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Abstract

Giardia duodenalis and Cryptosporidium spp. are common intestinal protozoa that can cause
diarrhoeal disease. Although cases of infection with Giardia and Cryptosporidium have been
reported in Alaska, the seroprevalence and correlates of exposure to these parasites have not
been characterised. We conducted a seroprevalence survey among 887 residents of Alaska,
including sport hunters, wildlife biologists, subsistence bird hunters and their families and
non-exposed persons. We tested serum using a multiplex bead assay to evaluate antibodies
to the Giardia duodenalis variant-specific surface protein conserved structural regions and
to the Cryptosporidium parvum 17- and 27-kDa antigens. Approximately one third of parti-
cipants in each group had evidence of exposure to Cryptosporidium. Prevalence of Giardia
antibody was highest among subsistence hunters and their families (30%), among whom posi-
tivity was associated with lack of community access to in-home running water (adjusted
prevalence ratio [aPR] 1.15, 95% confidence interval (CI) 1.02–1.28) or collecting rain, ice,
or snow to use as drinking water (aPR 1.09, 95% CI 1.01–1.18). Improving in-home water
access for entire communities could decrease the risk of exposure to Giardia.

Introduction

Infection with intestinal protozoa such as Giardia duodenalis (syn. Giardia lamblia, Giardia
intestinalis) and Cryptosporidium spp. can cause recurrent and persistent diarrhoeal disease,
leading to widespread morbidity globally [1, 2]. In the USA, Cryptosporidium is a leading
cause of waterborne outbreaks, with an estimated incidence of three reported cases per 100
000 persons per year [3]. In 2012, the rate of giardiasis was estimated to be six reported
cases per 100 000 persons per year in the USA [4]. After accounting for underreporting,
these two parasites combined are estimated to cause over 1 million total episodes of disease
per year in the USA [5]. In Alaska, annual incidence rates of Cryptosporidium tend to be
low, but giardiasis incidence is routinely higher than the rest of the USA [6].

Both Giardia and Cryptosporidium are transmitted fecal-orally, either person-to-person,
animal-to-person, or through contaminated food or water. Contamination can originate either
from humans or from animals. In the USA, source water at 46% and 25% of 25 drinking water
treatment facilities was found to be contaminated with Giardia cysts and Cryptosporidium
oocysts, respectively, indicating the presence of the pathogens in the environment [7]. A recent
meta-analysis showed that access to sanitation facilities and use of treated water decrease the risk
ofGiardia and Cryptosporidium infection [8]. In the USA, seropositivity toCryptosporidium has
also been associated with nonwhite race or ethnicity and low socio-economic status [9, 10]. Some
studies have identified risk factors that are specific to particular strains of Giardia (known as
assemblages); human infection with assemblage A has been associated with contact with animals
while assemblage B has been associated with human–human transmission [11, 12].

Water insecurity is a pervasive concern among the geographically-isolated communities in
rural Alaska [13]. In 2010, 22% of rural households did not have access to in-home water and
sewer services [14]. Alaska is ranked last among all US states regarding complete plumbing,
defined as hot and cold pipedwater, a bath- tub or showerand a flush toilet. Among the ten census
areas in the USA ranked lowest in the proportion of homes served, seven are in Alaska [15].
Households that do not have piped or ‘running’ water may collect potable water from a treated
community watering point or collect surfacewater, rain, snow, or ice to use as drinking and cook-
ing water [13]. In this population, lack of access to piped water is associated with increased
respiratory hospitalisations in children, skin infections, gastrointestinal infections, invasive
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pneumococcal disease and nasopharyngeal pneumococcal carriage
[16–21]. Hunted mammals and other wildlife have been shown to
carry Giardia and Cryptosporidium, which could lead to direct
transmission to humans or contamination of water sources [22–
24]. However, associations between access to water and intestinal
parasites have not yet been identified in Alaska.

In 2007 and 2008, we conducted a zoonotic pathogen serosur-
vey of four groups in Alaska: subsistence bird hunters and their
families, sport hunters, wildlife biologists and non-bird hunters.
In this analysis, we evaluated the prevalence of Giardia and
Cryptosporidium antibodies, assessed correlates of exposure in
each group and tested whether access to in-home running water
was associated with the prevalence of these antibodies.

Methods

Study design

This study is a secondary analysis of sera collected for an investiga-
tion of exposure to highly pathogenic avian influenza virus H5N1,
as described byReed et al. [25]. The overall study evaluated zoonotic
pathogens among four different groups in Alaska who could be at
high risk for avian influenza. The objectives of the current analysis
were to evaluate the risk factors for IgG seropositivity to Giardia
and Cryptosporidium in each group. Study participants were ⩾5
years of age and resided in urban or rural communities throughout
Alaska. Groups included: (1) residents who likely had little to no
exposure to wild birds (labelled hereafter as ‘non-exposed’), (2)
wildlife biologists, (3) sport hunters and (4) subsistence bird hun-
ters (labelled hereafter as ‘subsistence hunters’) and their family
members. The non-exposed group comprised Alaskans who did
not hunt wild birds and resided in Anchorage or Bethel (a rural
hub community). These participants were recruited through flyers
on health campuses and newspaper advertisements. Wildlife biolo-
gists must have been engaged in fieldwork for at least one field sea-
son in Alaska within the past 5 years. Biologists were recruited
through flyers mailed to researcher offices, email lists, conference
attendees and members of the Audubon Society. A sport hunter
was defined as an individual who participated in the hunting of
wild birds. These hunters were recruited in Anchorage and
Dillingham (a rural hub community) through mailings to hunting
license lists. A subsistence bird hunter was defined as an individual
who participated in the hunting of birds and lived in a rural area of
south-west Alaska. Hunters of either type must have hunted for at
least 2 years in their lifetime and hunted at least one time in the 2
years prior to enrollment. Family members of subsistence hunters
were also recruited. Subsistence hunters and their families were
recruited through flyers posted in public areas in each community.
Any study participants could have hunted animals other than birds;
this information was not collected. Participants ⩾18 years of age
providedwritten, informed consent. Participants <18 years old pro-
vided written, informed assent in addition to their parent or legal
guardian’s written consent. This studywas approved by the regional
AlaskaNative TribalHealthOrganizations, the Institutional Review
Boards of the Alaska AreaNativeHealth Service and the Centers for
Disease Control and Prevention (CDC).

Questionnaire

Upon enrollment, the study team verbally administered a stand-
ard questionnaire to participants about location of residence,
demographic information (age, gender, the highest level of formal

education, occupation), household plumbing and water use prac-
tices. Water use questions included ‘Do you have running water in
your home?’ and ‘Do you collect rainwater, ice or snow, to drink
or cook within your home? If yes, do you treat the water? If yes,
how is it treated?’ For community-level analyses, each community
was assigned a proportion value based on the percentage of
participants that reported water access or water collection.

Serological testing

The study team collected 10 ml of blood from adults and children.
Participants who declined to submit a blood specimen were
excluded from the analysis. The methods for Giardia and
Cryptosporidium serological testing by multiplex bead assay
(MBA) are described elsewhere [26, 27]. Briefly, we used antigen-
coupled SeroMap beads (Luminex Corporation, Austin TX) in the
MBA to detect IgG antibodies to five of the Giardia variant-
specific surface protein conserved structural regions (VSPs 1–5)
representing both of the human-infective assemblages (A and
B) [21]. Samples were run in duplicate and data were reported
as the average of the median fluorescence intensity minus the
buffer-only background blank (MFI-bg). Giardia antibody
response cutoffs were established previously using a set of sera
from 65 US citizens with no history of foreign travel [27]. After
removing the three highest responses for each antigen, the
mean + 3SD cutoffs calculated for VSP1–5 were 209, 270, 262,
209 and 206 MFI-bg units, respectively. Participants were consid-
ered to have been exposed to Giardia if they had positive antibody
responses to at least two of the recombinant VSP proteins.
SeroMap beads coupled with recombinant Cryptosporidium par-
vum 17- and 27-kDa antigens were included in the assays to
detect IgG antibodies to Cryptosporidium sp. [26]. Cutoffs of
933 and 1870 MFI-bg units for Cp17 and Cp23, respectively,
were established using a panel of 42 human sera previously char-
acterised using the ‘gold standard’ large format Western blot IgG
assay [26, 28]. Participants were considered to have been exposed
to Cryptosporidium if they had positive antibody responses to
both antigens. We also tested for IgG antibody responses to the
carboxy-terminal, immunodominant peptide of the C. parvum
60S acidic ribosomal protein P2 (CpP2) [29, 30]. No CpP2 cutoff
value was assigned. A SeroMap bead coupled with recombinant
Schistosoma mansoni glutathione-S-transferase protein with no
fusion partner was included in each well as a negative control.

Statistical analysis

Exposure groupswere analysed separately.Wedescribed the risk fac-
tor distribution in each group usingmeans and frequencies.We then
described the prevalence of Giardia and Cryptosporidium antibody
positivity by demographic factors within groups. ForGiardia, statis-
tical analyses were conducted using the continuous values for VSP3
(assemblage A) and VSP5 (assemblage B) and the binary values
using the cut-offs for seropositivity, as described above.Weused log-
binomial general estimating equations clustered on the community
of residence to assess risk factors for the serum MFI-bg for Giardia
and Cryptosporidium among subsistence hunters using Stata14
(StataCorp LP, College Station, TX). We first evaluated univariable
then multivariable models, controlling for variables chosen as
potential determinants of exposure a priori. In these models, we
used individual-level and community-level exposures to water
access, as described above. Prevalence ratios (PR) are presented
with corresponding 95% confidence interval (CI).
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Results

We recruited 916 participants; 887 were tested for Giardia and
Cryptosporidium antibodies, including 160 sport hunters, 454
subsistence hunters and their family members, 77 wildlife biolo-
gists and 196 non-exposed. The subsistence hunters and their
families lived in six communities in rural southwest Alaska
while the sport hunters, biologists and non-exposed groups
lived in the Anchorage area, Fairbanks, Bethel and Juneau. The
groups had significantly different demographic characteristics
(Table 1). Sport hunters had the highest mean age (44 years)
and the non-exposed group had the highest proportion of
women (71%). Subsistence hunters and their families had the
highest proportion of participants that did not have piped water
in their homes. High proportions of biologists and subsistence
hunters and family members reported collecting snow, rain, or
ice for drinking or cooking. Among participants who reported
treating any of their water, boiling was the most common method
of water treatment (72%).

The geometric mean MFI-bg value of anti-VSP3 and VSP5
Giardia antibodies varied across groups (Table 1); subsistence
hunters and their families had the highest geometric mean
responses (geometric mean 111 (95% CI 93–132) for VSP3 and
102 (95% CI 85–123) for VSP5) . Cryptosporidium 17 and 27 anti-
body MFI-bg values did not differ across groups. Giardia values
were positively correlated with each other and with both
Cryptosporidium values (data not shown, P < 0.001 for all).
Cryptosporidium CpP2 antibody response values were generally
low (median <10 MFI-bg units, standard deviation = 43).

Similar to the MFI-bg continuous values, the prevalence of
positive Giardia antibody responses was highest among subsist-
ence hunters and their families (30% positivity), while the

prevalence of positive Cryptosporidium antibody responses was
similar across groups (Table 2). Giardia antibody prevalence
tended to be higher among men while Cryptosporidium preva-
lence was higher among women in some groups. Prevalence of
Cryptosporidium positivity was higher among older age groups.
Neither Giardia nor Cryptosporidium antibody prevalence
showed trends across formal education level.

Over 90% of participants in the biologist, sport hunter and
non-exposed groups reported access to piped water in their
homes (Table 1). In contrast, only 70% of subsistence hunters
and their families reported having piped water. Among subsist-
ence hunters with no piped water, 37% had positive Giardia anti-
body responses, compared with 26% among participants who
reported access to piped water at home (PR 1.41, 95% CI 1.05–
1.88). Also among subsistence hunters and families, 35% of
those who reported collecting rain, snow, or ice for water were
positive for Giardia antibodies, compared with 22% of those
who did not report collecting water (PR 1.6, 95% CI 1.15–2.15).
However, these associations did not remain significant after
accounting for clustering based on a community of residence
(PR 1.12, 95% CI 0.82–1.54 and PR 1.05, 95% CI 0.73–1.52,
respectively).

The proportion of participants who reported either not having
access to in-home running water or collecting rain, ice, or snow
was associatedwithGiardia antibody prevalence at the community-
level (Table 3) but was not associated with Cryptosporidium preva-
lence (data not shown). As the percentage of participants who
reported either not having access to in-home running water or col-
lecting rain, ice, or snow in a community increased, the prevalence
of participants with Giardia antibody responses also increased. On
average, an additional 10% of a community population that did not
have access to running water was associated with a 15% increase in

Table 1. Characteristics of sport hunters, subsistence bird hunters and families, wildlife biologists and non-exposed participants, Alaska 2007–2008

No wild bird
exposure (n = 196)

Wildlife biologists
(n = 77)

Sport hunters
(n = 160)

Subsistence bird
hunters and
families (n = 454) Total (N = 887) P-value

Mean age in years, (standard deviation) 36 (15) 42 (12) 44 (15) 27 (17) 34 (17) <0.001

Male, n (%) 57 (29%) 52 (67%) 149 (93%) 246 (54%) 505 (57%) <0.001

Greater than 12 years of formal education,
n (%)a

133 (76%) 70 (91%) 123 (81%) 42 (15%) 368 (54%) <0.001

No running water, n (%) 0 (0%) 5 (6%) 0 (0%) 135 (30%) 140 (16%) <0.001

Collects rain, ice, or snow 7 (4%) 52 (70%) 7 (4%) 259 (57%) 325 (36%) <0.001

Treats water, n (%) 4 (11%) 35 (70%) 5 (11%) 76 (29%) 120 (30%) <0.001

Method of water treatmentb

Boiling 2 (50%) 13 (37%) 2 (40%) 69 (91%) 86 (72%) <0.001

Filtering 0 (0%) 22 (63%) 3 (60%) 3 (4%) 28 (23%) <0.001

Chemical 2 (50%) 4 (10%) 0 (0%) 0 (0%) 6 (5%) <0.001

Giardia VSP3c, MFI-bg units 19 (16, 23) 36 (24, 55) 33 (26, 43) 111 (93–132) 55 (49, 62) <0.001

Giardia VSP5c, MFI-bg units 19 (16, 23) 33 (22, 50) 28 (21, 37) 102 (85–123) 51 (45, 57) <0.001

Cryptosporidium 27c, MFI-bg unitsd 401 (295, 545) 500(319, 785) 375 (276, 510) 516 (439–607) 460 (405, 521) 0.151

Cryptosporidium 17c, MFI-bg unitsd 1694 (1286, 2232) 1800 (1181, 2742) 1961 (1478, 2601) 2221 (1815–2666) 2009 (1769, 2282) 0.084

aAmong participants ⩽18 years old.
bAmong participants who reported treating water.
cGeometric mean concentration (95% CI).
dMFI-bg: median fluorescence intensity minus buffer-only background.
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the prevalence of Giardia antibodies among participants, after
adjusting for an individual’s age, sex and formal education level
(Table 3). Similarly, on average each additional 10%of a community
population that collected rain, ice, or snowwas associated with a 9%
increase in the prevalence of Giardia antibodies among partici-
pants, adjusting for an individual’s age, sex and formal education
level. Communities with higher proportions of participants that
reported no access to running water had higher proportions of par-
ticipants also reporting collecting rain, ice, or snow (data not shown;
P < 0.001).

Discussion

We assessed the seroprevalence of Giardia and Cryptosporidium
in sport hunters, biologists, subsistence hunters and participants
who were not exposed to wild birds in Alaska. Almost one-third
of participants in each group had evidence of current or recent
exposure to Cryptosporidium. We found evidence of previous
Giardia exposure in 30% of subsistence hunters and their families,
compared with 5–12% of the other groups. Among subsistence
hunters and their families, Giardia antibody prevalence was

Table 2. Giardia and Cryptosporidium IgG antibody seroprevalence by demographic factors, Alaska 2007–2008

No wild bird exposure
(N = 196)

Wildlife biologists
(N = 77)

Sport hunters
(N = 160)

Subsistence bird hunters
and families (N = 454)

Giardia, n positive (%) Sex Female 4 (3%) 2 (8%) 1 (9%) 51 (25%)

Male 5 (9%) 4 (8%) 18 (12%) 83 (34%)

Age <15 years 0 (0%) – 0 (0%) 45 (41%)

16–25 years 0 (0%) 0 (0%) 2 (13%) 28 (20%)

26–35 years 1 (3%) 3 (14%) 2 (12%) 12 (18%)

36–45 years 5 (11%) 1 (4%) 8 (14%) 30 (35%)

>45 years 3 (5%) 2 (7%) 7 (11%) 19 (35%)

Formal education Less than
grade 12

2 (3%) 0 (0%) 5 (13%) 114 (29%)

At least grade
12

7 (5%) 6 (9%) 14 (11%) 20 (32%)

Running water at
home

No – 1 (20%) – 50 (37%)

Yes 9 (5%) 5 (7%) 19 (12%) 83 (26%)

Collects rain,
snow, ice

No 9 (5%) 4 (17%) 17 (11%) 43 (22%)

Yes 0 (0%) 2 (4%) 2 (29%) 91 (35%)

Total 9 (5%) 6 (8%) 19 (12%) 134 (30%)

Cryptosporidium, n
positive (%)

Sex Female 44 (32%) 8 (32%) 1 (9%) 73 (35%)

Male 9 (16%) 17 (33%) 42 (28%) 62 (25%)

Age <15 years 0 (0%) – 0 (0%) 5 (4%)

16–25 years 7 (15%) 1(33%) 2 (13%) 17 (12%)

26–35 years 4 (10%) 6 (27%) 4 (23%) 22 (33%)

36–45 years 11 (24%) 10 (40%) 11 (20%) 56 (65%)

>45 years 31 (57%) 8 (30%) 26 (39%) 35 (65%)

Formal Education Less than
grade 12

15 (25%) 1 (14%) 8 (22%) 117 (30%)

At least grade
12

38 (28%) 24 (34%) 35 (28%) 18 (28%)

Running water at
home

No – 2 (40%) – 35 (26%)

Yes 53 (27%) 25 (32%) 43 (27%) 99 (31%)

Collects rain,
snow, ice

No 51 (27%) 8 (33%) 42 (28%) 49 (25%)

Yes 2 (28%) 17 (33%) 1 (14%) 85 (33%)

Total 53 (27%) 25 (32%) 43 (27%) 135 (30%)
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associated with the percentage of their community of residence
that had access to piped water and the percentage of the commu-
nity that reported collecting rain, ice, or snow as drinking or
cooking water.

Prevalence studies frequently focus on acute infections and
parasites are usually detected using stool microscopy or fecal anti-
gen tests. Prevalence studies based on stool microscopy or fecal
antigen tests have not been conducted in Alaska. However, 101
cases of Giardia infection and 12 cases of Cryptosporidium infec-
tion were reported in 2011 [31]. Our serosurvey suggests that
cases might be underreported, especially given the high preva-
lence of Cryptosporidium antibody positivity but low numbers
of reported cases.

Seroprevalence studies of Giardia and Cryptosporidium are less
common and it is often difficult to compare results as the antigens
used in the serologic tests vary between surveys and the methods
for determining positive cut-off values are not universally stan-
dardised. Other studies have found varying seroprevalences of
Giardia and Cryptosporidium. In the Caribbean, 41% of pregnant
women were found to be seropositive for Giardia [32]. A national
survey in Mexico showed a Giardia seroprevalence of 55% [33].
The National Health and Nutrition Evaluation Survey
(NHANES) in the USA found Cryptosporidium seropositivity to
be 21% (CI = 18.5–23.9%) for individuals between 6 and 49
years of age in 2000, using the same antigens as the current
study [10]. The seroprevalence of Giardia and Cryptosporidium
that we identified in Alaska falls within a similar range to these
prior estimates, despite the lack of standardisation.

Although the seroprevalence of Cryptosporidium-specific anti-
bodies was moderately high in this study, very few participants
demonstrated antibody responses to the Cryptosporidium antigen
P2. Previous work suggests that this antibody is a proxy for
acquired immunity to Cryptosporidium and may be present in
areas of high disease burden [30]. Cryptosporidium seropreva-
lence did not vary between groups and was not associated with
in-home water access. This may be a result of Cryptosporidium’s
higher resistance to disinfection [34]. Other factors that might
influence Cryptosporidium exposure aside from geography and
water might include international travel, contact with animals,
or contact with persons with diarrhea [35, 36].

Untreated water consumption has often been associated with
exposure to Giardia and Cryptosporidium [8, 37, 38]. In our
study, participants without piped water in their homes had higher
unadjusted seroprevalence of Giardia. However, the individual-
level effect disappeared when we took into consideration the
high correlation of Giardia results within communities. This sug-
gests that the water access within participants’ homes was not
truly associated with their likelihood of exposure to Giardia
after accounting for their community of residence. In contrast,
the water access level of the community in which each participant
lived remained statistically significantly associated with Giardia
exposure, even after adjustment for potential confounders and
accounting for community-level clusters. A causal interpretation
could be that the community-level access to water was related
to the level of circulating Giardia, which affected the potential
for individual exposure. We were not able to control all potential
community-level confounding, though, and therefore, it is pos-
sible that this effect is non-causal. It may be that communities
with lower proportions of water access are different from other
communities based on other factors that are associated with
Giardia, such as animal or social contact patterns, cooking prac-
tices, or socio-economic status.

Other possible routes of transmission for Giardia and
Cryptosporidium exist inAlaska. Forexample, companionandhunted
animals have been shown to carry Giardia and Cryptosporidium,
which may lead to transmission [22, 39, 40]. In Alaska, both
Giardia sp. and Cryptosporidium sp. have been identified in marine
mammals, which are commonly hunted by subsistence hunters
[22]. These animals might also serve as reservoirs that can contamin-
ate the environment. Giardia transmission has also been linked to
daycare centers in Alaska [41]. Despite these other transmission
routes, improved access to in-home running water in Alaska
could potentially decrease the likelihoodof exposure to these parasites
[8, 18, 42].

This study provides a unique insight into the burden of diar-
rhoeal parasites in Alaska. However, there are some limitations to
the interpretation of these data. First, the data presented here were
not collected with the intent to evaluate water access as a risk fac-
tor for Giardia or Cryptosporidium exposure. As previously
described, the original study was to evaluate exposure to wild
birds [25]. For this reason, not all of the water-, sanitation- and
hygiene-related variables, which are required to fully assess the
relationship between water access and seropositivity for Giardia
and Cryptosporidium, were available for analysis. As a result, we
are not able to adjust for all potential confounders in the
community-level comparison of Giardia prevalence and water
access, which may lead to confounding in the association. Also,
the sample frame for a study intended to understand risk factors
for Giardia and Cryptosporidium exposure would likely be differ-
ent than the current study. For example, a better design would
have more deliberate inclusion of participants from communities
with and without in-home water and sanitation and from com-
munities from environments with different likelihoods of expo-
sures to vectors, such as river vs. coastal locations. Second,
because seroprevalence studies for enteric parasitic diseases are
not yet common, no calibrated positive serum standards are avail-
able and methods for data interpretation and cutoff identification
are not globally standardised. Additionally, the study was con-
ducted as a cross-section, so we cannot draw temporal associa-
tions. However, given waterborne transmission patterns of these
parasites, the associations benefit from biologic plausibility.
Finally, while the seroprevalence of these pathogens does indicate

Table 3. Giardia seroprevalence ratios among subsistence bird hunters and
their families in rural Alaska (n = 454)

β (95% CI)

Unadjusted Adjusted

Sex (Male) – 1.38 (1.02–1.86)

Age (years) – 1.00 (1.00–1.01)

Formal education greater than
grade 12

– 1.00 (0.67–1.48)

Percentage of community without
running water (10% increase)

1.15 (1.01–1.29) 1.15 (1.02–1.28)

Sex (Male) – 1.33 (0.99–1.80)

Age (yrs) – 1.00 (1.00–1.01)

Formal education greater than
grade 12

– 1.00 (0.66–1.48)

Percentage of community that
collects rain, ice, or snow (10%
increase)

1.10 (1.01–1.19) 1.09 (1.01–1.18)
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historic exposure, it does not equate to current infection status. In
this study, we did not evaluate infection status in the positive
participants.

Giardia and Cryptosporidium are important contributors to
the global burden of diarrhoeal disease. This analysis reflects
the first seroprevalence survey of these parasites to be conducted
in Alaska. The seroprevalence estimates in these demographic
groups can provide a baseline for comparison in the rapidly chan-
ging Arctic environment. Although further study is needed, we
showed a large disparity in Giardia seroprevalence between sub-
sistence bird hunters and their families compared with other resi-
dents of Alaska. In particular, subsistence hunters and their
families who live in communities with low levels of in-home run-
ning water access had a higher prevalence of Giardia seropositiv-
ity. Improved access to potable, in-home running water in these
communities could help alleviate this disparity.
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