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Abstract

Let G be a compact group. A sequence {/„}"-! of functions in L°°(G) is said to be a
Rudin-Shapiro sequence (briefly, an RS-sequence) if the following conditions hold:

(1) inf| | / . | |2>0;

(2) sup||/,||.<»;

(3) lim|| /J | . = 0;

The main purpose here is to prove the following theorem:

THEOREM. Let G be an infinite compact group. Then G has an RS-sequence consisting of
trigonometric polynomials.

The proof is carried out in section 1 while in section 2 several applications are given
concerning set-theoretic relations between certain function spaces in harmonic analysis. The
existence of RS-sequences for infinite LCA groups is well-known.

NOTATION. Let G be a compact group. The Banach space of all
continuous complex-valued functions on G we denote by C{G), and the
Banach space of all complex Radon measures on G by M(G); LX(G) will be
identified in the usual way with the ideal in M(G) of measures that are
absolutely continuous with respect to normalized Haar measure AG.

The symbol G will denote a maximal set of pairwise inequivalent
continuous irreducible unitary representations of G. The representation space
of y E G will be denoted by Hy, and its dimension by dy. By S(G) we mean
the linear space of all "sections" over G, i.e. of all those functions
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<S>:G^>Uyf,6%(Hy) such that 4>(y)Gi'(H,) for all y G G. Here of course
Z£{Hy) is the von Neumann algebra of all (bounded) linear operators on Hy.
The Banach spaces P ( G ) ( l g p g « ) and ©„, are defined as in (28.34) of
Hewitt & Ross (1970). The norms on the (P(G) are given by

||*| |-= sup{||<D(y)|U.: y G G} ( * £

11*11, = ( 2 <*rll*(y)llO1/IF ( ^

where || H*,, denotes the pth von Neumann-Schatten norm on Z£(Hy). In
particular \\A ||^= [fr(AA*)]% and ||A ||*. is the operator norm of A.

The Fourier-Stieltjes transform of/i £ M(G) we define as an element of
by

= f
JG

f y(x-')dn(x)
JG

and its Fourier series is the series (suitably interpreted)

/"~ 2 dytr(il(y)y(-)).

The closure of the nth derived subgroup of G we denote by Gin).

1. Proof of the theorem

Before commencing the proof we remark that the existence of RS-
sequences for infinite LCA groups is well-known; see Gaudry (1970) and
(37.19b) of Hewitt & Ross (1970). Also a weaker version is known to exist for
infinite compact groups. Specifically, whenever t E ]2, °°]; a sequence {/„}"=!
of functions is said to be a f-RS-sequence if it satisfies conditions (1) and (3) of
the definition of an RS-sequence with (2) replaced by

(2) ' sup ||/„ ||, < « .

In Figa-Talamanca & Price (1972), random Fourier series are used to show
that t-RS-sequences with t < °° exist for all infinite compact groups. Also the
existence of such sequences with other useful properties is demonstrated in
Figa-Talamanca & Price (1972, 1973). We have not been able to generalise
these extra properties to RS-sequences.

Since the definition of an RS-sequence involves only three norms, it is
easily verified that any RS-sequence may be replaced by an RS-sequence
consisting of trigonometric polynomials. In this section we therefore prove
merely the existence of an RS-sequence for any infinite compact group.
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[3] Rudin-Shapiro sequences 423

Whenever the supports of the members of an RS-sequence are contained
in some open set U, then we say that this sequence is a U-RS-sequence.

Our proof begins with two special cases, from which we proceed to
deduce the general case.

(1.1) PROPOSITION. (Gaudry (1970), Lemma 2.1). Let G be an infinite
compact abelian group and U a nonvoid open subset of G. Then G has a U-
RS-sequence.

Now, let us say that a compact group G is tall if for every positive integer
d there are at most finitely many elements of G of degree d.

(1.2) PROPOSITION. Let G be an infinite tall compact group and U a
nonvoid open subset of G. Then G has a U-RS-sequence.

PROOF. The following construction depends on repeated applications of
the fact that every measurable subset of G of positive measure has a subset of
half its measure.

Let VCVCU CG be measurable, AG (V) = v > 0. Let PUP2 be dis-
joint measurable subsets of V such that P, U P2 = V, AG(Pi) = ka(Pi). Let
TTI = {Pi, P2}. If nn-i has been defined as a partition of U into 2""1 subsets
Pn-i,i (1 = i = 2""1) then form trn by writing Pn-Ui as a disjoint union of two
measurable subsets P^ . - i , P*,2, of equal measure. Thus nn is a set {P^, : l S i S
2"} of pairwise disjoint measurable subsets of V of equal measure such that

v=Ui:,Pn,,
We now define a sequence of Rademacher functions associated with the

sequence nn. Put r, = %p,,, ~~ A>,2,
 a n d more generally let rn = 5£L, ( - l)'*1;^,,.

Then rn takes values ± 1 and

I rndkG = \ rnd\o + \
JPn-U JPn,2i-l JPn.21

rnd\G = 0.

(This construction is also used in Figa-Talamanca and Gaudry (1970).)
Clearly we have ||rn||p = v1/p (1 S p <°°),II'„||» = 1, and$armrnd\o = vSmn for
m, n E {1,2, • • •}. Define /„ = v~'rn; then we have

(4) ||/.||-=«r*, and

f Ufnd\o = 8mn (m, n e {1,2, • • •}).

We claim that {/„}"=! is an RS-sequence under the assumption that G is tall.
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Indeed, in view of (4) all that is required is to show that ||/n||o=—>0 as
n —* oo. Now Parseval's formula for G is

111= 2 dytr(f{y)f(y)*) (/GL2(G))

Also, by Hewitt and Ross (1963 and 1970), (D.51) we have, for A G
tr(AA *) ^ || A HI,, and hence

(5) 2 dy\\fn(y)\\l^\\f422=l-
T<5<3

This makes it clear for each n ^ 1 and each e > 0, the set {y G G : ||/-.(y)|L.>
s} is finite (this merely reproves the well known fact that (£2 C @0)- Hence we
may conclude that

for some yn G G. Let A = {yn: n § 1}. If A is infinite, then dyn —* °° as n —*• °°,
by our assumption about the representations of G. Hence by (5), we have

showing that {/„}"-1 is an RS-sequence as asserted.
In any case, since {/n}"-i is orthonormal in L2(G), it follows that

/ f°r e a ch y ^ G . Thus when A is finite, we have

^ 0 as n-*°°

and again {fn}Z-i is an RS-sequence. This completes the proof.

(1.3) LEMMA. Let F be a closed subgroup of the compact group G. Then
there is a quasi-invariant normalised measure A on the coset space G/F with the
following property: if f is a nonnegative extended real-valued \G-integrable
function on G, then the set of cosets xF in G IT for which the function £—*•/(*£)
(£ G F) is not Xr-integrable is k-null; the function on G/F defined K-a.e. by
xY —»/r/(jc£)dAr(f) is k-integrable, and we have

(6) f f(x)dkG{x)=\ \ f(x{)dAr({)d\(xr).
Jc jG/r Jr

The reader is referred to Bourbaki (1963), Chapter VII, section 2,
discussion following Theoreme 2.

(1.4) LEMMA. Let <f>: G —* d be a continuous surjective homomorphism,
where G and d are compact groups and d has an RS-sequence. Then G has
an RS-sequence.
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This is proved in Edwards & Price (1970), A.3.3.

(1.5) LEMMA. Let F be a closed subgroup of a separable compact group G,
and suppose that F admits an RS-sequence. Then G does also.

PROOF. Since G is separable, there is a Borel section B for F in G
(Mackey (1951)), i.e., a Borel set B in G which meets each coset xV in exactly
one point (we may assume B D F = {e}). Define a map b : G/F—*B by setting
b(xF) as the unique member of B D xT. Let h G C(F). Put

The properties of B ensure that h° is well-defined as an element of L°°(G).
Application of Lemma (1.3) shows immediately that

(7) \\hT={ \\h\\ld\(x) = \\h\\l
JG/r

It is also easy to see that

(8) I I * 1 - = IIMI«
Now, let a G. G be fixed. Then the restriction er |r of a to F admits a
decomposition

O"|r= © M O - T

(n.,(T)is the multiplicity of T in o-|rand na(r) = 0 for all save finitely many T).
This decomposition is given via some unitary intertwining transformation
from $ r E rn , ( r ) / / r to Ha which by transport of structure gives rise to a (von
Neumann) algebra isomorphism

a.: © na
T£(5

Then we have by (1.3)

= ( (f
Ja/r \Jr

( / r

/ JG
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It follows that we have

(r)) ) \ = lU na{r)h
/ | * « | | T

and hence that || (/i °)" II-= II *« II- This combined with equalities (7) and (8)
shows that if {hn} is an RS-sequence on F (with the hn restricted to be
continuous—see the opening remarks of this section) then {Ji°} is an
RS-sequence on G.

(1.6) LEMMA. [M. F. Hutchinson, private communication]. Let G be a
prosolvable group (i.e. a projective limit of finite solvable groups) in which each
derived factor G/G(n) is finite. Then G is tall.

PROOF. Since G is profinite it is totally disconnected. Let y G.G. Then
y(G) must be finite since it is a totally disconnected compact Lie group.
Furthermore, since y(G) is also prosolvable, it must be solvable. Let d be the
degree of y.

By Zassenhaus (1938) there is a number / > 0 depending on d only such
that the solvable length of y(G) is at most /. Hence, using the fact that G/ker
y and y(G) are isomorphic, G")gker-y.

Now let d be a fixed positive integer. The members of {y G G :dy = d}
must all satisfy C ^ C k e r y where / = l(d) and hence this set corresponds
under an obvious injective map to a subset of (G/G(l)y. But the latter set is
finite by the hypothesis, and the lemma is proved.

(1.7) CONCLUSION OF THE PROOF. Let G be an infinite compact group.
Then G has an infinite separable compact quotient group [Hewitt & Ross
(1963), Theorem (8.7)]. Lemma (1.4) indicates that it is enough then to prove
the theorem under the assumption that G is separable.

According to McMuIlen (1974), G either has an infinite abelian subgroup
or an infinite closed topologically-2-generator pro-p torsion subgroup (p an
odd prime). In either case, let us call the subgroup in question F. In the first
case, F has an RS-sequence by proposition (1.1). In the second, the same
conclusion follows from lemma (1.6) and proposition (1.2).

Since G is separable, the theorem now follows from Lemma (1.5).
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2. Applications

Techniques for applying RS-sequences to problems in harmonic analysis
are well-known. For example, see Hewitt & Ross (1970), (37.19), Gaudry
(1970), Edwards & Price (1970) and Figa-Talamanca & Price (1972).

Here we sketch the details of three applications.

APPLICATION A. (2.1) In the case of compact groups, the Hausdorff-
Young theorem states that / G ( F whenever / £ L P , l g p S 2 , and
l/p + l/p'= 1. Thus if / G C(G), then / G @ * for all q G[2,oo]. When G is
infinite and abelian this is known to be best possible in the sense that there
exists / £ C{G) such that / belongs to no @" for q G [1,2[ (see Hewitt & Ross
(1973), (37.19(c)) where an extension of this result is given for all locally
compact abelian groups).

(2.2) PROPOSITION'. Whenever G is an infinite compact group there exists
f G C(G) such that f belongs to no (£" for q G [1,2[.

The proof will use the following lemma, the proof of which follows
directly from the definitions of the (£p and their respective norms.

LEMMA. If <f> G (P, where l ^ p < » , then <f> G (£" for all p S q g °° and
moreover

holds for p S q < ^°.

PROOF OF (2.2). Suppose that the statement of the proposition is not
valid, that is, that / - > / defines a map from C(G) into U{E":l^q < 2}. Let
{qn} be a sequence in [1,2[ which approaches 2 monotonically; then
U{&" :l^q<2}= U{(£"- : n S l } . A direct application of Edwards (1965),
Theorem 6.5.5, with E = (£2, F = C(G), u = Fourier transform, Fn = ©«- and
«„ the identity map on Fn shows that there exists an integer k such that
C(G)" C S'1. It now follows from the closed graph theorem that for some
K > 0 we have

(9) | | / | | ,^1C||/1|,

for all / G C(G). Let /„ be an RS-sequence consisting of continuous func-
tions. Then there exist m, M > 0 such that

for all n i l . From the preceding lemma, we have

https://doi.org/10.1017/S144678870001627X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001627X


428 J. R. McMullen and J. F. Price [8]

and so we have

Sm2"*/||/,||L2"<'')/<'*->oo as n^-oo

since 1 g ^ < 2. But this contradicts (9), in view of the fact that ||/n ||» ^ M, for

APPLICATION B. (2.3) The Fourier transform f —*f carries M into (£°°, L1

into So and L" into Sp when 1 <p < 2. It is known that these maps are
surjective if and only if G is finite [Hewitt & Ross (1970), (37.4) and (37.19
(a))]; a direct proof of these facts follows from the existence of an RS-
sequence. The surjectivity of the maps is trivial when G is finite.

(2.4) PROPOSITION. Let G be an infinite compact group. The images of
M(G), Ll(G) and LP(G) (1 < p < 2) under the Fourier transform are properly
contained in (£*, @0, and ©p respectively.

PROOF. The proofs are similar in detail to the second part of the proof of
the proposition (2.2): one assumes the contrary, establishes an inequality
analogous to (9), and obtains a contradiction by substituting therein the
members of an RS-sequence.

APPLICATION C. (2.5) Given p, qG[l,<x>], then <f> E © is said to be a
(p, ̂ -multiplier if

X dytr[4>(y)f(y)y(-)]

is the Fourier series of a function in L ' whenever / £ L P (an equivalent
definition is available which makes sense for arbitrary locally compact
groups). For example, it is well-known that /£ is a (p, p)-multiplier for all
pE[l,°°] whenever fi £ M(G). On the other hand, when G is an infinite
compact abelian group there exist functions in S which are (p, q)-multipliers
for all p £ ]1, °°] and all q E [1, °°[, which are not Fourier-Stieltjes transforms;
see Brainerd & Edwards (1966), Theorem (4.15). The proof is based upon the
existence of an infinite Sidon set. In fact, given the existence of certain
lacunary subsets of G, examples of functions in @ with the preceding
properties can easily be produced; c.f. (37.22) of Hewitt & Ross (1970).
However, there exist compact groups whose duals possess no reasonable
lacunary sets. Suppose that a locally compact group has the property of
possessing an RS-sequence of functions whose supports are contained in a
fixed compact set. Then Theorem 5.7 of Edwards & Price (1970) shows that
for such groups there exists a (p, q)-multiplier for all pairs (p, q) such that
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1 < p = q < °°, but which is not a Fourier-Stieltjes transform. Since we have
seen that every infinite compact group has an RS-sequence we have:

(2.6) PROPOSITION. Let G be an infinite compact group. There exists a
function in £ which is a (p,q)-multiplier for all pairs (p,q) such that
1 < p S q < so, but is not the Fourier-Stieltjes transform of any measure.

(2.7) REMARKS (i). Proposition (2.6) improves Theorem 4.3 of Figa-
Talamanca & Price (1972), the proof of which was based on the existence of t-
RS-sequences, / > =c, as defined above. As a consequence of the existence of
these restricted RS-sequences, roughly all that could be shown was that there
exist multipliers of the type under question which are not Fourier transforms
of any element in U{Lr: 1 < r § *>}.

(ii) Further cases of proposition (2.6) for infinite compact groups are
accounted for by noting that all functions in (J* are (p, ̂ -multipliers when
l g < ; S 2 g p g x (Table (36.20) of Hewitt & Ross (1970)), whereas by
proposition (2.4) there exist elements in ©" which are not Fourier-Stieltjes
transforms.

(iii) In the event of the existence of a t/-RS-sequence where U is some
open subset of G (see propositions (1.1) and (1.2)), application A can be
strengthened to show that there exists / E C(G) with support in U such that /
belong to no (&q with q G [1,2[. Applications B and C can be improved in a
like manner.
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