
suggesting that those who rely on prosody also tend to rely on pause duration. At the
same time, the correlations between the effects of syntax and prosody and syntax and
pause are small to moderate (r= 0.24–0.38), suggesting that some listeners may have
their individual preferences for the cues they track. The correlations between the
effects of pause, prosody, and syntax by extract are also substantially smaller than the
correlations between the variables themselves (Fig. 2), suggesting that even though
the cues tend to converge, listeners may be tracking specific cues in different extracts.

Since the effects of opening and closing surprisal are small (Fig. 4), their relation-
ships with other variables illustrated in Fig. 6 are mostly not statistically significant.
However, there are a few puzzling by-listener effect correlations, such as a strong
negative correlation between the effect of opening surprisal and chunk duration
(r = �0.71). We reasoned that there might be a confounding factor: for example,
there may be specific words with low surprisal which listeners associate with the
opening of new chunks, such as conjunctions and, but and so. We tested this
hypothesis in the exploratory analysis described in Section 4.2.

4.2. Exploratory analysis

As the analysis of the single-predictor models showed, although some relationship
between word surprisal and chunk boundaries exists, it is not in line with the
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Fig. 5. Distribution of random effect slopes by extracts and by listeners.
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hypothesis that chunks are learned multi-word units. While more research is needed
to understand the nature of the relationship, here we test whether some of the
association between chunk boundaries and low opening surprisal can be explained
by conjunctions and, but and so, which, as all function words, tend to be low in
surprisal. We created a new variable conjunction with two levels: yes (the opening
word is a conjunction) and no (the opening word is not a conjunction) and ran a
mixed effects single-predictor model of the same type as in Section 4.1. The model
was able to explain 24% of variance (Table 6). Further, when we added opening
surprisal to thismodel, it was no longer a significant predictor suggesting thatmost of
its effect can be explained by low surprisal of conjunctions which are associated with
chunk openings.

In Section 3.4.4 we discussed the possibility that the operationalization of chunk
duration may be confounded with the inter-rater agreement. To examine this
possibility, we calculated Fleiss’ kappa for each extract and correlated the values with
random effect slopes by the extract. Fig. 7 shows that the effect of prosody has the
strongest relationship with the inter-rater agreement (r = 0.76), which is in line with
its role as the strongest predictor. In other words, the more listeners can rely on
prosody in chunking, the more they agree on where chunk boundaries lie. The
correlation of the effect of chunk duration with inter-rater agreement rates is only
moderate (r = 0.4), indicating that the operationalization of the variable captures
additional information. Overall, the convergence between the random effect slopes
returned by single-predictor models and inter-rater agreement rates is remarkable.

5. Discussion
To process speech in real time, listeners need to break it down into smaller units. How
do they do it? In this study, we examined the effect of five variables: pause duration,
prosodic boundary strength, syntactic boundary strength, chunk duration, and word
surprisal on chunk boundary perception in linguistically naïve listeners. Mixed
effects logistic regression models based on each variable separately showed that all
variables were statistically significant in predicting a perceived chunk boundary. This
finding supports non-modular approaches to language (Bornkessel-Schlesewsky

Table 6. Results of the single-predictor model based on whether the opening word is a conjunction

Model Conjunction (yes)

Fixed effects (log-odds)
Intercept �2.8
95% CI �2.98; �2.63
Slope 3.04
95% CI 2.65; 3.42
Random effects
Extract intercept variance 0.1
Listener intercept variance 0.34
Extract slope variance 2.52
Listener slope variance 0.68
Extract intercept/slope correlation �0.4
Listener intercept/slope correlation �0.16
ICC 0.15
Marginal R2 0.106
Conditional R2 0.239
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et al., 2016; Goldberg, 2003; MacWhinney, 2012) and suggests that human compre-
henders use a variety of cues across different levels of language organization in an
integrated manner.

The presence of multiple structurally different cues which perform the same
function suggests degeneracy, which is typical of biological systems (Edelman &
Gally, 2001). In general, degeneracy provides robustness against variation and
perturbations: for example, different brain areas can compensate for each other
making cognitive functions resilient to focal brain damage (Noppeney et al., 2004).
Similarly, the multiplicity of diverse temporally distributed acoustic cues makes
speech robust against noise: for example, the contrast between voiced and voiceless
stops can be conveyed by voice onset time, pitch in the following word, the duration
of the consonant closure, and loudness (for a review, see Winter, 2014). Cue
degeneracy also contributes to the evolvability (Winter, 2014) and learnability (Tal
& Arnon, 2022) of language. The finding that pausing, prosody, syntax, and lexical
features can all serve to signal chunk boundaries despite being structurally different
and simultaneously performing other functions adds to the growing body of litera-
ture on functional degeneracy and syntagmatic redundancy of cues in natural
language (Leufkens, 2020; Monaghan, 2017; Pijpops & Zehentner, 2022).
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We also found substantial variation in the magnitude of the effects both across
listeners and extracts, suggesting that listeners vary in the extent to which they rely on
different cues and extracts vary in the extent to which different cues are reliable
predictors of chunk boundaries. For example, not all pauses are reliable predictors
since for example, a speakermay pause mid-chunk due to lexical search. Similarly, an
extract may contain clauses that are too long to serve as chunks. In addition, only
moderate slope/slope correlations both across listeners and extracts suggest that
listeners may have their individual preferences in the cues they track rather than
uniformly track all cues, and extracts may also have specific cues which work best as
predictors of chunk boundaries. For example, some listeners may prefer to track
prosody, others syntax, and similarly, some extracts may be easier to chunk based on
prosody, others based on syntax. Taking a speaker’s perspective, the poor syntax of
the utterance can be compensated by using prosody, and additional clarity, for
example when talking to children, can be gained by marking chunk boundaries with
longer pauses.

Listener and extract/speaker variation in the importance of different predictors
and the magnitude of their effects is another factor that makes cue degeneracy useful.
In fact, chunk boundary cues are not only degenerate but also syntagmatically
redundant as evidenced by high intercorrelations between pause duration, and
prosodic and syntactic boundary strength: as a result, listeners can rely on any of
these cues and still converge on the same chunk boundaries. Earlier, individual
variation in the selection and magnitude of the cues listeners attend to was found
in prosody perception (Baumann & Winter, 2018; Roy et al., 2017).

As mentioned in Section 3.5, five listeners who did not seem to track any of the
cues to the same extent as others were removed from slope/slope correlation analysis.
Thus, there are listeners with strong correlations between different effects. Yet,
further research is needed to uncover the reasons for this chunking behavior.

A large effect of chunk duration supports the hypothesis that perceptual chunking
is affected by a temporal constraint. On average, the duration of a chunk was 2.55 s
with SD = 1.2 s. This average falls within 2–3 s which is the bandwidth of delta
oscillations and the optimal time-widow for the integration of linguistic information
given the time-based working memory constraint (Henke & Meyer, 2021; Roll et al.,
2012; Schremm et al., 2015). It thus seems plausible that the temporal constraint
regardless of whether the underlying mechanism is working memory capacity or the
delta-band oscillations serves to set the temporal window for processing and can help
to predict chunk boundaries.

The operationalization of chunk duration in this study raised concerns that it may
be confounded with agreement on chunk boundaries. The correlation between the
effect of chunk duration on chunk boundary perception across extracts and Fleiss’
kappa values of r = 0.4 suggests that the variables are sufficiently separate. A strong
correlation of inter-rater agreement rates with the effect of prosody on chunk
boundary perception suggests that extracts where prosody is a reliable predictor
are more ‘chunkable.’

The results for the effect of surprisal support the proposed distinction between
perceptual and usage-based chunking. If perceptual chunks were learnedmulti-word
units, the words before the boundary should be less surprising because they belong to
the ongoing unit, and the words after the boundary should be more surprising since
they start a new unit. The models show the opposite results: chunk boundaries
associate with higher closing surprisal and lower opening surprisal. However, both
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effects were very small as well as different in direction across extracts. Thus, the
relationship between statistical information and perceptual chunk boundaries
requires further research. For example, it is possible that one of the functions of
perceptual chunks is to direct attention to itemswith high informational value. In this
study, we used bigram surprisal as a simple measure that could test the hypothesis
that perceptual chunks were learned multi-word units. More complex measures
should be included in modeling in the future, such as measures based on larger
contexts (e.g. 5-g surprisal).

6. Conclusions
The study shows that in chunking up speech in real time, listeners use all the cues
investigated. They vary in the extent to which they track different cues and may also
prioritize specific cues. Speech materials in turn may vary in the extent to which
different cues are reliable predictors of chunk boundaries and may also have specific
cues which work best. Variability in processing seems to be facilitated by degeneracy
and syntagmatic redundancy of linguistic cues. Thus, if different cues are studied in
isolation by artificially constructing linguistic stimuli in speech perception experi-
ments, as is not uncommon, this can undermine the ecological validity of results.

In addition, we have found support for the importance of the temporal constraint
in perceptual chunking of speech as well as evidence of the dissociation between
perceptual and usage-based chunking. Together these results suggest that perceptual
chunking of speech into temporal groups is a distinct process that can inform
linguistic theory. It appears that the process is to a large extent determined by
cognitive constraints, possibly neural oscillations in the delta band. Language struc-
ture may have evolved in a way that meets these constraints.
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A. Appendix

ChunkitApp instructions
Humans process information constantly. When we take in information, we tend to break it up quickly into
small bits or chunks.We ask you to work intuitively. When you click ‘Start’, you will listen to a recording and
follow it from the text that appears below. Your task is to mark boundaries between chunks by clicking ‘〜’
symbols. One click makes the boundary appear. If you click the symbol again, the boundary will disappear. If
you are unsure, put in a boundary rather than leave one out. If you lose the line in the text, stay with the
speaker and do not try to go back.

Cite this article: Vetchinnikova, S., Konina, A., Williams, N., Mikušová, N. & Mauranen, A. (2023).
Chunking up speech in real time: linguistic predictors and cognitive constraints Language and Cognition 15:
453–479. https://doi.org/10.1017/langcog.2023.8
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