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Abstract
We find an asymptotic enumeration formula for the number of simple r-uniform hypergraphs with a
given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the
solution of a system of equations. We give sufficient conditions on the degree sequence which guarantee
existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic
formula when the degree sequence is close to regular. This allows us to establish several properties of the
degree sequence of a random r-uniform hypergraph with a given number of edges. More specifically, we
compare the degree sequence of a random r-uniform hypergraph with a given number edges to certain
models involving sequences of binomial or hypergeometric random variables conditioned on their sum.
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1. Introduction
Hypergraphs are useful for modelling relationships between objects in a complex discrete system,
and can offer improvements over graph models in areas such as ecology [10], quantum comput-
ing [24] and computer vision [26]. A hypergraph H = (V , E) consists of a finite set V of vertices
and a finite set E of edges, where each edge is a subset of the vertex set. Here edges do not con-
tain repeated vertices, and there are no repeated edges. A hypergraph is r-uniform if every edge
contains r vertices. We present an asymptotic enumeration formula for the number of r-uniform
hypergraphs with a specified degree sequence, where the degree of a vertex is the number of edges
containing it. Our formula holds for 3≤ r ≤ 1

2n and nr
4 log n� d ≤ 1

2
(n−1
r−1
)
, where d is the average

degree, under very weak restrictions on how much the degrees can vary. By symmetry, the ranges
obtained by complementing the edge set and/or complementing each edge are also covered. Using
this formula, we establish some results on the degree sequence of a random r-uniform hypergraph
with a given number of edges, verifying a conjecture of Kamčev, Liebenau and Wormald [15] for
our parameter range.

To be more precise, we must introduce some notation. Let [a] denote the set {1, 2, . . . , a} for
any positive integer a. For infinitely many natural numbers n, let r(n) satisfy 3≤ r(n)≤ n− 3 and
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let d(n)= (d1(n), . . . , dn(n)) be a sequence of positive integers. We simply write r for r(n), and
similarly for other notation. We assume that for infinitely many n,

r divides
∑
j∈[n]

dj. (1.1)

All asymptotics in the paper are as n tends to infinity, along values for which (1.1) holds. Define
Hr(d) to be the set of simple r-uniform hypergraphs with vertex set V = {1, 2, . . . , n} and degree
sequence d. Write e(d) := 1

r
∑

j∈[n] dj for the number of edges and d := d(d)= 1
n
∑

j∈[n] dj for
the average degree.

Our first aim is to find an asymptotic expression for Hr(d)= |Hr(d)| for degree sequences d
which are neither too dense nor too sparse.

Our approach to hypergraph enumeration is based on the complex-analytical method. The
answer is expressed in terms of high-dimensional integrals resulting from Fourier inversion
applied to a multivariable generating function. Then, these integrals are approximated using mul-
tidimensional variants of the saddle-point method; see Section 2 for more details. In the context
of combinatorial enumeration, this method was pioneered by McKay and Wormald in 1990 [21].
Since then, many other applications of this method have appeared; see for example [4, 5, 20], and
the many results cited in [13]. In particular, Kuperberg, Lovett and Peled [17] prove an asymptotic
formula for the number of r-uniform d-regular hypergraphs on n vertices which holds when the
number of edges in the hypergraph and its complement are each at least nc (which implies that
r > c) for some sufficiently large constant c which is not identified explicitly.

Recently, Isaev and McKay [13] developed a general theory based on complex martingales for
estimating the high-dimensional integrals which arise from the complex-analytical method. In
this paper, we apply tools from [13] in the hypergraph setting.

For a survey of enumeration results for graphs with given degrees, see Wormald [29]. Here we
discuss only r-uniform hypergraphs with r ≥ 3. Dudek, Frieze, Ruciński and Šileikis [7] gave an
asymptotic formula for the number of d-regular r-uniform hypergraphs on n vertices when r ≥ 3
is constant, assuming that d = o(n1/2). Building on [2], Blinovsky and Greenhill [3, Corollary
2.3] gave an asymptotic formula for Hr(d) that holds when the maximum degree dmax satisfies
r4d3max = o(nd). These results were obtained using the switching method.

By adapting the “degree switching and contraction mapping” approach of [18, 19], Kamčev,
Liebenau andWormald [15, Theorem 1.2] proved that the degree sequence of a randomly chosen
r-uniform hypergraph withm edges is closely related to a random vector with entries chosen from
suitable independent binomial distributions, conditioned on the entries of the vector having sum
nd. More precisely, they prove that the ratio of the probabilities of a particular vector d in these
two models is well-approximated by a simple function of r and d. We will restate their theorem
as Theorem 1.6 below. This result holds under the assumptions that the degrees do not vary too
much, the edge size is not too large and the average degree is at most a sufficiently small constant
times 1

r
(n−1
r−1
)
. Kamčev, Liebenau and Wormald also considered sparse degree sequences in [15,

Theorem 1.3], which subsumes the enumeration results of [2, 7].
Our second aim is to apply our enumeration formula to study the degree sequence of ran-

dom uniform hypergraphs with a given number of edges. In particular, we prove a companion
result to [15, Theorem 1.2] which allows larger edge size, more edges and more variation between
the degrees, when the average degree is large enough. Furthermore, we verify (for our range of
parameters) a conjecture made in [15], showing that vectors of independent hypergeometric ran-
dom variables, conditioned on having sum nd, closely match the degree sequence of a random
uniform hypergraph with nd/r edges almost everywhere.
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1.1 Notation, assumptions and our general results
Define the density λ as a function of n, r and the average degree d by

d = λ

(
n− 1
r − 1

)
. (1.2)

Write Sr(n) to denote the set of all subsets of [n] of size r. Given a vector β = (β1, . . . , βn) ∈R
n,

for allW ∈ Sr(n) define

λW(β) := e
∑

j∈W βj

1+ e
∑

j∈W βj
. (1.3)

Note that λW(β) is the probability that the edge W appears in the β-model for hypergraphs with
given degrees, see for example [27]. Let λ(β) be the average values of the λW(β); that is,

λ(β) :=
(
n
r

)−1 ∑
W∈Sr(n)

λW(β).

Observe that λW(β), λ(β) ∈ (0, 1).
Define the positive symmetric n× nmatrix A(β)= (ajk) as follows:

ajk :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

∑
W�j

λW(β)(1− λW(β)), for j= k ∈ [n];

1
2

∑
W⊃{j,k}

λW(β)(1− λW(β)), for j, k ∈ [n], j 
= k.
(1.4)

We use |M| to denote the determinant of a matrixM.
Let β∗ ∈R

n be a solution to the system of equations∑
W�j

λW(β∗)= dj for j ∈ [n]. (1.5)

Summing (1.5) over j ∈ [n] gives

d = 1
n
∑
j∈[n]

dj = r
n

∑
W∈Sr(n)

λW(β∗)= λ(β∗)
(
n− 1
r − 1

)
. (1.6)

This shows that λ(β∗) equals the density λ defined in (1.2). Similarly, if we write λW or A without
argument, we always mean that the argument is β∗.

Our main enumeration result is the following.

Theorem 1.1. Let d= d(n)= (d1, . . . , dn) be a degree sequence. Suppose that r = r(n) satisfies 3≤
r ≤ n− 3 and

r3(n− r)3 log n� λ(1− λ)n
(
n
r

)
. (1.7)

Further assume that β∗ = (β∗
1 , . . . , β

∗
n
)
is a solution of (1.5) such that

max
j,k∈[n]

∣∣β∗
j − β∗

k
∣∣=O

(
n

r(n− r)

)
. (1.8)

Let λW = λW(β∗) be defined as in (1.3), for all W ∈ Sr(n), and let A=A(β∗) be defined as in (1.4).
Then

Hr(d)= r
(
1+O(ε)

)
2n πn/2 |A|1/2

∏
W∈Sr(n)

(
λ

−λW
W (1− λW)−(1−λW )

)
,
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Table 1. This table showshow thedegrees, average degree, solution to (1.5), values of the lambda
parameters withW ∈Sr (n), and determinant of the matrix, behave under the symmetries

Hr (d) Hn−r (d′) Hr
(
d̃
)

Hn−r
(
d̃′)

dj e(d)− dj
(n−1
r−1
)− dj

(n−1
r
)− e(d)+ dj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d n−r
r d 1−λ

λ
d (1−λ)

λ
(n−r)
r d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β∗
j

1
n−r
(∑

k∈[n] β∗
k
)− β∗

j −β∗
j β∗

j − 1
n−r
(∑

k∈[n] β∗
k
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λW λV\W (β ′)= λW λW (β̃)= 1− λW λV\W
(
β̃

′)= 1− λW
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|A(β∗)| ( n−r
r
)2 |A(β∗)| |A(β∗)| ( n−r

r
)2 |A(β∗)|

where

ε := r(n− r)n
λ(1− λ)

(n
r
) + log9 n

n2

(
r3(n− r)3

λ(1− λ)
(n
r
))3/2+ n−�(log n) = o

(
(log n)−1).

The implicit constant in the O(ε) term depends only on the implicit constant in (1.8).

The enumeration problem has two natural symmetries: given a hypergraph, we may replace
every edge by its complement, or we may take the complement of the edge set. These symmetries
show that for a given degree sequence d,

Hr(d)=Hn−r(d′)=Hr
(̃
d
)=Hn−r

(̃
d′) (1.9)

where
d′ := (

e(d)− d1, . . . , e(d)− dn
)
,

d̃ :=
((

n− 1
r − 1

)
− d1, . . . ,

(
n− 1
r − 1

)
− dn

)
,

d̃′ :=
((

n− 1
r

)
− e(d)+ d1, . . . ,

(
n− 1
r

)
− e(d)+ dn

)
.

(1.10)

Using these symmetries, we may assume that

r ≤ n/2 and e(d)≤ 1
2

(
n
r

)
.

When these inequalities are both satisfied, we say that (r, d) belongs to the first quadrant.
The conditions in Theorem 1.1 are invariant under these two symmetries. It is true, but not

obvious, that the asymptotic formula in Theorem 1.1 is also invariant under these symmetries.
We prove this in Lemma 1.2 below.

Lemma 1.2. Suppose that β∗ is a solution to (1.5). Let β ′, β̃, β̃ ′ be vectors with entries β ′
j , β̃j, β̃ ′

j

defined in the fourth row of Table 1 for all j ∈ [n]. Then β ′, β̃, β̃
′ are solutions of (1.5) for the

degree sequences d′, d̃ and d̃′ defined in (1.10), respectively. Furthermore, the following relationships
hold:

λV\W(β ′)= λW , λW(β̃)= 1− λW , λV\W
(
β̃

′)= 1− λW for allW ∈ Sr(n);∣∣A(β ′)
∣∣= (n− r

r

)2 |A(β∗)|, ∣∣A(β̃)∣∣= |A(β∗)|, ∣∣A(β̃ ′)∣∣= (n− r
r

)2 |A(β∗)|;∣∣β ′
j − β ′

k
∣∣= ∣∣β̃j − β̃k

∣∣= ∣∣β̃ ′
j − β̃ ′

k
∣∣= ∣∣β∗

j − β∗
k
∣∣ for all j, k ∈ [n].
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For the reader’s convenience, in Table 1 we summarise information about our parameters
under these symmetries.

It follows from (1.9) and Lemma 1.2 that it suffices to prove Theorem 1.1 when (r, d) belongs
to the first quadrant. In this case, using (1.6) the assumptions of Theorem 1.1 become

3≤ r ≤ 1
2
n, nr4 log n� d ≤ 1

2

(
n− 1
r − 1

)
and max

j,k∈[n]
|β∗

j − β∗
k | =O

(
r−1), (1.11)

and the error term becomes

O

(
nr2

d
+ r6n log9 n

d3/2
+ n−�(log n)

)
.

Here we use the fact that λ(1− λ)
(n
r
)
is a lower bound on the number of edges of any hypergraph

in Hr(d) and its complement. The following lemma provides sufficient conditions on r and d
which guarantee the existence of solutions to (1.5).

Lemma 1.3. Let (r, d) belong to the first quadrant. Assume that there exists Δ ≥ 0 such that for all
j ∈ [n],

de−Δ/r ≤ dj ≤ deΔ/r .
Further, assume that one of the following two conditions hold:

(i) Δ ≤ Δ0 for some sufficiently small constant Δ0 > 0;
(ii) rd = o(1)

(n−1
r−1
)
, r = o(n), and Δ = �(1).

Then there exists β∗ satisfying (1.5) such thatmaxj,k∈[n]
∣∣β∗

j − β∗
k
∣∣=O(Δ/r).

Uniqueness is a feature of similar situations [1, Section 3.3.4], but we have not found a proof of
uniqueness in our case in the literature. For completeness we provide a short proof.

Lemma 1.4. For a given degree sequence d, the solution β∗ to (1.5) is unique if it exists.
Even though (1.5) doesn’t have an explicit solution in general, we can evaluate the formula in

Theorem 1.1 accurately if we have a sufficiently precise estimate of β∗. Stasi, Sadeghi, Rinaldo,
Petrović and Fienberg [27] stated without proof a generalisation of an algorithm of [6] that gives
geometric convergence to β∗ if it exists. Though we didn’t use the iteration from [27], we will
demonstrate how the precision to which an estimate of β∗ satisfies (1.5) can be used to validate
the corresponding estimate of Hr(d). Our example will be degree sequences that are not far from
regular, which will allow us to investigate the degree sequences of random hypergraphs.

For j ∈ [n] define δj := dj − d. Define δ := (δ1, . . . , δn) and δmax := max{‖δ‖∞, 1}. Also define
Rq := ∑n

j=1 δ
q
j for q≥ 0 and note that R1 = 0.

Recall the definition of λ from (1.2). We will find it convenient to write some quantities in
terms of the parameter Q, which is invariant under the symmetries of (1.9):

Q := (1− λ)(n− r) d = λ(1− λ)
r(n− r)

n

(
n
r

)
.

We continue to use the error term of Theorem 1.1, which in terms of Q is

ε = r2(n− r)2

Q
+ r6(n− r)6 log9 n

n7/2Q3/2 + n−�(log n). (1.12)

Our criterion for being “near-regular” is

δmax =O
(
Q3/5n−3/5), (1.13)

which in the first quadrant is equivalent to δmax =O(d3/5).
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Theorem 1.5. If 3≤ r ≤ n− 3 and assumptions (1.7) and (1.13) hold, then

Hr(d)=
(
r(n− r)(n− 1)n−1

2n πn Qn

)1/2(
λλ(1− λ)1−λ

)−(nr)

× exp
(

− (n− 1) R2
2Q

+ n2 R2
4Q2 + (1− 2λ)(n− 2r)n R3

6Q2 − n3 R4
12Q3 +O(ε̂)

)
,

where ε̂ := ε + δmaxn3/5Q−3/5 and ε is defined in (1.12).

1.2 Degree sequences of random uniform hypergraphs
Assumption (1.13) is weak enough to include the degree sequences of random hypergraphs with
high probability. Following the notation of Kamčev, Liebenau andWormald [15], we define three
probability spaces of integer vectors. Formulas will be given in Section 7.

• Dr(n,m) is the probability space of degree sequences of uniformly random r-uniform
hypergraphs with n vertices andm edges.

• Br(n,m) is the result of conditioning n independent binomial variables Bin
((n−1

r−1
)
, p
)
on

having sum nd. (This distribution is independent of p.)
• Note that each component of Dr(n,m) has a hypergeometric distribution. Tr(n,m) is the

result of conditioning n independent copies of that distribution on having sum nd.

Themost important previous result on the near-regular case was obtained by Kamčev, Liebenau
and Wormald [15]. All the overlap between [15, Theorem 1.2] and Theorem 1.1 occurs in
Theorem 1.5, so we restate their theorem here.

Theorem 1.6. ([15, Theorem. 1.2]). Fix ϕ ∈ ( 49 , 12). For some constant c> 0 and every C > 0, sup-
pose that 3≤ r < cn1/4/ log n, r3d1−3ϕ < c and logC n� d < c

r
(n−1
r−1
)
. Let d be a degree sequence

with mean d and δmax ≤ d1−ϕ . Then

PDr(n,m)(d)= PBr(n,m)(d) exp
(
r − 1
2

− (r − 1)R2
2(1− λ)(n− r)d

+O(η)
)
,

where

η :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log2 n√

n
+ d2−4ϕ

n
+ d1−3ϕ , if r = 3;

r2 log2 n√
n

+ (λn+ r)r2d1−3ϕ , if r ≥ 4.

The conditions of Theorem 1.6 allow for much lower average degree than Theorem 1.1, but at
the cost of stricter upper bounds on the edge size, the number of edges, and the variation between
the degrees.

As can be seen, the relation between Dr(n,m) and Br(n,m) becomes rapidly more distant
as r increases. Theorem 1.5 would allow a statement for all r, but we prefer a statement that is
more easily compared to Theorem 1.6. Note that our formula agrees with the expression given in
Theorem 1.6 if r = o(n1/2), since then ((n− 1)/(n− r))(n−1)/2 ∼ e(r−1)/2.

Theorem 1.7. Suppose that 3≤ r ≤ cn and 0< λ < c for some fixed c< 1. If d � r4n log n and
δmax =O(d3/5) then

PDr(n,m)(d)= PBr(n,m)(d)
(n− 1
n− r

)(n−1)/2
exp
(

− (r − 1)R2
2(1− λ)(n− r)d

+O(ε̄)
)
.

where ε̄ := ε + δmaxd−3/5 and ε is defined in (1.12).
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As noted in [15], one can expect Tr(n,m) to be a better match to Dr(n,m), especially for large
edge sizes. We prove this for the full range of our parameters.

Theorem 1.8. If 3≤ r ≤ n− 3 and assumptions (1.7) and (1.13) hold, then

PDr(n,m)(d)= PTr(n,m)(d)
(n− 1

n

)(n−1)/2
exp
(
R2
2Q

+O(ε̂)
)
,

= PTr(n,m)(d) exp
(

−1
2

+ R2
2Q

+O(n−1 + ε̂)
)
,

where ε̂ := ε + δmaxn3/5Q−3/5 and ε is defined in (1.12).

Kamčev, Liebenau and Wormald [15] conjectured that Dr(n,m) is asymptotically equal to
Tr(n,m) almost everywhere.

Conjecture 1.9. ([15]). Let 2≤ r ≤ n− 2 and min{m,
(n
r
)−m} = ω(log n). Then there exists a set

W that has probability 1−O(n−ω(1)) in both Dr(n,m) and Tr(n,m), such that uniformly for all
d ∈W,

PDr(n,m)(d)= PTr(n,m)(d) (1+ o(1)).

We prove their conjecture for our range of parameters.

Theorem 1.10. If 3≤ r ≤ n− 3 and assumption (1.7) holds, then there exists a set W that has
probability 1− n−�(log n) in both Dr(n,m) and Tr(n,m), such that uniformly for all d ∈W,

PDr(n,m)(d)=
(
1+O

(
ε + n1/10Q−1/10 log n+ n−1/2 log2 n

))
PTr(n,m)(d).

1.3 Structure of the paper
Having now stated ourmain results, we describe the overall structure of the paper. In Section 2, we
outline howHr(d) can be expressed as an n-dimensional integral and state the lemmas which lead
to its evaluation. In Section 3 we prove some necessary bounds concerning the quantities λW(β)
and A(β), and then in Section 4 we apply them to evaluate the integral, completing the proof of
our main enumeration result, Theorem 1.1. In Section 5 we address existence and uniqueness of
solutions to (1.5), proving Lemma 1.3 and Lemma 1.4. Section 6 examines the near-regular case,
proving Theorem 1.5. Then in Section 7 we prove our results about the degree sequence of random
uniform hypergraphs, as stated in Section 1.2. Finally, Section 8 contains several technical proofs
that have been deferred, including the proof of Lemma 1.2.

Some of the calculations in this paper are rather tedious, particularly in Sections 6 and 7. We
carried out the worst of them first using the computer algebra package Maple and later checked
them by hand. All infinite series are based on Taylor’s theorem and so have clear-cut truncation
criteria.

2. Proof outline for Theorem 1.1
We will take advantage of Lemma 1.2 to work in the first quadrant, where the conditions of
Theorem 1.1 are given by (1.11).

The numberHr(d) of simple r-uniform hypergraphs with degree sequence d = (d1, . . . , dn) can
be expressed using a generating function, where the power of variable xj gives the degree of vertex
j for j ∈ [n]. EachW ∈ Sr(n) will contribute a factor of

∏
j∈W xj, ifW is an edge in the hypergraph,

or 1 ifW is not an edge. Using
[
xd11 · · · xdnn

]
to denote coefficient extraction, this gives
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Hr(d)=
[
xd11 · · · xdnn

] ∏
W∈Sr(n)

(
1+

∏
j∈W

xj

)

= 1
(2π i)n

∮
· · ·
∮ ∏

W∈Sr(n)

(
1+∏j∈W xj

)
∏

j∈[n] x
dj+1
j

dx,

using Cauchy’s coefficient formula for the second line. Each integral is over a contour enclosing
the origin. Recalling that β∗ is a solution of (1.5), we choose the jth contour to be a circle of radius
eβ

∗
j , for j ∈ [n]. This choice leads to the expression

Hr(d)= (2π)−n exp

(
−
∑
j∈[n]

β∗
j dj

) ∫ π

−π

· · ·
∫ π

−π

∏
W∈Sr(n)

(
1+∏j∈W eβ

∗
j +iθj

)
exp
(
i
∑

j∈[n] djθj
) dθ

= Pr(β∗)
∫ π

−π

· · ·
∫ π

−π

∏
W∈Sr(n)

(
1+ λW

(
exp
(
i
∑

j∈W θj
)− 1

))
exp
(
i
∑

j∈[n] djθj
) dθ , (2.1)

where the factor in front of the integral is given by

Pr(β∗) := (2π)−n exp

(
−
∑
j∈[n]

β∗
j dj

) ∏
W∈Sr(n)

(
1+ e

∑
j∈W β∗

j
)
. (2.2)

Let F(θ) denote the integrand, that is,

F(θ) :=
∏

W∈Sr(n)

(
1+ λW

(
exp
(
i
∑

j∈W θj
)

− 1
))

exp
(
i
∑

j∈[n] djθj
) . (2.3)

As we will see in Lemma 4.1, our choice of β∗ ensures that the linear term in the expansion of
log F(θ) vanishes.

The maximum value of |F(θ)| is 1, which is achieved if and only if
∑

j∈W θj ≡ 0(mod 2π) for
all W ∈ Sr(n). If this condition holds then all θj must be equal modulo 2π , as can be seen by
considering two r-subsetsW,W′ which differ in just one vertex and observing that such a pair of
subsets exists for any pair of vertices. Hence there are precisely r points where F(θ) is maximised
in (−π , π]n, namely θ (1), . . . , θ (r), where for t ∈ [r] the point θ (t) = (θ (t)1 , . . . , θ (t)n

)
is defined by

θ
(t)
1 = θ

(t)
2 = · · · = θ (t)n ≡ 2π t

r
(mod 2π).

We will estimate the value of the integral first in the regions close to θ (t), for some t ∈ [r], then
for the remainder of the domain. Write Un(ρ) for the ball of radius ρ around the origin, with
respect to the infinity norm; that is,

Un(ρ) :=
{
x ∈R

n : |xj| ≤ ρ for j ∈ [n]
}
,
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and for ρ > 0 define the regionR(ρ) as

R(ρ) := Un(ρ)∩
{

θ ∈R
n :
∣∣∣∣ ∑
j∈[n]

θj

∣∣∣∣≤ nr−1/2ρ

}
. (2.4)

Evaluation of the integral proceeds by the following sequence of lemmas, whose proof
is deferred to Section 4. The first two lemmas give an estimate of the value of the inte-
gral over Un

(
r−1), by providing an estimate over R

(
d−1/2 log n

)
and Un

(
r−1) \R(d−1/2 log n

)
respectively.

Lemma 2.1. If assumptions (1.11) hold then∫
R(d−1/2 log n)

F(θ) dθ = (1+O(ε))
πn/2

|A|1/2 ,

where ε is given in (1.12).

Lemma 2.2. If assumptions (1.11) hold then∫
Un
(
r−1
)
\R(d−1/2 log n)

|F(θ)| dθ = n−�(log n) πn/2

|A|1/2 .

Define the regions U(t) for t ∈ [r] by

U(t) := {
θ (t) + θ (mod 2π) : θ ∈Un

(
r−1)}. (2.5)

Let B := ∪t∈[r]U(t). Since F(θ (t) + θ)= F(θ) for all θ ∈Un(π), each of the regions
U(1), . . . ,U(r) makes an identical contribution to the integral. Lemmas 2.1 and 2.2 imply that
under assumptions (1.11) we have∫

B
F(θ) dθ = (1+O(ε))

r πn/2

|A|1/2 . (2.6)

The integral in the region Un(π) \ B is approximated in the next result.

Lemma 2.3. If assumptions (1.11) hold then∫
Un(π)\B

|F(θ)| dθ = n−ω(n) πn/2

|A|1/2 .

Continuing with the proof of Theorem 1.1, by combining Lemma 2.3 and (2.6) we obtain∫
Un(π)

F(θ) dθ = (1+O(ε))
r πn/2

|A|1/2 . (2.7)

We can express Pr(β∗) in a more convenient form, as follows:

Pr(β∗) (1.5)= (2π)−n

∏
W∈Sr(n)

(
1+ e

∑
j∈W β∗

j
)

exp
(∑

j∈[n] β∗
j
∑

W�j λW
)

= (2π)−n

∏
W∈Sr(n)

(
1+ e

∑
j∈W β∗

j
)

exp
(∑

W∈Sr(n) λW
∑

j∈W β∗
j

)
= (2π)−n

∏
W∈Sr(n)

1+ e
∑

j∈W β∗
j

exp
(
λW

∑
j∈W β∗

j

)
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= (2π)−n
∏

W∈Sr(n)

(
1+ e

∑
j∈W β∗

j

e
∑

j∈W β∗
j

)λW(
1+ e

∑
j∈W β∗

j
)1−λW

(1.3)= (2π)−n
∏

W∈Sr(n)

(
λ

−λW
W (1− λW)−(1−λW )

)
. (2.8)

The proof of Theorem 1.1 in the first quadrant is completed by substituting (2.7) and (2.8) into
(2.1). The full statement of Theorem 1.1 then follows from Lemma 1.2.

3. Properties of A and other useful bounds
We will need to analyse the behaviour of λW(β), λ(β) and A(β), not only when β is a solution of
(1.5), but more generally. We also need

Λ(β) :=
(
n
r

)−1 ∑
W∈Sr(n)

λW(β)(1− λW(β)).

Recall that the elements of A(β) are sums of terms of the form λW(β)(1− λW(β)). We start by
establishing bounds on λW(β) and 1− λW(β).

Lemma 3.1. Denote by f :Rr →R the function

f (x)= e
∑r

j=1 xj

1+ e
∑r

j=1 xj
.

Let x, y satisfy |xi − yi| ≤ δ/r for some constant δ ≥ 0, and define p := ∣∣{j : xj 
= yj
}∣∣. Then

e−δ p/r ≤ f (x)
f (y)

≤ eδ p/r , e−δ p/r ≤ 1− f (x)
1− f (y)

≤ eδ p/r .

Proof. First suppose that p= 1 and without loss of generality assume x1 
= y1. Then if y1 ≤ x1 we
have

f (x)
f (y)

= ex1+X

1+ ex1+X · 1+ ey1+X

ey1+X ≤ ex1−y1 ≤ eδ/r ,

whereX =∑r
j=2 xj =

∑r
j=2 yj. Observe that

1+ey
1+ex ≤ ey−x whenever x≤ y. Therefore when y1 > x1,

f (x)
f (y)

= ex1+X

1+ ex1+X · 1+ ey1+X

ey1+X ≤ 1+ ey1+X

1+ ex1+X ≤ ey1−x1 ≤ eδ/r .

As x and y are arbitrary vectors in R
r , by symmetry we also have

f (x)
f (y)

≥ e−δ/r .

Similarly,
1− f (x)
1− f (y)

= 1+ ey1+X

1+ ex1+X ≤max{ey1−x1 , 1} ≤ eδ/r and
1− f (x)
1− f (y)

≥ e−δ/r .

For arbitrary x, y, let z0, . . . , zp be a sequence of elements of Rn with z0 = x, zp = y such that
zj and zj−1 differ in only one coordinate for j= 1, . . . , p. Then

f (x)
f (y)

=
p∏

j=1

f (zj−1)
f (zj)

,
1− f (x)
1− f (y)

=
p∏

i=1

1− f (zj−1)
1− f (zj)

,

and the statement follows as there are exactly p factors. �
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We will apply this lemma in two slightly different scenarios. First we compare λ(β) to λ(β̂) for
two different vectors β and β̂ .

Lemma 3.2. Let β and β̂ satisfymaxj∈[n]
∣∣βj − β̂j

∣∣≤ δ/r for some nonnegative constant δ. Then

e−δλ(β̂)≤ λ(β)≤ eδλ(β̂).

Proof. By Lemma 3.1 we have for eachW ∈ Sr(n) that e−δλW(β̂)≤ λW(β)≤ eδλW(β̂). The result
follows from the definition of λ(β). �

In the second application, we consider the ratios of λW(β) and λW′(β) forW,W′ ∈ Sr(n).
Lemma 3.3. Let β satisfymaxj,k∈[n] |βj − βk| ≤ δ/r for some nonnegative constant δ. Then

e−δ (1−|W∩W′|/r) ≤ λW(β)
λW′(β)

≤ eδ (1−|W∩W′|/r),

e−δ (1−|W∩W′|/r) ≤ 1− λW(β)
1− λW′(β)

≤ eδ (1−|W∩W′|/r)

for all W,W′ ∈ Sr(n). Hence

e−δ ≤ λW(β)
λ(β)

≤ eδ and e−2δ ≤ λW(β)
(
1− λW(β)

)
Λ(β)

≤ e2δ

for all W ∈ Sr(n).
Proof. Note that the βj terms corresponding to j ∈W ∩W′ appear in both λW(β) and λW′(β).
Together with Lemma 3.1 this implies the first half of the statement. The bounds involving λ(β)
and Λ(β) follow from the definitions of these quantities. �

We use the previous result to deduce that λ(β) and Λ(β) have the same order of magnitude
when λ(β) is small enough.

Lemma 3.4. Let β satisfy maxj,k∈[n] |βj − βk| ≤ δ/r for a given nonnegative constant δ. If λ(β)≤
7/8 then

e−δ

256
λ(β)≤ Λ(β)≤ λ(β).

Proof. The upper bound holds as(
n
r

)
Λ(β)=

∑
W∈Sr(n)

λW(β)(1− λW(β))≤
∑

W∈Sr(n)
λW(β)=

(
n
r

)
λ(β).

Now consider the set S= {W ∈ Sr(n) : λW(β)> 15
16
}
. First assume that |S| ≤ 15

16 |Sr(n)|. Then(
n
r

)
Λ(β)≥

∑
W∈Sr(n)\S

λW(β)(1− λW(β))
L.3.3≥

∑
W∈Sr(n)\S

e−δ λ(β)
1
16

≥ e−δ

256
λ(β)

(
n
r

)
.

On the other hand if |S| > 15
16 |Sr(n)|, then

λ(β)
(
n
r

)
=
∑
W∈S

λW(β)>
(
15
16

)2 (n
r

)
>

7
8

(
n
r

)
,

contradicting our assumption. �
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Now we turn to the matrix A(β) and establish that the diagonal entries are relatively close to
each other, and similarly for the off-diagonal entries.

Lemma 3.5. Let β satisfy maxj,k∈[n] |βj − βk| ≤ δ/r for some nonnegative constant δ. Then the
entries of A(β)= (ajk) satisfy

e−4δ/r ≤ ajk
aj′k′

≤ e4δ/r , e−4δ/r ≤ ajj
akk

≤ e4δ/r

for any j, k, j′, k′ ∈ [n] with j 
= k and j′ 
= k′. Furthermore,

1
2
e−4δ/rΛ(β)

(
n− 2
r − 2

)
≤ ajk ≤ 1

2
e4δ/rΛ(β)

(
n− 2
r − 2

)
,

1
2
e−4δ/rΛ(β)

(
n− 1
r − 1

)
≤ ajj ≤ 1

2
e4δ/rΛ(β)

(
n− 1
r − 1

)
.

Proof. We start with the case when j 
= k and j′ 
= k′. Let Sjk = {W ∈ Sr(n) :W ⊃ {j, k}}. Recall
that

ajk = 1
2
∑
W∈Sjk

λW(β)(1− λW(β)) and aj′k′ = 1
2
∑

W′∈Sj′k′
λW′(β)(1− λW′(β)).

Both Sjk and Sj′k′ contain exactly
(n−2
r−2
)
elements. We will show that there exists a bijection

ζ : Sj,k → Sj′k′ such that for every pair (W,W′) withW′ = ζ (W), we have

e−4δ/rλW′(β)(1− λW′(β))≤ λW(β)(1− λW(β))≤ e4δ/rλW′(β)(1− λW′(β)).

By Lemma 3.3, this follows if |W ∩ ζ (W)| ≥ r − 2 for allW ∈ Sjk.
We can assume that either {j, k} ∩ {j′, k′} = ∅ or j= j′. Now consider the function b :V →V ,

which is the identity for every vertex in V \ {j, k, j′, k′} and switches j with j′ and k with k′. This
function can be extended to a function ζ : Sjk → Sj′k′ by assigning to each set W ∈ Sjk the set
{b(j) : j ∈W}. Clearly b is a bijection and so is ζ , and |W ∩ ζ (W)| ≥ r − 2 for all W ∈ Sjk, as
required.

The remaining results follow as

ajj = 1
r − 1

n∑
k=1
k
=j

ajk and Λ(β)= 1
n

n∑
j=1

ajj,

completing the proof. �
We also establish an upper bound on the determinant of A(β). It follows easily from theMatrix

Determinant Lemma (see for example [22, equation (6.2.3)]) that for any real numbers a, b,

|aI + bJ| = an−1(a+ bn), (3.1)

where I is the n× n identity matrix and J is the n× nmatrix with every entry equal to one.

Lemma 3.6. Let β satisfymaxj,k∈[n] |βj − βk| ≤ δ/r for some nonnegative constant δ. Then

|A(β)| = exp
(
O(n) log

(
Λ(β)

(
n− 1
r − 1

)))
.
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Proof. Note that for any x ∈R
n we have

xtA(β) x= 1
2
∑

W∈Sr(n)
λW(β)(1− λW(β))

(∑
j∈W

xj

)2
L.3.3≤ 1

2
e2δΛ(β)

∑
W∈Sr(n)

(∑
j∈W

xj

)2
= xtA′x,

whereA′ = 1
2e

2δΛ(β)
((n−2

r−1
)
I + (n−2

r−2
)
J
)
. (Here xt is the transpose of x.) Therefore, by themin-max

theorem, the k-th largest eigenvalue ofA(β) is at most the k-th largest eigenvalue ofA′. SinceA(β)
is positive semidefinite, all its eigenvalues are non-negative, implying that |A(β)| ≤ |A′|. Using
(3.1), we have

|A′| = exp
(
O(n) log

(
Λ(β)

(
n− 1
r − 1

)))
and the result follows. �

3.1 Inverting A(β)
Next we bound the entries of A(β)−1 and find a change of basis matrix T which transforms A(β)
to the identity matrix. For p ∈ {1, 2,∞}, we use the notation ‖·‖p for the standard vector norms
and the corresponding induced matrix norms (see for example [12, Section 5.6]). In particular, for
an n× nmatrixM = (mij),

‖M‖1 =max
j∈[n]

∑
i∈[n]

|mij|, ‖M‖∞ =max
i∈[n]

∑
j∈[n]

|mij|.

The proof of this lemma is given in Section 8.2.

Lemma 3.7. Let δ be a nonnegative constant. For every β such that maxj,k∈[n] |βj − βk| ≤ δ/r the
following holds.

Let A(β)−1 = (σjk) be the inverse of A(β). There exists a constant C, independent of δ, such that
for n≥ 16e4δ we have

|σjk| ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ce35δ

Λ(β)
(n−1
r−1
) , if j= k;

Ce35δ

Λ(β)
(n−1
r−1
)
n
, otherwise.

(3.2)

In addition, there exists a matrix T = T(β) such that TtA(β)T = I with

‖T‖1, ‖T‖∞ =O
(

Λ(β)−1/2
(
n− 1
r − 1

)−1/2 )
.

Furthermore, for any ρ > 0 there exists ρ1, ρ2 = �
(
ρ Λ(β)1/2

(n−1
r−1
)1/2) such that

T
(
Un(ρ1)

)⊆R(ρ)⊆ T
(
Un(ρ2)

)
,

whereR(ρ) is defined in (2.4).
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4. Evaluating the integral
In this section we prove Lemmas 2.1–2.3. We have already seen that these lemmas establish
Theorem 1.1.

Throughout this section we assume that (1.11) holds and thus λ = (n−1
r−1
)−1d ≤ 1

2 . Therefore, by
Lemma 3.4, for Λ := Λ(β∗) we have

Λ

(
n− 1
r − 1

)
= �

(
λ

(
n− 1
r − 1

))
= �(d). (4.1)

4.1 Proof of Lemma 2.1
First, we will estimate the integral of F(θ) over R(d−1/2 log n). For ξ ∈ [0, 1] and x ∈ [−1, 1],
|ξ (eix − 1)| is bounded below 1 and the fifth derivative of log

(
1+ ξ

(
eix − 1

))
with respect to x

is uniformlyO(ξ ). Using the principal branch of the logarithm in this domain, we have by Taylor’s
theorem that uniformly

log
(
1+ ξ

(
eix − 1

))= 4∑
p=1

ipcp(ξ ) xp +O(ξ ) |x|5, (4.2)

where the coefficients are

c1(ξ ) := ξ , c2(ξ ) := 1
2
ξ (1− ξ ), c3(ξ ) := 1

6
ξ (1− ξ )(1− 2ξ ),

c4(ξ ) := 1
24

ξ (1− ξ )
(
1− 6ξ + 6ξ 2

)
.

Lemma 4.1. Let ρ := d−1/2 log n. Then, for θ ∈Un(ρ), we have

log F(θ)= −θ tAθ +
4∑

p=3

∑
W∈Sr(n)

ipcp(λW)

(∑
j∈W

θj

)p
+O

(
nr4 log5 n

d3/2

)
.

Proof. Recall that λW ∈ (0, 1) for allW, and note that (1.11) implies that rρ = o(1). Hence, recall-
ing (2.3), we can apply (4.2) for eachW ∈ Sr(n), taking ξ = λW and x=∑j∈W θj. The linear term
of log F(θ) (which includes terms from the denominator of F(θ)), is

i
∑
j∈[n]

θj

((∑
W�j

λW

)
− dj

)
,

which equals zero by (1.5). In addition, for the quadratic term,∑
W∈Sr(n)

1
2
λW(1− λW)

(∑
j∈W

θj

)2
=
∑
j,k∈[n]

∑
W⊃{j,k}

1
2
λW(1− λW)θjθk = θ tAθ .

Now λW =O(λ) for allW ∈ Sr(n), by Lemma 3.3, so the combined error term is

O
(

λ

(
n
r

)
r5d−5/2 log5 n

)
(4.1)= O

(
nr4 log5 n

d3/2

)
.

�
Recall that for a complex variable Z, the variance is defined by

VarZ =E|Z −EZ|2 =Var�Z +Var�Z,
while the pseudovariance is

VZ =E(Z −EZ)2 =Var�Z −Var�Z + 2iCov(�Z, �Z).
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The following is a special case of [13, Theorem 4.4] that is sufficient for our current purposes.

Theorem 4.2. Let A be an n× n positive definite symmetric real matrix and let T be a real matrix
such that TtAT = I. Let Ω be a measurable set and let f :Rn →C and h :Ω →C be measurable
functions. Make the following assumptions for some ρ1, ρ2, φ:

(a) T(Un(ρ1))⊆ Ω ⊆ T(Un(ρ2)), where ρ1, ρ2 = �(log n).

(b) For x ∈ T(Un(ρ2)), 2ρ2 ‖T‖1
∣∣∣ ∂f
∂xj (x)

∣∣∣≤ φn−1/3 ≤ 2
3 for 1≤ j≤ n and

4ρ2
2 ‖T‖1 ‖T‖∞ ‖H‖∞ ≤ φn−1/3,

where H = (hjk) is the matrix with entries defined by

hjk = sup
x∈T(Un(ρ2))

∣∣∣∣ ∂2f
∂xj ∂xk

(x)
∣∣∣∣ .

(c) |f (x)| ≤ nO(1)eO(1/n) xtAx uniformly for x ∈R
n.

Let X be a Gaussian random vector with density π−n/2|A|1/2 e−xtAx. Then, provided Vf (X) is
finite and h is bounded in Ω ,∫

Ω

e−xtAx+f (x)+h(x) dx= (1+K)πn/2|A|−1/2eEf (X)+
1
2Vf (X),

where, for sufficiently large n,

|K| ≤ e
1
2Var�f (X)

(
3eφ

3+e−ρ21/2 − 3+ sup
x∈Ω

|eh(x) − 1|
)
.

Now we will prove Lemma 2.1.

Proof of Lemma 2.1. Let ρ = d−1/2 log n. Applying Lemma 4.1 gives∫
R(ρ)

F(θ) dθ =
∫
R(ρ)

exp
(−θ tAθ + f (θ)+ h(θ)

)
dθ ,

where

f (θ)=
∑

W∈Sr(n)

4∑
p=3

ipcp(λW)

(∑
j∈W

θj

)p

,

h(θ)=O
(
nr4d−3/2 log5 n

) (1.11)= O
(
nr2/d

)
. (4.3)

Wewill apply Theorem 4.2 with� =R(ρ). LetT, ρ1, ρ2 be as in Lemma 3.7. ThenT(Un(ρ1))⊆
R(ρ)⊆ T(Un(ρ2)). Observe that ρ1, ρ2 = �

(
ρd1/2

)= �(log n), by (4.1). Clearly ρ1 ≤ ρ2 and thus
condition (a) in Theorem 4.2 is satisfied.

Now for j ∈ [n],

∂f
∂θj

(θ)= 1
6
∑
W�j

λW(1− λW)
(
1− 6λW + 6λ2W

)(∑
�∈W

θ�

)3

− i
2
∑
W�j

λW(1− λW)(1− 2λW)

(∑
�∈W

θ�

)2
.
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Thus, for all θ ∈ T(Un(ρ2)) and all j ∈ [n] we have∣∣∣∣ ∂f∂θj
(θ)
∣∣∣∣=O

(
Λ

(
n− 1
r − 1

)
r2 ‖θ‖2∞

)
=O

(
Λ

(
n− 1
r − 1

)
r2 ρ2

)
, (4.4)

by Lemmas 3.3 and 3.4 and using the fact that rρ = o(1). Hence, by (4.4) and Lemma 3.7,

2ρ2 ‖T‖1
∣∣∣∣ ∂f∂θj

(θ)
∣∣∣∣=O

(
log n · Λ−1/2

(
n− 1
r − 1

)−1/2
Λ

(
n− 1
r − 1

)
r2 ρ2

)
(4.1)= O

(
r2 log3 n
d1/2

)
(4.5)

for every θ ∈ T(Un(ρ2)) and j ∈ [n]. Also for all j, k ∈ [n] (including j= k),

∂2f
∂θj ∂θk

(θ)= 1
2
∑

W⊃{j,k}
λW(1− λW)

(
1− 6λW + 6λ2W

)(∑
�∈W

θ�

)2

− i
∑

W⊃{j,k}
λW(1− λW)(1− 2λW)

(∑
�∈W

θ�

)
.

Arguing as above, if θ ∈ T(Un(ρ2)) then

∣∣∣∣ ∂2f
∂θj ∂θk

(θ)
∣∣∣∣=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O
(

Λ

(
n− 1
r − 1

)
r ‖θ‖∞

)
, if j= k;

O
(

Λ

(
n− 2
r − 2

)
r ‖θ‖∞

)
, otherwise.

(4.6)

Then (4.6) and Lemma 3.7 imply that

4ρ2
2 ‖T‖1 ‖T‖∞ ‖H‖∞

=O
(
log2 n

1
Λ
(n−1
r−1
)Λ((n− 1

r − 1

)
+ (n− 1)

(
n− 2
r − 2

))
rρ
)

=O

(
r2 log3 n
d1/2

)
. (4.7)

By (4.5) and (4.7) there exists

φ =O

(
r2 n1/3 log3 n

d1/2

)
(4.8)

such that the left side of both (4.5) and (4.7) are at most φn−1/3.
Recall that the 2-norm of the real symmetric matrix A−1 equals the largest eigenvalue of A−1.

Using this we obtain

f (θ)=O
((
r‖θ‖∞ + r2‖θ‖2∞

)
θ tAθ

)=O
((
1+ r2‖θ‖22

)
θ tAθ

)
=O

(
θ tAθ + n2(θ tAθ)2‖A−1‖2

)
(3.2)= O

(
θ tAθ + n2(θ tAθ)2

Λ
(n−1
r−1
) ) (1.7)= O

(
θ tAθ + n

(
θ tAθ

)2)
=O

(
n3eθ

tAθ/n
)
,

so condition (c) is satisfied.
By Theorem 4.2 we have∫

Un(ρ)
F(θ) dθ = (1+K)

πn/2

|A|1/2 exp
(
Ef (X)+ 1

2
Vf (X)

)
,
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where

K ≤ eVar(�f (X))/2
(
O
(
nr2

d

)
+ 3eφ

3+e−ρ21 /2 − 3
)

=O
(
nr2

d
+ φ3 + e−ρ2

1/2
)

eVar(�f (X))/2.

In the last step we use the fact that φ = o(1) and e−ρ2
1/2 = o(1). The nr2/d term inside the O( · )

is the bound on h from (4.3). To complete an estimate of K, it remains to bound

Var
(�f (X))=Var

⎛⎜⎝1
6
∑

W∈Sr(n)
λW(1− λW)(1− 2λW)

⎛⎝∑
j∈W

Xj

⎞⎠3
⎞⎟⎠ .

We will rely heavily on Isserlis’ theorem (also called Wick’s formula) in order to establish bounds
for the variance of �f (X) and later for the pseudovariance of f (X). Isserlis’ theorem states that the
expected value of a product of jointly Gaussian random variables, each with zero mean, can be
obtained by summing over all partitions of the variables into pairs, where the term corresponding
to a partition is just the product of the covariances of each pair. See for example [23, Theorem 1.1].

In particular, for a normally distributed random vector (Y1, Y2) with expected value (0, 0), we
have

E
(
Y3
1
)= 0,E

(
Y4
1
)= 3Cov(Y1, Y1),

E
(
Y3
1 Y

3
2
)= 9Cov(Y1, Y1) Cov(Y2, Y2) Cov(Y1, Y2)+ 6Cov(Y1, Y2)3,

E
(
Y4
1 Y

4
2
)= 9Cov(Y1, Y1)2Cov(Y2, Y2)2 + 72Cov(Y1, Y1)Cov(Y2, Y2)Cov(Y1, Y2)2

+ 24Cov(Y1, Y2)4.

Since the sum of components of a normally distributed random vector is also normally distributed,
we can apply Isserlis’ theorem to sums involving the random variables Xj, j ∈ [n]. Then for any
W ∈ Sr(n) we have

E

[(∑
j∈W

Xj

)3 ]
= 0, (4.9)

and so

Var
(�f (X))= ∑

W∈Sr(n)

∑
W′∈Sr(n)

O
(
Λ2)

E

[(∑
j∈W

Xj

)3( ∑
k∈W′

Xk

)3]
.

ForW,W′ ∈ Sr(n) let

σ (W,W′) := Cov

[∑
j∈W

Xj,
∑
k∈W′

Xk

]
.

Now Cov[Xj, Xk] equals the corresponding values of (2A)−1 and hence, by Lemma 3.7
and (4.1),

Cov
[
Xj, Xk

]={O( 1d ), if j= k;

O
( 1
nd
)
, otherwise.

Since covariance is additive, we have

σ (W,W′)=O
(
r2

nd
+ |W ∩W′|

d

)
. (4.10)
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Using this together with Isserlis’ theorem, for any pairW,W′,

E

[(∑
j∈W

Xj

)3( ∑
k∈W′

Xk

)3 ]
= 9 σ (W,W) σ (W′,W′) σ (W,W′)+ 6 σ (W,W′)3

=O
(
r2

d2
σ (W,W′)

)
=O

(
r4

nd3
+ r2 |W ∩W′|

d3

)
.

The average value of |W ∩W′| over pairs of r-sets is r2/n, so we can sum over W,W′ ∈ Sr(n) to
obtain

Var(�f (X))=O
(

Λ2
(
n
r

)2( r4

nd3
+ r2 (r2/n)

d3

))
(4.1)= O

(
nr2

d

)
.

By (1.11) this term tends to 0, implying that K =O
(
nr2/d + φ3 + e−ρ2

1
)
.

All that is left is to establish bounds on Ef (X) and Vf (X). Due to (4.9), we have

Ef (X)= 1
24

∑
W∈Sr(n)

λW(1− λW)
(
1− 6λW + 6λ2W

)
E

[(∑
j∈W

Xj

)4 ]

=O

(
Λ

∑
W∈Sr(n)

E

[(∑
j∈W

Xj

)4 ])
.

Again using Isserlis’ theorem, for anyW ∈ Sr(n) we have

E

[(∑
j∈W

Xj

)4 ]
= 3σ (W,W)2 (4.10)= O

(
r2

d2

)
.

Hence by (4.1),

Ef (X)=O
(
nr2

d

)
.

Now Vf (X) satisfies
|Vf (X)| = |E (f (X)−Ef (X))2| ≤E |f (X)−Ef (X)|2 =Var(�f (X))+Var(�f (X)).

Since we already established a bound on Var(�f (X)), we only need to consider Var(�f (X)). Note
that

Var(�f (X))≤
∑

W∈Sr(n)

∑
W′∈Sr(n)

c4(λW)c4(λW′) E

[(∑
j∈W

Xj

)4( ∑
k∈W′

Xk

)4 ]
.

By Isserlis’ theorem, we have

E

[(∑
j∈W

Xj

)4( ∑
k∈W′

Xk

)4 ]
= 9σ (W,W)2σ (W′,W′)2 + 72σ (W,W)σ (W′,W′)σ (W,W′)2

+ 24σ (W,W′)4.
Since σ (W,W′)=O(r/d) from (4.10),

Var(�(f (X)))=O
(

Λ2
(
n
r

)2 r4

d4

)
(4.1)= O

(
n2r2

d2

)
(1.11)= O

(
nr2

d

)
.
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Therefore |V(f (X))| =O
(
nr2/d

)
and so∫

R(ρ)
F(θ) dθ = πn/2

|A|1/2 exp
(
E(f (X))+ 1

2
Vf (X)+O

(
nr2

d
+ φ3 + e−ρ2

1

))
=
(
1+O

(
nr2

d
+ r6n log9 n

d3/2
+ n−�(log n)

))
πn/2

|A|1/2 ,

using (4.8) and the definition of ρ1. �

4.2 Proof of Lemma 2.2
In this section we evaluate the integral over the region Un

(
r−1) \R(ρ). The following technical

bound will be useful: for any t ∈R and λ ∈ [0, 1], we have

|1+ λ(eit − 1)| ≤ exp
(

−1
2

(
1− t2

12

)
λ(1− λ)t2

)
. (4.11)

Proof of Lemma 2.2. We will show that for any ρ̂ satisfying (2r)−1 ≥ ρ̂ ≥ d−1/2 log n, we have∫
Un(2ρ̂)\R(ρ̂)

|F(θ)| dθ = n−�(log n) πn/2

|A|1/2 . (4.12)

Observe that

Un
(
(2r)−1) \R(d−1/2 log n

) ⊆
L−1⋃
�=0

(
Un
(
2�+1d−1/2 log n

)
\R
(
2�d−1/2 log n

))
for L= �log2

(
(2r)−1/

(
d−1/2 log n

))� =O(r log n), and that

Un
(
r−1) \R(d−1/2 log n

) ⊆ (
Un
(
r−1) \R((2r)−1))∪ (Un

(
(2r)−1) \R(d−1/2 log n

))
.

This expresses the region of integration in the lemma statement as a union of regions of the form
given in (4.12), and the result follows.

It remains to prove (4.12). Using (4.11), for any such ρ̂∫
Un(2ρ̂)\R(ρ̂)

|F(θ)| dθ ≤
∫
Rn\R(ρ̂)

e−(1−r2ρ̂2/3) θ tAθ dθ .

Let T be as in Lemma 3.7 and note that |T| = |A|−1/2. Then by Lemma 3.7 and (4.1) there exists
a ρ̂1 = �

(
ρ̂d1/2

)
such that T(Un(ρ̂1))⊆R(ρ̂). By taking ρ̂′

1 = (1− r2ρ̂2/3
)1/2

ρ̂1 we find that(
1− r2ρ̂2/3

)−1/2 Un
(
ρ̂′
1
)=Un(ρ̂1) and hence(
1− r2ρ̂2/3

)−1/2 T(Un(ρ̂′
1))= T(Un(ρ̂1))⊆R(ρ̂).

Therefore, substituting θ = (1− r2ρ̂2/3
)−1/2 Tx gives∫

Rn\R(ρ̂)
e−
(
1−r2ρ̂2/3

)
θ tAθ dθ ≤

(
1− r2ρ̂2/3

)−n/2

|A|1/2
∫
Rn\Un(ρ̂′

1)
e−xtx dx.

Note that
(
1− r2ρ̂2/3

)−n/2 = exp
(
O
(
r2ρ̂2n

))
. In addition we have ρ̂′

1 = �(ρ̂1)= �
(
ρ̂d1/2

)
and

thus ∫
Rn\Un(ρ̂′

1)
e−xtx dx≤ n exp

(−�
(
ρ̂2
1
))= n exp

(−�
(
ρ̂2d
))
.
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We deduce that∫
Rn\R(ρ̂)

e−
(
1−r2ρ̂2/3

)
θ tAθ dθ ≤ n exp

(
O
(
r2ρ̂2n

)− �
(
ρ̂2d
)) 1

|A|1/2 = n−�(log n) πn/2

|A|1/2 ,

as d � r2n, by (1.11), and ρ̂2d = �
(
log2 n

)
. �

4.3 Proof of Lemma 2.3
In this section we complete the evaluation of the integral by examining the values in the region
Un(π) \ B. For x ∈R, define |x|2π =mink∈Z |x− 2kπ | and note that |1+ λ(eix − 1)| depends
only on |x|2π .
Proof of Lemma 2.3. Let θ ∈Un(π) \ B. First suppose that |θa − θb|2π > (2r)−1 for some a, b ∈
[n]. For anyW1,W2 ∈ Sr(n) thatW1 �W2 = {a, b}, we have∣∣∣∣∣∣

∑
j∈W1

θj −
∑
j∈W2

θj

∣∣∣∣∣∣
2π

> (2r)−1.

So
∣∣∑

j∈W1 θj
∣∣
2π > (4r)−1 or

∣∣∑
j∈W2 θj

∣∣
2π > (4r)−1, or both. In any case, by Lemma 3.3 and (4.11)

we have ∣∣∣1+ λW1

(
ei
∑

j∈W1 θj − 1
)∣∣∣ · ∣∣∣1+ λW2

(
ei
∑

j∈W2 θj − 1
)∣∣∣≤ e−�

(
Λ/r2

)
. (4.13)

Note that there are exactly
(n−2
r−1
)= �

((n−1
r−1
))

pairs W1,W2 such that W1 �W2 = {a, b}.
Furthermore, everyW ∈ Sr(n) is contained in at most one such pair. Then, multiplying inequali-
ties (4.13) for all such pairs, we obtain

|F(θ)| = exp
(

−�

(
Λ

(
n− 1
r − 1

)
/r2
))

(4.1)= e−�
(
d/r2
)
.

By (1.11), d
r2 � nr2 log n, while by Lemma 3.6 and because d < nr , we have |A| = eO(n log d) =

eO(nr log n). Therefore, the total contribution to the integral from this case is at most

(2π)ne−�
(
d/r2
)
= e−ω

(
nr2 log n

)
= n−ω(n) πn/2

|A|1/2 .

All remaining points θ ∈Un(π) \ B satisfy |θa − θb|2π ≤ (2r)−1 for all a, b ∈ [n] and
minj∈[n], k∈[r] |θj − 2πk

r |2π > (2r)−1. These two conditions imply that for any such θ there exists
k ∈ [r] such that for all j ∈ [n] we have

2πk
r

+ 1
2r

< θj <
2π(k+ 1)

r
− 1

2r
.

Summing the above over anyW ∈ Sr(n) implies that 1
2 ≤

∣∣∣∑j∈W θj

∣∣∣
2π

≤ π . Hence (4.11) implies
that

|F(θ)| = exp
(

−�(Λ)
(
n
r

))
.

Again, multiplying by (2π)n for an upper bound, we see that the contribution of all such points
θ to the integral is at most

(2π)n exp
(

−�(Λ)
(
n
r

))
= exp

(
−�

(
Λ

(
n− 1
r − 1

)))
= n−ω(n) πn/2

|A|1/2 ,
completing the proof. �
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5. Solving the beta-system
We first prove that the solution to (1.5) is unique if it exists.

Proof of Lemma 1.4. Suppose β ′ 
= β ′′ both satisfy (1.5). For y ∈R andW ∈ Sr(n) define ξW(y) :=
(1− y)λW(β ′)+ yλW(β ′′). Consider the entropy function

S(y) :=
∑

W∈Sr(n)

(
ξW(y) log

1
ξW(y)

+ (1− ξW(y)) log
1

1− ξW(y)

)
.

The derivative of S(y) at y= 0 is

S′(0)=
∑

W∈Sr(n)

(
λW(β ′)− λW(β ′′)

)
log

λW(β ′)
1− λW(β ′)

(1.3)=
∑

W∈Sr(n)

(
λW(β ′)− λW(β ′′)

)∑
j∈W

β ′
j

=
n∑
j=1

β ′
j
∑
W�j

(
λW(β ′)− λW(β ′′)

) (1.5)= 0.

Similarly, the derivative of S(y) at y= 1 is S′(1)= 0.
On the other hand, β ′ 
= β ′′ implies that λW(β ′) 
= λW(β ′′) for at least one W ∈ Sr(n). The

second derivative of S(y) equals

−
∑

W∈Sr(n)

(
λW(β ′′)− λW(β ′)

)2
ξW(y)−1 (1− ξW(y))−1,

and hence is strictly negative when β ′ 
= β ′′. Therefore, S(y) is strictly concave and cannot have
more than one stationary point. This completes the proof. �

To prove Lemma 1.3 we will employ the following lemma from [9].

Lemma 5.1. [9, Lemma 7.8] Let � :Rn →R
n, η > 0, and U = {β ∈R

n : ‖β − β(0)‖ ≤
η‖�(β(0))‖} and β(0) ∈R

n, where ‖·‖ is any vector norm in R
n. Assume that

� is analytic in U and sup
x∈U

‖J−1(β)‖ < η,

where J denotes the Jacobian matrix of � and ‖·‖ stands for the induced matrix norm. Then there
exists β∗ ∈U such that �(β∗)= 0.

In connection with the system of (1.5), we consider � :Rn →R
n defined by

�j(β)=
∑
W�j

λW(β)− dj. (5.1)

Clearly, � is analytic in R
n. Observe that

d
dx

(
ex+X

1+ ex+X

)
= ex+X

1+ ex+X

(
1− ex+X

1+ ex+X

)
and thus J(β)= 2A(β), where J(β) is the Jacobian matrix of �(β) and A(β) is defined by (1.4).
We start by bounding ‖J−1(β)‖∞ as required for Lemma 5.1.
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Lemma 5.2. Let β(0) ∈R
n and real numbers δ1, δ2 ≥ 0 satisfy maxj,k∈[n]

∣∣β(0)
j − β

(0)
k
∣∣≤ δ1/r and

eδ2λ(β(0))≤ 7/8. Suppose that n≥ 16e4δ1+8δ2 . Then for any β ∈R
n such that ‖β − β(0)‖∞ ≤ δ2/r,

we have

‖J−1(β)‖∞ = ‖(2A(β))−1‖∞ ≤ 28C
e36δ1+73δ2(n−1
r−1
)
λ
(
β(0)) ,

where C is the constant from Lemma 3.7.

Proof. Let β ∈R
n satisfy ‖β − β(0)‖∞ ≤ δ2/r. Then

max
j,k∈[n]

|βj − βk| ≤ max
j,k∈[n]

∣∣β(0)
j − β

(0)
k
∣∣+ 2‖β − β(0)‖∞ ≤ δ1 + 2δ2

r
.

Applying Lemma 3.7 for β implies for all sufficiently large n that

‖(2A(β))−1‖∞ ≤ C
e35δ1+70δ2

Λ(β)
(n−1
r−1
) .

By Lemma 3.2 and our assumptions we have λ(β)≤ eδ2λ(β(0))≤ 7/8. Therefore, the conditions
of Lemma 3.4 are satisfied and we have

‖(2A(β))−1‖∞ ≤ 28C
e36δ1+72δ2(n−1
r−1
)
λ(β)

.

The result follows as λ(β)≥ e−δ2λ(β(0)) by Lemma 3.2. �
Further, we explain how to carefully chooseU and β(0) depending on whether d is small relative

to
(n−1
r−1
)
or not.

5.1 Proof of Lemma 1.3(i)
Recalling (1.2), define

β(0) :=
(
1
r
log

λ

1− λ
, . . . ,

1
r
log

λ

1− λ

)
and note that ‖�(β(0))‖∞ =maxj∈[n] |d − dj|. Define

U := {
β : ‖β − β(0)‖∞ ≤ η‖�(β(0))‖∞

}=
{
β : ‖β − β(0)‖∞ ≤ η max

j∈[n]
|d − dj|

}
,

where η = 210C/d and C is the constant from Lemma 5.2. Since maxj,k∈[n]
∣∣β(0)

j − β
(0)
k
∣∣= 0, we set

δ1 := 0. Now assume that Δ is sufficiently small, in particular Δ ≤ Δ0 := min{(217C)−1, 1}. Then
for any β ∈U,

‖β − β(0)‖∞ ≤ ηd
(
eΔ/r − 1

)≤ 2ηdΔ/r = 211C
d

· dΔ
r

≤ 1
64r

. (5.2)

Hence we define δ2 := 1/64. Since

λ
(
β(0))= d

(
n− 1
r − 1

)−1 (1.11)≤ 1
2
,

we deduce that

λ
(
β(0)) eδ2 ≤ e1/64λ

(
β(0))≤ e1/64/2≤ 7

8
.
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Therefore, the conditions of Lemma 5.2 are met for δ1 and δ2 as above, and we deduce for every
β ∈U,

‖J−1(β)‖∞ = ‖(2A(β))−1‖∞ ≤ 28C
e73δ2

λ
(
β(0))(n−1

r−1
) <

210C
d

= η.

Hence all the conditions of Lemma 5.1 hold, and applying this lemma shows that there exists a
solution β∗ to (1.5). Finally note that (5.2) implies that maxj,k∈[n]

∣∣β∗
j − β∗

k
∣∣=O(1/r), completing

the proof.

5.2 Proof of Lemma 1.3(ii)

For part (ii), we define β(0) = (β(0)
1 , . . . , β(0)

n
)t by

β
(0)
j := log dj − 1

r
log S,

where

S := n− r + 1
n

∑
W∈Sr−1(n)

∏
k∈W

dk.

Note that maxj,k∈[n]
∣∣β(0)

j − β
(0)
k
∣∣=maxj,k∈[n] | log dj − log dk| ≤ 2Δ/r. Define

U := {
β : ‖β − β(0)‖∞ ≤ Δ/r

}
.

For anyW ∈ Sr(n), using the assumptions of the lemma we have

λW
(
β(0))= exp

(∑
k∈W β

(0)
k

)
1+ exp

(∑
k∈W β

(0)
k

) =O(1)
∏

k∈W dk
S

=O(1)
dr

S
.

Furthermore,

S= �

(
n− r + 1

n

(
n

r − 1

)
dr−1

)
= �

((
n− 1
r − 1

)
dr−1

)
,

and so, using our assumption on rd,

λW
(
β(0))=O

(
d(n−1
r−1
))= o

(
r−1).

It follows that for all j ∈ [n], Lemma 3.3 implies that λW(β(0))= �
(
λ
(
β(0))), and hence

λW(β(0))=
exp
(∑

k∈W β
(0)
k

)
1+ exp

(∑
k∈W β

(0)
k

) = (1+O
(
λ
(
β(0)))) ∏k∈W dk

S

= (1+ o
(
r−1)) ∏k∈W dk

S
.

It follows that for all j ∈ [n],∑
W�j

λW
(
β(0))= dj

(
1+ o

(
r−1)) ∑W�j

∏
k∈W−j dk
S

.
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Next, we observe that the quantity
∑

W�j
∏

k∈W−j dk depends insignificantly on j. Indeed, by
our assumptions we have ∑

W��

∏
k∈W−�

dk = �(1)
(
n− 1
r − 1

)
dr−1

for � ∈ {j, j′}, while∑
W�j

∏
k∈W−j

dk −
∑
W�j′

∏
k∈W−j′

dk =
∑

W∈Sr−2(n)
j,j′ /∈W

(dj′ − dj)
∏
k∈W

dk

≤
(
n− 2
r − 2

)
d
(
eΔ/r − e−Δ/r) dr−2eO(1)

=O(n−1)
(
n− 1
r − 1

)
dr−1.

The last line uses the fact that for any x ∈R we have

ex/r − 1≤ ex

r
. (5.3)

This shows that for any j, j′ ∈ [n],∑
W�j

∏
k∈W−j dk∑

W�j′
∏

k∈W−j′ dk
= 1+O(n−1).

Observe also that
1
n
∑
j∈[n]

∑
W�j

∏
k∈W−j

dk = n− r + 1
n

∑
W∈Sr−1(n)

∏
k∈W

dk = S.

Combining the above and using the assumptions, we conclude that for all j ∈ [n],∑
W�j

λW(β(0))= (1+ o
(
r−1)+O(n−1)

)
dj =

(
1+ o

(
r−1))dj. (5.4)

Taking the average of (5.4) implies that

λ
(
β(0))(n− 1

r − 1

)
= �(d) and λ

(
β(0)) eΔ = o(1).

Applying Lemma 5.2 with δ1 := 2Δ and δ2 := Δ, we conclude that for every β ∈U,

‖J−1(β)‖∞ = ‖(2A(β))−1‖∞ =O
(
d−1) .

By the definition of � and our assumptions on dj, it follows from (5.4) that ‖�(β(0))‖∞ = o(d/r).
Hence we can apply Lemma 5.1 with η := Δ(r‖�(β(0)‖∞)−1 = ω(d−1), completing the proof.

6. The near-regular case
In this section we will prove Theorem 1.5. As mentioned at the end of Section 1, we have omitted
some of the calculations in this and the following section. These calculations can be verified using
the identities in Section 9. It will be convenient for us to begin the analysis in the first quadrant. By
assumption (1.13), Lemma 1.3(i) guarantees the existence of a solution β∗ = (β∗

1 , . . . , β
∗
n ) which

satisfies (1.8), and by Lemma 1.4 this solution is unique. Therefore we are justified in applying
Theorem 1.1.
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Next, recalling (1.2), define γ ∗ = (γ ∗
1 , . . . , γ

∗
n ) by

β∗
j = 1

r
log

λ

1− λ
+ γ ∗

j , for j ∈ [n].

In the regular case, β∗ satisfies (1.5) when γ ∗ = 0. For W ∈ Sr(n), define γ ∗
W := ∑

j∈W γ ∗
j . In

addition, forW ∈ Sr(n) and s ∈N, define Γs = Γs(W) := ∑
j∈W δsj .

Lemma 6.1. Under assumptions (1.7) and (1.13) in the first quadrant, there is a solution of (1.5)
with

γ ∗
j = (n− 1) δj

(1− λ)(n− r)d
− (n− 2λn− 2r)n δ2j

2(1− λ)2(n− r)2d2
+ δ3j

3d3
− rR2

2(n− r)2d2
+O

(
r−1n−1d−3/5)

uniformly for j ∈ [n].

Proof. Equations (1.5) can be written as Φ(γ )= δ, where Φ :Rn →R
n is defined by

Φj(γ ) := λ(1− λ)
∑
W�j

eγW − 1
1+ λ(eγW − 1)

for j ∈ [n]. Consider γ̄ = (γ̄1, . . . , γ̄n) defined by

γ̄j := (n− 1)δj
(1− λ)(n− r)d

− (n− 2λn− 2r)n δ2j

2(1− λ)2(n− r)2d2
+ δ3j

3d3
− rR2

2(n− r)2d2
+ R2

2n(n− r)d2
.

The function L(x)= (ex − 1)/(1+ λ(ex − 1)) has bounded fifth derivative for λ ∈ [0, 1], x ∈
[−1, 1], so by Taylor’s theorem we have in that domain that

L(x)= x+
(
1
2

− λ

)
x2 +

(
1
6

− λ + λ2
)
x3 +

(
1
24

− 7
12

λ + 3
2
λ2 − λ3

)
x4 +O

(|x|5). (6.1)

ForW ∈ Sr(n), define γ̄W := ∑
j∈W γ̄j. Now

γ̄W =O
(
d−1

∑
j∈W

δj

)
=O

(
δmaxrd−1),

which implies that (γ̄W)5 =O
(
r−1n−1d−3/5). Therefore, from (6.1) we have

L(γ̄W)= (n− 1)Γ1
(1− λ)(n− r)d

+ (n2 − 2λn2 − 2n+ 1)Γ 2
1

2(1− λ)2(n− r)2d2
+ (n− 3)n2 Γ 3

1
6(n− r)3d3

+ n4 Γ 4
1

24(n− r)4d4
− n(n− 2λn− 2r)Γ2

2(1− λ)2(n− r)2d2
− (n− 2r)n2 Γ1Γ2

2(n− r)3d3
+ Γ3

3d3

− r(rn− n+ r) R2
2(n− r)2nd2

− r2n R2Γ1
2(n− r)3d3

+O
(
r−1n−1d−3/5).

(6.2)

Summing (6.2) over the
(n−1
r−1
)= d/λ setsW that include j, for each j, we verify that

‖Φ(γ̄ )− δ‖∞ =O
(
r−1n−1d2/5

)
. (6.3)

These calculations rely heavily on the identities given in Section 9.2.
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Define C′ := 210C, where C is the constant from Lemma 5.2, and let

U(C′)=
{
x : ‖x− γ̄ ‖∞ ≤ C′

d
‖Φ(γ̄ )− δ‖∞

}
.

Define the function ν :Rn →R
n by

ν(x)= 1
r
log

λ

1− λ
(1, . . . , 1)t + x.

Let � be the function defined in (5.1). Then for any x ∈R
n we have �(ν(x))= Φ(x)− δ. In par-

ticular this implies that J−1
Φ (x)= J−1

� (ν(x)) where JΦ(x) and J�(ν(x)) denote the Jacobians ofΦ(x)
and �(ν(x)) respectively.

We wish to apply Lemma 5.2. Then

δ1 := r max
j,k∈[n]

|ν(γ̄ )j − ν(γ̄ )k| = r max
j,k∈[n]

|γ̄j − γ̄k| = o(1).

Next, using (6.3), we have that

δ2 := r C′

d
‖Φ(γ̄ )− δ‖∞ = o(1).

Finally, since λ(ν(0))= λ ≤ 1/2 and maxj∈[n] |γ̄j| = o(1/r), Lemma 3.2 implies that

eδ2 λ(ν(γ̄ ))= (1+ o(1))λ ≤ 7
8
.

Hence Lemma 5.2 implies that for every x ∈U(C′), we have

‖J−1
Φ (x)‖∞ = ‖J−1

� (ν(x))‖∞ ≤ 28C eo(1)

(1+ o(1)) d
<

C′

d
.

Therefore, by Lemma 5.1 there exists x ∈U(C′) such that Φ(x)= δ. Setting γ ∗ = x proves the
lemma, since ‖x− γ̄ ‖∞ =O(r−1n−1d−3/5) and the last term of γ̄j is O

(
r−1n−1d−3/5). �

Now we can calculate the values of the quantities that appear in Theorem 1.1.

Lemma 6.2. Under assumptions (1.7) and (1.13), we have in the first quadrant that∏
W∈Sr(n)

λ
λW
W (1− λW)1−λW

= (λλ(1− λ)1−λ
)(nr) exp( (n− 1) R2

2(1− λ)(n− r)d
− (1− 2λ) R3

6(1− λ)2d2
+ R4

12d3
+O

(
δmax d−3/5)).

Proof. Define zW by λW = λ(1+ zW) and

η(z)= log
(λ(1+ z))λ(1+z)(1− λ(1+ z))1−λ(1+z)

λλ(1− λ)1−λ
− λz log

λ

1− λ

= log
(
(1+ z)λ(1+z)

(
1− λz

1− λ

)1−λ(1+z)
)

=
∞∑
j=2

(( λ

1− λ

)j−1 + (−1)j
) λ

(j− 1)j
zj. (6.4)

Recall that
∑

W∈Sr(n) zW = 0, therefore,∏
W∈Sr(n)

λ
λW
W (1− λW)1−λW = (λλ(1− λ)1−λ

)(nr) exp( ∑
W∈Sr(n)

η(zW)
)
. (6.5)
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Lemma 6.1 implies that γ ∗
W = γ̄W +O

(
n−1d−3/5). Recalling (6.1), this implies that L(γ ∗

W)=
L(γ̄W)+O

(
n−1d−3/5), as γ ∗

W = o(1). Using (6.2), we have

zW = (1− λ)(eγ ∗
W − 1)

1+ λ(eγ ∗
W − 1)

= (1− λ)LW(γ ∗
W)

= (n− 1)Γ1
(n− r)d

+ n(n− 2λn− 2)Γ 2
1

2(1− λ)(n− r)2d2
+ n3 Γ 3

1
6(n− r)3d3

− (n− 2λn− 2r)n Γ2
2(1− λ)(n− r)2d2

− Γ1Γ2
2d3

+ Γ3
3d3

− r2 R2
2(n− r)2d2

+O
(
n−1d−3/5). (6.6)

The coefficients of the Taylor expansion of η(z) are uniformly O(λ), as shown in (6.4). Also note
that zW =O(δmaxrd−1)=O(d−1/5). This gives

η(zW)= λ(n− 1)2 Γ 2
1

2(1− λ)(n− r)2d2
+ λ(n− 2λn− 3)n2 Γ 3

1
3(1− λ)2(n− r)3d3

+ λn4 Γ 4
1

8(n− r)4d4
+ λ Γ 2

2
8d4

+ λ Γ1Γ3
3d4

− λ(n− 2λn− 2r)n2 Γ1Γ2
2(1− λ)2(n− r)3d3

− λ Γ 2
1 Γ2

2d4
− λr2n R2 Γ1

2(n− r)3d3
+O

(
λrδmaxn−1d−8/5).

Using the identities in Section 9.1, we can sum over allW ∈ Sr(n):∑
W∈Sr(n)

η(zW)= (n− 1) R2
2(1− λ)(n− r)d

− (1− 2λ) R3
6(1− λ)2d2

+ R4
12d3

+O
(
δmaxd−3/5). (6.7)

The lemma now follows from (6.5) and (6.7). �
Let A0 be the matrix A in the case that d = (d, d, . . . , d). That is,

A0 = (1− λ)(n− r)d
2(n− 1)

I + (1− λ)(r − 1)d
2(n− 1)

J.

Then

A−1
0 = 2(n− 1)

(1− λ)(n− r)d
I − 2(r − 1)

(1− λ)r(n− r)d
J,

|A0| = (1− λ)nr(n− r)n−1dn

2n(n− 1)n−1 = r Qn

2n(n− r)(n− 1)n−1 , (6.8)

where the determinant follows from (3.1).

Lemma 6.3. Under assumptions (1.7) and (1.13), we have in the first quadrant that

|A| = |A0| exp
(

− R2
2d2

+O
(
δmaxd−3/5)).

Proof. Define the matrix E by A=A0 + E. Then

A=A0(I −D)−1(I +M), where

D := diag
(
(1− 2λ)δ1
(1− λ)d

, . . . ,
(1− 2λ)δn
(1− λ)d

)
and

M := −D+ (I −D)A−1
0 E.

ForW ∈ Sr(n) we have λW = λ(1+ zW), where zW is given by (6.6). This gives

1
2
λW(1− λW)= 1

2
λ(1− λ)+ λ(1− 2λ)Γ1

2d
+ λ Γ 2

1
4d2

− λ Γ2
4d2

+O
(
λδmaxn−1d−3/5).
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Summing overW � j andW � j, k, using Sections 9.2 and 9.3, we have E= (ejk), where

ejk =

⎧⎪⎪⎨⎪⎪⎩
1
2
(1− 2λ)δj +O

(
δmaxn−1d2/5

)
, if j= k;

(1− 2λ)(r − 1)(δj + δk)
2n

+ (r − 1)δjδk
2nd

+O
(
δmaxrn−2d2/5

)
, if j 
= k.

This implies that A−1
0 E= (e′jk), where

e′jk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 2λ)δj
(1− λ)d

+O
(
δmaxn−1d−3/5), if j= k;

(1− 2λ)(r − 1)δj
(1− λ)nd

+ (r − 1)δjδk
nd2

+O
(
δmaxrn−2d−3/5), if j 
= k.

Finally, we haveM = (mjk), where

mjk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− δ2j

d2
+O

(
δmaxn−1d−3/5), if j= k;

(1− 2λ)(r − 1)δj
(1− λ)nd

− (r − 1)δ2j
nd2

+ (r − 1)δjδk
nd2

+O
(
δmaxrn−2d−3/5), if j 
= k.

To complete the proof, note that

|(I −D)−1| =
n∏
j=1

(
1− (1− 2λ) δj

(1− λ)d

)−1
= exp

(
R2
2d2

+O
(
δmaxd−3/5))

and, since ‖M‖2 ≤ √‖M‖1‖M‖∞ = o(1),

|I +M| =
n∏
j=1

(1+ μj)= exp

⎛⎝ n∑
j=1

(
μj +O

(|μj|2
))⎞⎠= exp

(
trM +O

(‖M‖2F
))

= exp
(

−R2
d2

+O
(
δmaxd−3/5)),

where μ1, . . . ,μn are the eigenvalues of M and ‖M‖F is the Frobenius norm. The penultimate
equality follows by [30, equation (3.71)], which states that

∑n
j=1 |μj|2 ≤ ‖M‖2F . �

Corollary 6.4. Under assumptions (1.7) and (1.13), we have in the first quadrant that

Hr(d)= r
2n πn/2 |A0|1/2

(
λλ(1− λ)1−λ)−(nr)

× exp
(

− (n− 1) R2
2(1− λ)(n− r)d

+ R2
4d2

+ (1− 2λ) R3
6(1− λ)2d2

− R4
12d3

+O(ε̄)
)
,

where ε̄ = ε + δmaxd−3/5 and |A0| is given by (6.8).

Proof. This follows by substituting Lemmas 6.2 and 6.3 into Theorem 1.1. �
Finally, Theorem 1.5 removes the assumption of being in the first quadrant.

Proof of Theorem 1.5. Since the formula is invariant under the symmetries and matches
Corollary 6.4 within the error term in the first quadrant, it is true in all quadrants. To see this,
observe that under either of our two symmetries, R3 becomes −R3 and (1− 2λ)(n− 2r) becomes
−(1− 2λ)(n− 2r). �
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7. Degrees of random uniform hypergraphs
We now show how to apply the results of Section 6 to analyse the degree sequence of a random
uniform hypergraph with a given number of edges. Define B(K, x)= ( K

λK+x
)
where K, λK + x are

integers. The following lemma is a consequence of Stirling’s expansion for the gamma function.

Lemma 7.1. Let K, x, λ be functions of n such that, as n→ ∞, λ ∈ (0, 1), λ(1− λ)K → ∞ and
x= o

(
λ(1− λ)K

)
. Then

B(K, x)= λ−λK−x−1/2 (1− λ)−(1−λ)K+x−1/2
√
2πK

× exp
(

− x2

2λ(1− λ)K
− (1− 2λ)x

2λ(1− λ)K
− 1− λ + λ2

12λ(1− λ)K
+ (1− 2λ)x3

6λ2(1− λ)2K2

+ (1− 2λ + 2λ2)x2

4λ2(1− λ)2K2 + (1− 2λ)x
12λ2(1− λ)2K2 − (1− 3λ + 3λ2)x4

12λ3(1− λ)3K3

+O
( |x|3 + 1
λ3(1− λ)3K3 + |x|5

λ4(1− λ)4K4

))
.

Proof. This follows from Stirling’s expansion for the factorial, which we use in the form

N! = √
2π NN+1/2e−N exp

(
1

12N
+O(N−3)

)
.

From this we obtain

B(K, x)= KK+1/2
√
2π (λK + x)λK+x+1/2((1− λ)K − x)(1−λ)K−x+1/2

× exp
(

1
12K

− 1
12(λK + x)

− 1
12((1− λ)K − x)

+O
(

1
λ3(1− λ)3K3

))
.

Now write

(λK + x)λK+x+1/2 = (λK)λK+x+1/2 exp
((

K + x+ 1
2

)
log
(
1+ x

λK

))
and similarly for ((1− λ)K − x)(1−λ)K−x+1/2. Expanding the logarithms gives the desired
result. �
Proof of Theorem 1.7. For some p ∈ (0, 1), let X1, . . . , Xn be iid random variables with the bino-
mial distribution Bin

((n−1
r−1
)
, p
)
. Then Br(n,m) is the distribution of (X1, . . . , Xn) conditioned on

the sum being nd. Since the sum has distribution Bin
(
n
(n−1
r−1
)
, p
)
, we find that the conditional

probability is independent of p :

PBr(n,m)(d)=
(n(n−1

r−1
)

nd

)−1 n∏
j=1

((n−1
r−1
)

dj

)
.

Consequently,

PDr(n,m)(d)
PBr(n,m)(d)

= B
(
n
(n−1
r−1
)
, 0
)
Hr(d)

B
((n

r
)
, 0
)∏n

j=1 B
((n−1

r−1
)
, δj
) .

Now use Theorem 1.5 for Hr(d) and Lemma 7.1 for the other factors. �
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Let Z1, . . . , Zn be iid random variables having the hypergeometric distribution with parameters(n
r
)
,m,

(n−1
r−1
)
, wherem= e(d). That is,

P(Zj = k)=
((n

r
)

m

)−1((n−1
r−1
)

k

)((n
r
)− (n−1

r−1
)

m− k

)
. (7.1)

Note that Z1 has precisely the distribution of the degree of one vertex in a uniformly random
r-uniform hypergraph with n vertices and m edges. Now let Tr(n,m) be the distribution of
Z1, . . . , Zn when conditioned on having sum nd. If P := P(Z1 + · · · + Zn = nd), for which there
seems to be no closed formula, we have

PTr(n,m)(d)= P−1
((n

r
)

m

)−n n∏
j=1

(((n−1
r−1
)

dj

)((n
r
)− (n−1

r−1
)

m− dj

))
. (7.2)

Lemma 7.2. Let Z1, . . . , Zn be independent hypergeometric variables with distribution given by
(7.1) and let X1, . . . , Xn be the same conditioned on

∑n
j=1 Zj = nd. Then

(a) Each Zj and Xj has mean d. Also, Zj has variance

σ 2 = (1− λ)(n− r)d2

nd − λr
= Q

n

(
1−

(
n
r

)−1 )−1
. (7.3)

(b) For t ≥ 0, we have for any j that

P(|Zj − d| ≥ t)≤ 2 exp
(

− t2

2(d + t/3)

)
≤
⎧⎨⎩2 exp

(
− t2

4d

)
, 0≤ t ≤ 3d;

2e−3t/4, t ≥ 3d.

(c) If nd + y is an integer in [0,mn], then

P

(∑n

j=1
Zj = nd + y

)
= 1

σ
√
2πn

exp
(

− y2

2nσ 2

)
+O

(
n−1σ−2),

where the implicit constant in the error term is bounded absolutely.
(d) For every nonnegative integer y, P(X1 = y)= C(y)P(Z1 = y), where uniformly

C(y)= P
(∑n

j=2 Zj = nd − y
)

P
(∑n

j=1 Zj = nd
) = (1+O(n−1)

)
exp
(

− (y− d)2

2(n− 1)σ 2

)
+O

(
n−1/2σ−1

)
.

(e) If σ 2 ≥ 1 then for t > 0,

Emin
{
(Z1 − d)2, t2

}= σ 2 +O
(
e−t2/(4d)d + e−9d/4d

)
,

Emin
{
(X1 − d)2, t2

}= (1+O(n−1)
)
σ 2 +O

(
e−t2/(4d)d + e−9d/4d

)
.

Proof. Part (a) is standard theory of the hypergeometric distribution. For parts (b) and (c), we
note that Vatutin andMichailov [28] proved that Zj can be expressed as the sum ofm independent
Bernoulli random variables (generally with different means). Inequality (b) is now standard (see
[14, Theorem 2.1]), while (c) was proved by Fountoulakis, Kang and Makai [8, Theorem 6.3].

https://doi.org/10.1017/S0963548322000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000190


Combinatorics, Probability and Computing 213

For part (d), the standard formula for conditional probability implies that the expression for

P(X1 = y) holds with C(y)= P

(∑n
j=2 Zj=nd−y

)
P

(∑n
j=1 Zj=nd

) . Then by part (c) we have

P

⎛⎝ n∑
j=2

Zj = nd − y

⎞⎠= 1
σ
√
2π(n− 1)

exp
( −(y− d)2

2(n− 1)σ 2

)
+O

(
n−1σ−2),

P

⎛⎝ n∑
j=1

Zj = nd

⎞⎠= 1
σ
√
2πn

(
1+O

(
n−1/2σ−1

))
,

and dividing the first expression by the second gives the stated approximation for C(y).
For (e), we have

Emin
{
(Z1 − d)2, t2

}= σ 2 −
∑
|�|>t

(
�2 − t2

)
P(Z1 = d + �),

where the sum is restricted to integer d + �. We will consider the upper tail, noting that the lower
tail is much the same:∑

�>t

(
�2 − t2

)
P(Z1 = d + �)=

∑
�>t

(�2 − t2)
(
P(Z1 ≥ d + �)− P(Z1 ≥ d + � + 1)

)
≤ (2t + 1)P(Z1 ≥ d + t)+

∑
�>t

(2� + 1) P(Z1 ≥ d + � + 1).

Now we can use the first case of part (b) to obtain the bound O(e−t2/(4d)d) and the second case to
obtain the bound O(e−9d/4d).

For the second part of (e), we have

E
(
(X1 − d)2

)= σ 2 +
∑
j

(
C(j)− 1

)
P(Z1 = j) (j− d)2

= σ 2 +
∑
j

(
exp
(

− (j− d)2

2(n− 1)σ 2

)
− 1+O(1/n)

)
P(Z1 = j) (j− d)2

= σ 2(1+O(n−1)
)+O

(
E
(
(Z1 − d)4

)
nσ 2

)
.

Since σ 2 ≥ 1, the fourth central moment of Z1 satisfies E
(
(Z1 − d)4

)=O(σ 4), as follows from the
exact expression given in [16, equation (5.55)]. Therefore

E
(
(X1 − d)2

)= σ 2(1+O
(
n−1)).

Then the effect of truncation at t can be bounded as before, using the fact that C(�)=O(1). �
Proof of Theorem 1.8. From the definitions of Dr(n,m) and (7.2), we have

PDr(n,m)(d)
PTr(n,m)(d)

= B
((n

r
)
, 0
)n−1 P Hr(d)∏n

j=1

(
B
((n−1

r−1
)
, δj
)
B
((n

r
)− (n−1

r−1
)
,−δj

)) .
Now use Theorem 1.5 for Hr(d), Lemma 7.2(c) for P, and Lemma 7.1 for the other factors. �
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For the proof of Theorem 1.10 we need a concentration lemma.

Lemma 7.3. Let f (x1, . . . , xK) : {0, 1}K →R be a function such that |f (x)− f (x′)| ≤ a whenever
x, x′ differ in only one coordinate. Let Z= (Z1, . . . , ZK) be independent Bernoulli variables (not
necessarily identical), conditioned on having constant sum S. Then, for any t ≥ 0,

P
(|f (Z)−Ef (Z)| > t

)≤ 2 exp
(

− t2

8a2S

)
.

Proof. According to Pemantle and Peres [25, Example 5.4], the measure defined by independent
Bernoulli variables conditioned on a fixed sum has the “strong Rayleigh” property. The proof is
completed by applying [25, Theorem 3.1]. �
Proof of Theorem 1.10. Probabilities in the hypergeometric distribution are symmetric under the
two operations (that is, replacing r by n− r, or replacingm by

(n
r
)−m). Since the error term given

in the theorem is also symmetric under these operations, it suffices to assume that (r, d) belongs
to the first quadrant.

Define

R2(d) :=
n∑
j=1

(dj − d)2 and R′
2(d) :=

n∑
j=1

min
{
(dj − d)2, d log2 n

}
,

and

W := {
d : δmax ≤ d1/2 log n and |R2(d)− nσ 2| ≤ n1/2σ 2 log2 n

}
.

Let Z1, . . . , Zn be iid random variables with distribution (7.1). The distribution Tr(n,m) is that of
(Z1, . . . , Zn) conditioned on

∑n
j=1 Zj = nd.

By the union bound, we have

PTr(n,m)
(|R2(d)− nσ 2| > n1/2σ 2 log2 n

)≤ PTr(n,m)
(
R2(d) 
= R′

2(d)
)

+ PTr(n,m)
(
|R′

2(d)−ER′
2(d)| > n1/2σ 2 log2 n− |nσ 2 −ER′

2(d)|
)
.

Since always C(i)=O(1), Lemma 7.2(b,d) and the union bound give

PTr(n,m)
(
R2(d) 
= R′

2(d)
)≤ n

∑
i:|i−d|>d1/2 log n

PTr(n,m)(Z1 = i) C(i)= n−�(log n).

Next, note that in Tr(n,m) we have |nσ 2 −ER′
2(d)| =O(σ 2)=O(d) by Lemma 7.2(e); for later

use note that this only relies on the condition δmax ≤ d1/2 log n. Recall that each Zj is the sum of
m independent Bernoulli variables, so R′

2(d) is a function of mn independent Bernoulli variables
conditioned on fixed sum nd. Changing one of the Bernoulli variables changes the corresponding
dj by one and changes d by 1/n. Overall, this changes the value of R′

2(d) by at most 2+ 4d1/2 log n.
Applying Lemma 7.3, we have

PTr(n,m)
(|R′

2(d)−ER′
2(d)| > n1/2σ 2 log2 n− |nσ 2 −ER′

2(d)|
)= n−�(log n). (7.4)

Therefore, PTr(n,m)(W)= 1− n−�(log n). Now we can apply Theorem 1.8 to obtain

PDr(n,m)(d)=
(
1+O(ε + n1/10Q−1/10 log n+ n−1/2 log2 n)

)
PT (n,m)(d)

for d ∈W. Here, ε and n1/10Q−1/10 log n come from the error terms in Theorem 1.8, while
n−1/2 log2 n comes from the term R2/Q in Theorem 1.8 since nσ 2 =Q(1+O(n−1/2 log2 n)) in
W, by the definition ofW and (7.3).
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Now consider the probability space Dr(n,m). Since the distribution of each individual degree
is the same as the distribution of Z1, using a union bound and applying Lemma 7.2(b) gives
PDr(n,m)(δmax > d1/2 log n)= n−�(log n) and hence

PDr(n,m)
(
R2(d) 
= R′

2(d)
)= n−�(log n).

In [15], concentration of R2(d) in Dr(n,m) is shown using a lemma on functions of random
subsets. However, that approach (at least, using the same concentration lemma) apparently only
works for r = o(n/ log n), so we will adopt a different approach.

By the same argument as used to prove (7.4),

PTr(n,m)
(|R2(d)− nσ 2| > kn1/2d log2 n

∣∣ δmax ≤ d1/2 log n
)≤ e−Ck2 log2 n

for any positive integer k and some constant C > 0 independent of k. (Similarly to before, we have
used |nσ 2 −ER′

2(d)| =O(d).)
If R2(d)≤ (k+ 1) n1/2σ 2 log2 n then − 1

2 + R2(d)
2Q ≤ (k+1) log2 n

2n1/2 + o(1) and so applying
Theorem 1.8 gives

PDr(n,m)
(
kn1/2σ 2 log2 n< |R2(d)− nσ 2| ≤ (k+ 1)n1/2σ 2 log2 n

∣∣ δmax ≤ d1/2 log n
)

≤ exp
(
−Ck2 log2 n+ (k+ 1) log2 n

2n1/2
+ o(1)

)
.

Summing over k≥ 1, we have

PDr(n,m)
(|R2(d)− nσ 2| > n1/2σ 2 log2 n

∣∣ δmax ≤ d1/2 log n
)= n−�(log n),

and therefore PDr(n,m)(W)= 1− n−�(log n), completing the proof. �

8. Deferred proofs
8.1 Proof of Lemma 1.2
We begin with the operation of replacing each edge by its complement in V , which sends dj to
d′
j = e(d)− dj for each j. Recall that

β ′
j = 1

n− r

( ∑
�∈[n]

β∗
�

)
− β∗

j

and note that for all j, k ∈ [n],∣∣β ′
j − β ′

k
∣∣= ∣∣∣∣ 1

n− r

( ∑
�∈[n]

β∗
�

)
− β∗

j − 1
n− r

( ∑
�∈[n]

β∗
�

)
+ β∗

k

∣∣∣∣= ∣∣β∗
j − β∗

k
∣∣.

In addition, for anyW ∈ Sr(n) we have∑
j∈V\W

β ′
j = n− r

n− r

( ∑
�∈[n]

β∗
�

)
−
∑

j∈V\W
β∗
j =

∑
j∈W

β∗
j .

Therefore for anyW ∈ Sr(n) we have

λV\W(β ′)= e
∑

k∈V\W β ′
k

1+ e
∑

k∈V\W β ′
k

= e
∑

k∈W β∗
k

1+ e
∑

k∈W β∗
k

= λW(β∗). (8.1)
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Note that summing (1.5) over j each edge is counted r times, so
∑

W∈Sr(n) λW(β∗)= e(d). Hence

∑
W�j

W∈Sn−r(n)

λW(β ′) (8.1)=
∑
W 
�j
W∈Sr

λW(β∗)=
∑

W∈Sr(n)
λW(β∗)−

∑
W�j
W∈Sr

λW(β∗)= e(d)− dj,

proving that (d′, β ′) satisfies (1.5). It only remains to show that∣∣A(β ′)
∣∣

(n− r)2
= |A(β∗)|

r2
. (8.2)

ForW ⊆ [n], define the n× nmatrix ΞW by

(ΞW)jk =
{
1, if j, k ∈W;

0, otherwise.

Then,

A(β∗)=
∑

W∈Sr(n)
λW(β∗)(1− λW(β∗))ΞW .

Now note that (I − 1
r J)ΞW(I − 1

r J)= ΞV\W for any W ∈ Sr(n). (The case W = {1, . . . , r} is
representative and easy to check.) Together with (8.1), this proves that(

I − 1
r
J
)
A(β∗)

(
I − 1

r
J
)

=A(β ′).

Finally, |I − 1
r J| = −n−r

r by (3.1), which proves (8.2).
Next, consider the operation that complements the edge set, sending dj to d̃j =

(n−1
r−1
)− dj with-

out changing the edge size. Recall that β̃j = −β∗
j for each j. Then |β̃j − β̃k| = |β∗

j − β∗
k | for all j, k.

Note that for anyW ∈ Sr(n) we have

λW(β̃)= e
∑

k∈W β̃k

1+ e
∑

k∈W β̃k
= e−

∑
k∈W β∗

k

1+ e−
∑

k∈W β∗
k

= 1− λW(β∗),

which implies that A(β̃)=A(β∗). In addition,∑
W�j

λW(β̃)=
(
n− 1
r − 1

)
−
∑
W�j

λW(β∗)=
(
n− 1
r − 1

)
− dj = d̃j,

proving that (̃d, β̃) satisfies (1.5).
The third operation, which complements both the edges and the edge set simultaneously, is

just the composition of the first two in either order. Hence the result for this operation follows
immediately, completing the proof.

8.2 Proof of Lemma 3.7
The following lemmas will be useful.

Lemma 8.1. ([11, (1.13)]). For p ∈R, define

αp(x) := (1+ x2)p − 1
x2

.

Then, for x ∈R
n,

(I + xxt)p = I + αp(‖x‖2) xxt.
Also, for x≥ 0, |α−1/2(x)| ≤ x−2 and |α1/2(x)| ≤ x−1.
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For a matrix X = (xjk), ‖X‖max := maxj,k |xjk| is a matrix norm that is not submultiplicative.
The following is a special case of a lemma in [13].

Lemma 8.2. ([13, Lemma 4.9]) Let M be a real symmetric positive definite n× n matrix with

‖M − I‖max ≤ κ

n
and xtMx≥ γ xtx

for some 1≥ γ > 0, κ > 0 and all x ∈R
n. Then the following are true.

(a)

‖M−1 − I‖max ≤ (κ + γ )κ
γ n

.

(b) There exists a real matrix T such that TtMT = I and

‖T‖1, ‖T‖∞ ≤ κ + γ 1/2

γ 1/2 , ‖T−1‖1, ‖T−1‖∞ ≤ (κ + 1)(κ + γ 1/2)
γ 1/2 .

The next result will be used to find a change of basis matrix to invert A(β).

Lemma 8.3. Let Ā=D+ sst + X be a symmetric positive definite real matrix of order n, where D is
a positive diagonal matrix and s ∈R

n. Define these quantities:
γ := a value in (0, 1) such that xtĀx≥ γ xt(D+ sst)x for all x ∈R

n,
Dmin,Dmax := the minimum and maximum diagonal entries of D,

B := 1+DmaxD−1
min‖s‖1‖s‖∞‖s‖−2

2 ,
κ := B2D−1

min n ‖X‖max.

Then there is a real n× n matrix T such that TtĀT = I and the following are true:

(a)

‖Ā−1 − (D+ sst)−1‖max ≤ B2κ(κ + 1)
Dminγ n

, where

(D+ sst)−1 =D−1 − D−1sstD−1

1+ ‖D−1/2s‖22
;

(b)

‖T‖1, ‖T‖∞ ≤ BD−1/2
min γ −1/2(κ + 1);

(c) For any ρ > 0, define

Q(ρ) := Un(ρ)∩
{
x ∈R

n : |stx| ≤ Dmax‖s‖1
D1/2
min‖s‖2

ρ

}
.

Then
T
(
Un(ρ1)

)⊆Q(ρ)⊆ T
(
Un(ρ2)

)
,

where

ρ1 := 1
B
D1/2
min γ 1/2 (κ + 1)−1ρ, ρ2 := BD 1/2

max γ −1/2 (κ + 1)2ρ.

Proof. Define s1 := D−1/2s, X1 := D−1/2XD−1/2, T1 := (I + s1st1)−1/2 and X2 := Tt
1 X1 T1. By

Lemma 8.1, we have
T1 = I + α−1/2(‖s1‖2)s1st1, (8.3)
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and note that T1 is symmetric, that is, T1 = Tt
1. Therefore

Ā=D+ sst + X =D1/2 (I + s1st1 + X1
)
D1/2 =D1/2T−1

1 (I + X2) T−1
1 D1/2. (8.4)

Recall that by Lemma 8.1 we have |α−1/2(‖s1‖2)| ≤ ‖s1‖−2
2 , so by (8.3),

‖T1‖1, ‖T1‖∞ ≤ 1+ ‖s1‖1‖s1‖∞
‖s1‖22

≤ 1+ Dmax‖s‖1‖s‖∞
Dmin‖s‖22

= B. (8.5)

Next we apply Lemma 8.2 withM = I + X2. By (8.4), xtĀx≥ γ xt(D+ sst)x is equivalent to

(T−1
1 D1/2x)t (I + X2)T−1

1 D1/2x≥ γ (T−1
1 D1/2x)t T−1

1 D1/2x

for all x ∈R
n. Also

‖X2‖max ≤D−1
min‖T1‖2∞‖X‖max

(8.5)≤ B2D−1
min‖X‖max = κ

n
.

Therefore, M, γ , κ satisfy the conditions of Lemma 8.2. Consequently, there exists a transforma-
tion T2 such that Tt

2(I + X2)T2 = I. This, together with (8.4) implies that T =D−1/2T1T2 satisfies
TtĀT = I. In addition, by Lemma 8.2(b), we have

‖T2‖1, ‖T2‖∞ ≤ γ −1/2(κ + 1), ‖T−1
2 ‖1, ‖T−1

2 ‖∞ ≤ γ −1/2(κ + 1)2. (8.6)

Together with (8.5) and ‖D−1/2‖1, ‖D−1/2‖∞ ≤D−1/2
min , this proves part (b).

Next we prove the first inclusion of part (c). Let x ∈Un(ρ1), that is, ‖x‖∞ ≤ ρ1. Then ‖Tx‖∞ ≤
‖T‖∞ ρ1 ≤ ρ by part (b), so Tx ∈Un(ρ). Next

|stTx| = |st1T1T2x| ≤ ‖T1s1‖1‖T2x‖∞.

From (8.6), ‖T2x‖∞ ≤ γ −1/2(κ + 1)ρ1. Also (8.3) gives T1s1 = (1+ ‖s1‖22)−1/2s1, so

‖T1s1‖1 ≤ ‖s1‖1‖s1‖−1
2 ≤D1/2

max‖s‖1D−1/2
min ‖s‖−1

2 .

Combining these bounds proves the inclusion, as B≥ 1.
For the second inclusion of part (c), consider x ∈Q(ρ). Lemma 8.1 implies that T−1

1 = I +
α1/2(‖s1‖2)s1st1, and hence

‖T−1x‖∞ = ‖T−1
2 T−1

1 D1/2x‖∞ ≤ ‖T−1
2 ‖∞

∥∥D1/2x+ α1/2(‖s1‖2)s1stx
∥∥∞.

Now apply (8.6) to ‖T−1
2 ‖∞, the first part of the definition ofQ(ρ) to ‖D1/2x‖∞, the second part

of the definition ofQ(ρ) to |stx|, and recall from Lemma 8.1 that |α1/2(‖s1‖2)| ≤ ‖s1‖−1
2 . Then we

have

‖T−1x‖∞ ≤ γ −1/2(κ + 1)2
(
D1/2
maxρ + ‖s1‖∞

‖s1‖2 · Dmax‖s‖1
D1/2
min‖s‖2

ρ

)

≤ γ −1/2(κ + 1)2D1/2
max ρ

(
1+ Dmax‖s‖1‖s‖∞

Dmin‖s‖22

)
= ρ2.

Finally, we prove part (a). Define X3 := (I + X2)−1 − I. By (8.4) and since T1 = Tt
1 we have

Tt
1D−1/2ĀD−1/2T1 = I + X2. Together with T1 = (I + s1st1)−1/2, this implies

Ā−1 =D−1/2 T1(I + X2)
−1 T1D−1/2 =D−1/2 T1X3Tt

1 D
−1/2 + (D+ sst)−1.
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By Lemma 8.2(a), ‖X3‖max ≤ κ(κ + 1)γ −1n−1 and thus using (8.5) we have

‖Ā−1 − (D+ sst)−1‖∞ ≤D−1
min ‖T1‖21 ‖X3‖max ≤ B2κ(κ + 1)

Dmin γ n
.

The expression for (D+ sst)−1 follows from the Sherman–Morrison theorem (see for example
[22, equation (3.8.2)]). �
Proof of Lemma 3.7. Define Λ̌ := Λ(β) and

c :=
√
1
2
Λ̌

(
n− 2
r − 2

)
.

Then let s := (c, c, . . . , c)t and D := diag(a11 − c2, . . . , ann − c2). We write A(β)=
D+ sst + X.

First we show that the entries of X are small. Note that all the diagonal entries of X are
exactly 0. By Lemma 3.5, the absolute value of any off-diagonal entry in X is at most

|ajk − c2| ≤ (e4δ/r − 1)Λ̌
(
n− 2
r − 2

)
(5.3)≤ e4δ

r
Λ̌

(
n− 2
r − 2

)
. (8.7)

In addition, Lemma 3.5 also implies that for any 1≤ j≤ n we have

ajj − c2 ≥ 1
2
e−4δ/rΛ̌

(
n− 1
r − 1

)
− 1

2
Λ̌

(
n− 2
r − 2

)
= 1

2
e−4δ/rΛ̌

(
n− 1
r − 1

)(
1− (r − 1)e4δ/r

n− 1

)
(5.3)≥ 1

2
e−4δ/rΛ̌

(
n− 1
r − 1

)(
1− (r − 1)(e4δ + r)

r(n− 1)

)
≥ 1

2
e−4δ/rΛ̌

(
n− 1
r − 1

)(
1− e4δ + r

n− 1

)
≥ 1

5
e−4δ/rΛ̌

(
n− 1
r − 1

)
, (8.8)

where in the last step we used r ≤ n/2 and n≥ 16e4δ .
Consider the value of γ as in Lemma 8.3. For any y ∈R

n we have

ytA(β)y= 1
2
∑

W∈Sr(n)
λW(β)(1− λW(β))

(∑
j∈W

yj
)2 L.3.3≥ 1

2
e−2δΛ̌

∑
W∈Sr(n)

(∑
j∈W

yj
)2

= 1
2
e−2δΛ̌yt

((
n− 1
r − 1

)
I −
(
n− 2
r − 2

)
I +
(
n− 2
r − 2

)
J
)
y

= 1
2
e−2δΛ̌

((
n− 2
r − 1

)
‖y‖22 +

(
n− 2
r − 2

)( n∑
j=1

yj
)2 )

.

On the other hand, by Lemma 3.5 we have

yt(D+ sst)y≤ 1
2
e4δΛ̌

((
n− 1
r − 1

)
‖y‖22 +

(
n− 2
r − 2

)( n∑
j=1

yj
)2 )

= 1
2
e4δΛ̌

(
n− 1
n− r

(
n− 2
r − 1

)
‖y‖22 +

(
n− 2
r − 2

)( n∑
j=1

yj
)2 )

≤ 2e4δΛ̌
((

n− 2
r − 1

)
‖y‖22 +

(
n− 2
r − 2

)( n∑
j=1

yj
)2 )

,
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where the last inequality holds as r ≤ n/2. Therefore setting γ := e−6δ/4, we have for any y ∈R
n

that ytAy≥ γ yt(D+ sst)y. Let B be as in Lemma 8.3. Then

B= 1+ Dmax‖s‖1‖s‖∞
Dmin‖s‖22

= 1+ Dmax
Dmin

≤ 4e8δ/r , (8.9)

which follows from Lemma 3.5 and (8.8).
For κ as in Lemma 8.3, using (8.7), (8.8) and (8.9), we have

κ = B2 D−1
min n ‖X‖max ≤ 80e16δ/r

e4δr−1Λ̌
(n−2
r−2
)

e−4δ/rΛ̌
(n−1
r−1
) n≤ 80e20δ/r+4δ . (8.10)

Next we consider the matrix (D+ sst)−1. By Lemma 8.3 we have

(D+ sst)−1 =D−1 − D−1sstD−1

1+ ‖D−1/2s‖22
,

and we are interested in an upper bound on the absolute value of the elements of this matrix. First
consider the vector D−1s and note that

D−1s=

⎛⎜⎜⎜⎝
c

a11−c2
...

c
ann−c2

⎞⎟⎟⎟⎠ .

Together with (8.8) this implies that every element in the matrix D−1sstD−1 has absolute value
at most

16e8δ/r
Λ̌
(n−2
r−2
)

Λ̌2
(n−1
r−1
)2 ≤ 16e8δ/r

1
Λ̌
(n
r
) . (8.11)

Similarly

D−1/2s= c

⎛⎜⎜⎜⎝
(a11 − c2)−1/2

...

(ann − c2)−1/2

⎞⎟⎟⎟⎠ ,

implying that

‖D−1/2s‖22 = c2
n∑
j=1

1
ajj − c2

L.3.5≥ e−4δ/r Λ̌
(n−2
r−2
)

Λ̌
(n−1
r−1
)n≥ r

2
e−4δ/r ,

and hence

1+ ‖D−1/2s‖22 ≥ r
2
e−4δ/r . (8.12)

Therefore, by (8.11) and (8.12), every element of D−1sstD−1

1+‖D−1/2s‖22
has absolute value at most

16
1/2

· e
12δ/r

rΛ̌
(n
r
) = 32

e12δ/r

Λ̌
(n−1
r−1
)
n
, (8.13)
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and thus so do the off-diagonal elements of (D+ sst)−1. As for the diagonal elements, by (8.8) and
(8.13), each has absolute value at most

5e4δ/r

Λ̌
(n−1
r−1
) + 32e12δ/r

Λ̌
(n−1
r−1
)
n

≤ 8e12δ/r

Λ̌
(n−1
r−1
) ,

as n≥ 16e4δ ≥ 16.
Now we have all the information needed to establish a bound on the absolute value of the

elements in A(β)−1 using Lemma 8.3(a). In particular, using (8.8), (8.9) and (8.10), the diagonal
entries of A(β)−1 have absolute value at most

8e12δ/r

Λ̌
(n−1
r−1
) + B2κ(κ + 1)

Dminγ n
≤ 8e12δ/r

Λ̌
(n−1
r−1
) + Ĉe60δ/r+14δ

Λ̌
(n−1
r−1
)
n

≤ (8+ Ĉ)
e60δ/r+14δ

Λ̌
(n−1
r−1
) ,

for some sufficiently large constant Ĉ. On the other hand, the off-diagonal entries have absolute
value at most

32e12δ/r

Λ̌
(n−1
r−1
)
n

+ B2κ(κ + 1)
Dminγ n

≤ 32e12δ/r

Λ̌
(n−1
r−1
)
n

+ Ĉe60δ/r+14δ

Λ̌
(n−1
r−1
)
n

≤ (32+ Ĉ)

(
e60δ/r+14δ

Λ̌
(n−1
r−1
)
n

)
.

The first statement follows by setting C = 32+ Ĉ and using the fact that r ≥ 3.
Now for the second statement. Substituting (8.8), (8.9) and (8.10) into Lemma 8.3(b) gives

‖T‖1, ‖T‖∞ =O

⎛⎝ 1

Λ̌1/2
(n−1
r−1
)1/2

⎞⎠ ,

as required.
Now for the last statement of the lemma. For any real z ≥ 0, let

ρ̂(z)= z
n
r1/2

D1/2
min‖s‖2

Dmax‖s‖1 cρ.
Then

Q
(
ρ̂(z)

)= {x ∈Un
(
ρ̂(z)

)
:
∣∣∣∣ ∑
j∈[n]

xj
∣∣∣∣≤ z nr−1/2ρ

}
.

Note that

n
r1/2

D1/2
min‖s‖2

Dmax‖s‖1 c= �

(
n
r1/2

‖s‖2
D1/2
min‖s‖1

c

)
= �

⎛⎝ n
r1/2

1

Λ̌1/2
(n−1
r−1
)1/2 n1/2cnc

c

⎞⎠
= �

⎛⎝n1/2

r1/2
1

Λ̌1/2
(n−1
r−1
)1/2 Λ̌1/2

(
n− 2
r − 2

)1/2 ⎞⎠= �

((
n(r − 1)
(n− 1)r

)1/2 )
= �(1).

Therefore there exists z1 = �(1) such that ρ̂(z1)≤ ρ and z1 ≤ 1. Together with Lemma 8.3, this
implies that

T
(
Un(ρ1)

)⊆Q
(
ρ̂(z1)

)⊆R(ρ),

where

ρ1 = 1
B
D1/2
min γ 1/2 (1+ κ)−1ρ̂(z1)= �

(
Λ̌1/2

(
n− 1
r − 1

)1/2
ρ

)
.
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Similarly there must exist z2 =O(1) such that ρ̂(z2)≥ ρ and z2 ≥ 1. Then by Lemma 8.3 we
have

T
(
Un(ρ2)

)⊇Q
(
ρ̂(z2)

)⊇R(ρ),

where

ρ2 = BD 1/2
max γ −1/2 (1+ κ)2ρ̂(z2)= �

(
Λ̌1/2

(
n− 1
r − 1

)1/2
ρ

)
.

This completes the proof. �

9. Appendix: useful identities
In this appendix we provide summations that help for the calculations in Section 6. We use the
notation

N =
(
n− 1
r − 1

)
= d

λ
, Γs = Γs(W)=

∑
�∈W

δs�, Rs =
n∑

�=1
δs�

and recall that R1 = 0. We provide approximations for some expressions, assuming that (r, d)
belongs to the first quadrant and δmax =O(d3/5). The error bounds are good enough for our
applications but are not necessarily tight.

9.1 Summations over all W ∈ Sr(n)

1
N

∑
W∈Sr(n)

Γ� = R� (� ≥ 1),

1
N

∑
W∈Sr(n)

Γ1Γ� = (n− r)R�+1
n− 1

(� ≥ 1),

1
N

∑
W∈Sr(n)

Γ 3
1 = (n− r)(n− 2r)R3

(n− 2)(n− 1)
= R3 +O

(
δmax d7/5

)
,

1
N

∑
W∈Sr(n)

Γ 4
1 = 3(r − 1)(n− r)(n− r − 1)R22

(n− 3)(n− 2)(n− 1)
+ (n− r)(n2 − 6rn+ 6r2 + n)R4

(n− 3)(n− 2)(n− 1)

= 3(r − 1)R22
n

+ R4 +O
(
δmax d12/5

)
,

1
N

∑
W∈Sr(n)

Γ 2
2 = (r − 1)R22

n− 1
+ (n− r)R4

n− 1
= (r − 1)R22

n
+ R4 +O

(
δmax d12/5

)
,

1
N

∑
W∈Sr(n)

Γ 2
1 Γ2 = (r − 1)(n− r)R22

(n− 2)(n− 1)
+ (n− r)(n− 2r)R4

(n− 2)(n− 1)

= (r − 1)R22
n

+ R4 +O
(
δmax d12/5

)
.
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9.2 Summations over all W � j

1
N
∑
W�j

Γ� = (r − 1)R�

n− 1
+ (n− r) δ�

j

n− 1
(� ≥ 1),

1
N
∑
W�j

Γ1Γ� = (r − 1)(n− r)δjR�

(n− 2)(n− 1)
+ (r − 1)(n− r)R�+1

(n− 2)(n− 1)
+ (n− r)(n− 2r)δ�+1

j

(n− 2)(n− 1)
(� ≥ 1),

1
N
∑
W�j

Γ 3
1 = 3(r − 1)(n− r)(n− r − 1)δjR2

(n− 3)(n− 2)(n− 1)
+ (r − 1)(n− r)(n− 2r + 1)R3

(n− 3)(n− 2)(n− 1)

+ (n− r)(n2 − 6rn+ 6r2 + n)δ3j
(n− 3)(n− 2)(n− 1)

= 3(r − 1)δjR2 + (r − 1)R3
n

+ δ3j +O
(
d12/5

rn

)
,

1
N
∑
W�j

Γ 4
1 = 3(r − 2)(r − 1)(n− r)(n− r − 1)R22

(n− 4)(n− 3)(n− 2)(n− 1)

+ 6(r − 1)(n− r)(n− r − 1)(n− 2r)δ2j R2
(n− 4)(n− 3)(n− 2)(n− 1)

+ 4(r − 1)(n− r)(n− r − 1)(n− 2r)δjR3
(n− 4)(n− 3)(n− 2)(n− 1)

+ (r − 1)(n− r)(n2 − 6rn+ 6r2 + 5n− 6r)R4
(n− 4)(n− 3)(n− 2)(n− 1)

+ (n− r)(n− 2r)(n2 − 12rn+ 12r2 + 5n)δ4j
(n− 4)(n− 3)(n− 2)(n− 1)

=O
(
d17/5

rn

)
.

9.3 Summations over all W ⊃ {j, k}
1
N

∑
W⊃{j,k}

Γ� = (r − 2)(r − 1)R�

(n− 2)(n− 1)
+ (r − 1)(n− r)(δ�

j + δ�
k)

(n− 2)(n− 1)

= (r − 2)(r − 1)R�

n2
+ (r − 1)(δ�

j + δ�
k)

n
+O

(
δmaxr d�−3/5

n2

)
(� ≥ 1),

1
N

∑
W⊃{j,k}

Γ 2
1 = (r − 2)(r − 1)(n− r)R2

(n− 3)(n− 2)(n− 1)

+ (r − 1)(n− r)
(
(n− 2r + 1)(δ2j + δ2k)+ 2(n− r − 1)δjδk

)
(n− 3)(n− 2)(n− 1)

= (r − 2)(r − 1)R2
n2

+ (r − 1)
(
δj + δk

)2
n

+O
(

δmaxr d7/5

n2

)
.
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